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1. Introduction

This work concerns the problem of relating characteristic numbers of one-
dimensional holomorphic foliations of Pn

C
to those of algebraic varieties in-

variant by them. More precisely: if M is a connected complex manifold, a
one-dimensional holomorphic foliation F of M is a morphism Φ : L −→ TM
where L is a holomorphic line bundle on M . The singular set of F is the
analytic subvariety sing(F) = {p : Φ(p) = 0} and the leaves of F are the leaves
of the nonsingular foliation induced by F on M \ sing(F). If M is Pn

C
then,

since line bundles over Pn
C

are classified by the Chern class c1(L) ∈ H2(Pn
C
,Z)

' Z, one-dimensional holomorphic foliations F of Pn
C

are given by morphisms
Φ : O(1 − d) −→ TPn

C
with d ≥ 0, d ∈ Z, which we call the degree of F .

We will use the notation Fd for such a foliation. Suppose now V
i−→ Pn

C
is an

irreducible algebraic variety invariant by Fd in such a way that the pull-back
i∗Fd of Fd to V has a finite set of points as the singular set. The problem we
address is the relation between d and the degree d0(V ) =

∫
V c1(i

∗O(1))dimV

of V .
This question was first considered by Poincaré in [12], in the case of plane

curves invariant by foliations of P2
C

with a rational first integral. More re-
cently Cerveau and Lins Neto [3], Carnicer [2] and Campillo and Carnicer
[1] addressed this question when the invariant variety is a curve. In [14] we
considered this problem for smooth hypersurfaces and in this work we treat
the case of smooth algebraic varieties, concentrating on complete intersections,
where effective computations are feasible.

To obtain the result we first calculate the number of singularities of the
foliation in the invariant variety. To this end we impose the condition of
nondegeneracy of the foliation along the variety; i.e., the linear part of a vector
field representing the foliation on the variety has only nonzero eigenvalues at
the singular points. With this at hand we can use Baum-Bott’s theorem [4]
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and relate the degrees of the foliation and of the variety through a polynomial.
Next we need a positivity argument saying that this polynomial is positive
whenever it represents the number of singularities of a foliation leaving the
variety invariant. We then try to obtain relations between the degrees. The
positivity argument given here follows from the ampleness of the normal bundle
of a smooth projective variety together with the vanishing theorem of [10]
which, in turn, is a consequence of the work of Kamber and Tondeur [8] on
foliated bundles.

2. Statement of results

Let Fd be a one-dimensional holomorphic foliation of Pn
C
, n ≥ 2, of degree

d ≥ 2, given by a morphism

O(1− d) Φ−→ TPnC

with singular set sing(Fd) = {p : Φ(p) = 0} which we assume to have codimen-
sion greater than 1. Such a foliation Fd is represented in affine coordinates
(z1, . . . , zn) by a vector field of the form

X = gR+
d∑
j=0

Xj

where R =
n∑
i=1

zi
∂
∂zi

is the radial vector field, g ∈ C[z1, . . . , zn] is homogeneous

of degree d and Xj , 0 ≤ j ≤ d, is a vector field whose components are homoge-
neous polynomials of degree j. Since codim sing(Fd) ≥ 2 we have either g 6≡ 0
or g ≡ 0 and Xd cannot be written as hR with h ∈ C[z1, . . . , zn] homogeneous
of degree d− 1. In this case X has a pole of order d− 1 along the hyperplane
at infinity and it is worth remarking that, in case g 6≡ 0, g = 0 is precisely
the variety of tangencies of Fd with the hyperplane at infinity, whereas in case
g ≡ 0 this hyperplane is invariant by the foliation.

If i : V −→ Pn
C

is a smooth algebraic variety invariant by Fd, we say
Fd is nondegenerate along V if its pull-back to V , i∗Fd, is nondegenerate;
i.e., sing(Fd) ∩ V is a finite set of points and, at all points p ∈ sing(Fd) ∩ V ,

det
( ∂Yi
∂zj

)
(p) 6= 0 for any vector field Y , tangent to V at p and representing

i∗Fd. Observe that we necessarily have V 6⊂ sing(Fd) and that a singularity
of Fd which lies on V may be degenerate, when considered as a singularity of
Fd in Pn

C
.

Let Vn−k i−→ Pn
C
, n ≥ 2, be a smooth irreducible algebraic variety of

codimension k. Define Vn−k
[i] as follows: Vn−k

[0] = Vn−k, Vn−k
[1] is a generic

hyperplane section of Vn−k and Vn−k
[i] is a generic hyperplane section of Vn−k

[i−1],
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i ≥ 2. In what follows it is irrelevant whether we regard Vn−k
[i] as a subvariety of

Pn
C

or of Pn−i
C

and we let χ
(
Vn−k

[i]

)
denote the Euler-Poincaré characteristic of

Vn−k
[i] . Of course, by Bézout’s theorem, χ

(
Vn−k

[n−k]
)

is just the degree d0(Vn−k)
of Vn−k.

We then have:

Theorem I. Let Vn−k i−→ Pn
C

be a smooth irreducible algebraic vari-
ety invariant by Fd, a one-dimensional holomorphic foliation of Pn

C
of degree

d ≥ 2, nondegenerate along Vn−k. Then the number of singularities of Fd in
Vn−k, noted N (i∗Fd,Vn−k), is

N (i∗Fd,Vn−k) = χ
(
Vn−k

[n−k]
)
dn−k+

n−k∑
j=1

[
χ
(
Vn−k

[n−k−j]
)
−χ
(
Vn−k

[n−k−j+1]

)]
dn−k−j .

Alternatively,

N (i∗Fd,Vn−k) =
n−k∑
j=0

[
j∑
i=0

(−1)i%i(Vn−k)

]
dn−k−j

where %i(Vn−k) is the ith class of Vn−k. Moreover, N (i∗Fd,Vn−k) > 0.

Suppose now that Vn−k
(d1,...,dk)

i−→ Pn
C

is a smooth irreducible complete inter-
section defined by F1 = 0, . . . , Fk = 0 where F` ∈ C[z0, . . . , zn] is homogeneous
of degree d`, 1 ≤ ` ≤ k. Then we have:

Corollary. Assume Vn−k
(d1,...,dk)

is invariant by Fd, a one-dimensional

holomorphic foliation of Pn
C

of degree d ≥ 2, nondegenerate along Vn−k
(d1,...,dk)

.

Then the number of singularities of Fd in Vn−k
(d1,...,dk)

is

N
(
i∗Fd,Vn−k

(d1,...,dk)

)
=

n−k∑
j=0

[
j∑
δ=0

(−1)δ %δ
(
Vn−k

(d1,...,dk)

)]
dn−k−j

= (d1 . . . dk)
n−k∑
j=0

[
j∑
δ=0

(−1)δ W(k)
δ (d1 − 1, . . . , dk − 1)

]
dn−k−j

where W(k)
δ is the Wronski (or complete symmetric) function of degree δ in k

variables
W(k)
δ (X1, . . . , Xk) =

∑
i1+···+ik=δ

Xi1
1 . . . Xik

k .

As an application of Theorem I and the corollary we have:
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Theorem II. Let Vn−k
(d1,...,dk)

and Fd be as in Theorem I and suppose
n− k odd. Then

d ≥
%n−k(Vn−k

(d1,...,dk)
)

%n−k−1(Vn−k
(d1,...,dk)

)
.

In order to avoid trivialities, the invariant varieties considered in Theorem
II are not linear subspaces of Pn

C
. The theorem gives, in case k = n− 1, that

d ≥ W(n−1)
1 (d1 − 1, . . . , dn−1 − 1),

and hence

d0(V1
(d1,...,dn−1)) ≤

(
1 +

d

n− 1

)n−1

.

Also, if k = 1 we obtain d0(Vn−1
d1

) ≤ d+1, since %j
(
Vn−1
d1

)
= d1(d1 − 1)j (see

[14]).

Example 1. Let V2n−1
` , ` ≥ 3, be the smooth hypersurface in P2n

C
defined

by X`
1 +X`

2 + · · ·+X`
2n−1 +X`

2n +X`
2n+1 = 0. Also, V2n−1

` is invariant by the

foliation F of degree `−1 on P2n
C

defined by the vector field (affine coordinates
X2n+1 = 1)

Z = z`−1
2 z1

∂

∂z1
+ (z`2 + 1)

∂

∂z2

+
n∑
i=2

[
(z`−1

2 z2i−1 − z`−1
2i )

∂

∂z2i−1
+ (z`−1

2 z2i + z`−1
2i−1)

∂

∂z2i

]
.

Note that the bound d0(V) = d + 1 is attained. Observe that in P2n
C

a
smooth hypersurface defines a hamiltonian vector field which can be used to
foliate it.

Example 2. The elliptic quartic curve E4 can be realized as the complete
intersection in P3

C
defined by the quadrics Q1 = {X2

1 + X2
2 + X2

3 + X2
4 = 0}

and Q2 = {X1X3 + X2X4 = 0}. The foliation F of degree 2, on P3
C
, defined

by the vector field (affine coordinates X4 = 1)

Z = (−z2
1z2 +z1z3)

∂

∂z1
+(−z1z2

2 +2z2z3−z1)
∂

∂z2
+(−z1z2z3−z2

2 +z2
3 +1)

∂

∂z3

has E4 as invariant curve. Note that the bound d0(V) =
(

1 +
d

n− 1

)n−1

is

attained.
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3. Proof of Theorem I

Choose a hyperplane H∞ transverse to Vn−k and such that H∞∩Vn−k ∩
sing(i∗Fd) = ∅. Since a vector field X representing Fd has a pole of order d−1
along H∞, the same holds for the representative X|Vn−k so that it defines a
section of TVn−k ⊗ i∗O(d− 1). This section has isolated nondegenerate zeros
by hypothesis, and so, according to Baum-Bott’s theorem [4] applied to the
top Chern class:

N (i∗Fd,Vn−k) =
∫

Vn−k

cn−k(TVn−k ⊗ i∗O(d− 1))

where integration is over the fundamental class of Vn−k. Since

cn−k(TVn−k ⊗ i∗O(d− 1))

= cn−k(TVn−k ⊗ i∗O(−1)⊗ i∗O(d))

=
n−k∑
j=0

cj
(
TVn−k ⊗ i∗O(−1)

)
c1(i∗O(d))n−k−j

=
n−k∑
j=0

cj
(
TVn−k ⊗ i∗O(−1)

)
c1(i∗O(1))n−k−jdn−k−j ,

and

cj
(
TVn−k ⊗ i∗O(−1)

)
=

j∑
i=0

(−1)j−i
(
n− k − i
j − i

)
ci(Vn−k)c1(i∗O(1))j−i,

we get

(1)

cn−k(TVn−k ⊗ i∗O(d− 1))

=
n−k∑
j=0

[ j∑
i=0

(−1)j−i
(
n− k − i
j − i

)
ci(Vn−k)c1(i∗O(1))j−i

]
c1(i∗O(1))n−k−jdn−k−j

=
n−k∑
j=0

[ j∑
i=0

(−1)j−i
(
n− k − i
j − i

)
ci(Vn−k)c1(i∗O(1))n−k−i

]
dn−k−j .

Following Fulton [5, 14.4.15], recall that the cycle associated to the jth polar
locus of Vn−k is given, for a general linear subspace Lk+j−2 of Pn

C
, by

[Vn−k(Lk+j−2)] =
j∑
i=0

(−1)i
(
n− k + 1− i

j − i

)
ci(Vn−k)c1(i∗O(1))j−i
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and that the jth class %j of Vn−k is defined to be the degree of [Vn−k(Lk+j−2)],
so that

%j =
∫

Vn−k

j∑
i=0

(−1)i
(
n− k + 1− i

j − i

)
ci(Vn−k)c1(i∗O(1))n−k−i

since the degree is computed through multiplication by c1(i∗O(1))n−k−j . Now,
using Stifel’s relation

(
n−k−i+1

`−i
)

=
(
n−k−i
`−i

)
+
(
n−k−i
`−i−1

)
we get

j∑
i=0

(−1)i%i =
∫

Vn−k

j∑
i=0

(−1)j−i
(
n− k − i
j − i

)
ci(Vn−k)c1(i∗O(1))n−k−i.

It follows from (1) that

N (i∗Fd,Vn−k) =
∫

Vn−k

cn−k(TVn−k ⊗ i∗O(d− 1))

=
n−k∑
j=0

[ j∑
i=0

(−1)i%i

]
dn−k−j .

Let us now recall a consequence of Lefschetz’ theorem on hyperplane sec-
tions [9]. If X is a smooth irreducible algebraic variety and Ht∈P1

C

is a pencil of
hyperplanes with axis Ln−2 then the Euler-Poincaré characteristics are related
by

χ(X) = 2χ(X ∩H)− χ(X ∩ Ln−2) + (−1)dimX%dimX(X)

where H is a generic element of the pencil. Applying this to Vn−k we get:

χ
(
Vn−k)− χ(Vn−k

[1]

)
= χ

(
Vn−k

[1]

)
− χ

(
Vn−k

[2]

)
+ (−1)n−k%n−k(Vn−k).

By repeating this argument, using the Piene-Severi comparison theorem [11]
(which says that the class of a hyperplane section of X is %dimX−1(X)) we
obtain

j∑
i=0

(−1)i%i
(
Vn−k) = χ

(
Vn−k

[n−k−j]
)
− χ

(
Vn−k

[n−k−j+1]

)
so that

N (i∗Fd,Vn−k) = χ
(
Vn−k

[n−k]
)
dn−k+

n−k∑
j=1

[
χ
(
Vn−k

[n−k−j]
)
−χ
(
Vn−k

[n−k−j+1]

)]
dn−k−j .

It remains to show N (i∗Fd,Vn−k) > 0. To this end we invoke the van-
ishing theorem of [10, théorème 2] which states that, if Vn−k is foliated by
i∗Fd without singularities, then any polynomial on the Chern classes of the
normal bundle NVn−k of Vn−k in Pn

C
must vanish in dimension greater than
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2s, where s is the complex codimension of i∗Fd. Now, codim i∗Fd = n−k− 1
and, since det

(
NVn−k

)
is ample [6], it follows from the hard Lefschetz theorem

[9] that the rational class c1
(
det
(
NVn−k

))n−k
is a basis of H2n−2k

(
Vn−k,Q

)
,

and therefore c1
(
NVn−k

)n−k
is nonzero. This finishes the proof of Theorem I.

4. Proof of the corollary to Theorem I

Let us calculate cj(Vn−k
(d1,...,dk)

). Set c1(i∗O(1)) = h. It is well known [7]

that the total Chern class of Vn−k
(d1,...,dk)

is given by

(2) c(Vn−k
(d1,...,dk)

) =
(1 + h)n+1

k∏
`=1

(1 + d`h)
.

Recalling that the Wronski functions are defined by

1
k∏
`=1

(1 + d`t)
=
∞∑
δ=0

(−1)δ W(k)
δ (d1, . . . , dk) tδ

we have that (2) becomes

c(Vn−k
(d1,...,dk)

) =
n−k∑
j=0

[ ∑
i+δ=j

(
n+ 1
i

)
(−1)δ W(k)

δ

]
hj

=
n−k∑
j=0

[
j∑
δ=0

(−1)δ
(
n+ 1
j − δ

)
W(k)
δ

]
hj

so that

ci(Vn−k
(d1,...,dk)

) =

[
i∑

δ=0

(−1)δ
(
n+ 1
i− δ

)
W(k)
δ (d1, . . . , dk)

]
hi , 0 ≤ i ≤ n− k.

Hence,

(3)

χ
(
Vn−k

(d1,...,dk)
) =

∫
Vn−k

(d1,...,dk)

cn−k
(
Vn−k

(d1,...,dk)

)

=
[ n−k∑
δ=0

(−1)δ
(

n+ 1
n− k − δ

)
W(k)
δ (d1, . . . , dk)

] ∫
Vn−k

(d1,...,dk)

hn−k

= (d1 · · · dk)
[ n−k∑
δ=0

(−1)δ
(

n+ 1
n− k − δ

)
W(k)
δ (d1, . . . , dk)

]
.
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To calculate the Euler-Poincaré characteristic of the variety Vn−k−(q)
(d1,...,dk,1q)

, ob-

tained by cutting Vn−k
(d1,...,dk)

successively by q generic hyperplanes, we either

add q extra equations of degree 1, or regard Vn−k−(q)
(d1,...,dk,1q)

as a complete inter-

section in Pn−q
C , given by k equations of degrees d1, . . . , dk. Doing it this last

way we have, from (3):

χ
(
Vn−k−(q)

(d1,...,dk,1q)

)
= (d1 · · · dk)

[
n−k−q∑
δ=0

(−1)δ
(

n− q + 1
n− q − k − δ

)
W(k)
δ (d1, . . . , dk)

]
and

χ
(
Vn−k−(q+1)

(d1,...,dk,1q+1)

)
= (d1 · · · dk)

[
n−k−q−1∑

δ=0

(−1)δ
(

n− q
n− q − k − 1− δ

)
W(k)
δ (d1, . . . , dk)

]
.

The coefficient of dq in the formula of Theorem I is (by Stifel’s relation):

χ
(
Vn−k−(q)

(d1,...,dk,1q)

)
− χ

(
Vn−k−(q+1)

(d1,...,dk,1q+1)

)
= (d1 · · · dk)

[ n−k−q∑
δ=0

(−1)δ
(

n− q
n− q − k − δ

)
W(k)
δ (d1, . . . , dk)

]
.

Setting q = n− k − j we have that Theorem I reads

N
(
i∗Fd,Vn−k

(d1,...,dk)

)
= (d1 · · · dk)

n−k∑
j=0

[
j∑
δ=0

(−1)δ
(
k + j

j − δ

)
W(k)
δ (d1, . . . , dk)

]
dn−k−j .

Now, Lemma 2 of Todd ([15, p. 200] tells us that

W(k)
p (d1 − 1, . . . , dk − 1) =

p∑
i=0

(−1)p−i
(
k + p− 1
p− i

)
W(k)
i (d1, . . . , dk).

Taking the alternate sum and using Stifel’s relation, we arrive at:

j∑
δ=0

(−1)δ W(k)
δ (d1 − 1, . . . , dk − 1) =

j∑
δ=0

(−1)δ
(
k + j

j − δ

)
W(k)
δ (d1, . . . , dk).

Thus we recover the classical formulas of Severi [13] and Todd [15], for the
classes of a smooth complete intersection:

%j
(
Vn−k

(d1,...,dk)

)
= (d1 · · · dk)W(k)

j (d1 − 1, . . . , dk − 1) , 0 ≤ j ≤ n− k.

This finishes the proof of the corollary.
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5. Proof of Theorem II

Lemma 1. Let x1, . . . , xk be nonnegative integers. Then

W(k)
1 (x1, . . . , xk) W(k)

δ−1(x1, . . . , xk)−W(k)
δ (x1, . . . , xk)

≥ W(k)
1 (x1, . . . , xk) W(k)

δ−2(x1, . . . , xk)−W(k)
δ−1(x1, . . . , xk).

Proof. Just observe that every monomial appearing in W(k)
i (x1, . . . , xk)

also appears in W(k)
1 (x1, . . . , xk) W(k)

i−1(x1, . . . , xk) with coefficient at least 1.
In particular both sides of the inequality are nonnegative. Now, the left side
is a sum of monomials of degree δ and the right side is a sum of a smaller or
equal number of monomials of degree δ − 1. Since x1, . . . , xk are nonnegative
integers the result follows.

Note that Lemma 1 gives

W(k)
1 (d1 − 1, . . . , dk − 1)

≥
W(k)
δ (d1 − 1, . . . , dk − 1)−W(k)

δ−1(d1 − 1, . . . , dk − 1)

W(k)
δ−1(d1 − 1, . . . , dk − 1)−W(k)

δ−2(d1 − 1, . . . , dk − 1)
.

Lemma 2. Suppose n− k odd and 1 ≤ k < n− 1. If

d < min
2≤δ≤n−k

{
W(k)
δ (d1 − 1, . . . , dk − 1)−W(k)

δ−1(d1 − 1, . . . , dk − 1)

W(k)
δ−1(d1 − 1, . . . , dk − 1)−W(k)

δ−2(d1 − 1, . . . , dk − 1)

}

then N
(
i∗Fd,Vn−k

(d1,...,dk)

)
≤ 0.

Proof. To avoid cumbersome notation write W(k)
δ (d1 − 1, . . . , dk − 1) as

W(k)
δ . By the corollary

(d1 · · · dk)−1N
(
i∗Fd,Vn−k

(d1,...,dk)

)
= dn−k +

[
1−W(k)

1

]
dn−k−1

+
[
1−W(k)

1 +W(k)
2

]
dn−k−2 +

[
1−W(k)

1 +W(k)
2 −W(k)

3

]
dn−k−3 + · · ·

+
[
1−W(k)

1 + · · ·+ (−1)jW(k)
j

]
dn−k−j

+
[
1−W(k)

1 + · · ·+ (−1)j+1W(k)
j+1

]
dn−k−j−1

+ · · ·+
[
1−W(k)

1 + · · ·+W(k)
n−k−1

]
d+

[
1−W(k)

1 + · · · −W(k)
n−k

]
.
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Grouping the terms pairwise, always assuming the term of highest degree in d
to be odd we get:

(d1 · · · dk)−1N
(
i∗Fd,Vn−k

(d1,...,dk)

)
=
[
d+ 1−W(k)

1

]
dn−k−1

+
[
d
(
1−W(k)

1 +W(k)
2

)
+
(
1−W(k)

1 +W(k)
2 −W(k)

3

)]
dn−k−3 + · · ·

+
[
d
(
1−W(k)

1 + · · ·+W(k)
j

)
+
(
1−W(k)

1 + · · ·+W(k)
j −W(k)

j+1

)]
dn−k−j−1

+ · · ·+
[
d
(
1−W(k)

1 + · · ·+W(k)
n−k−1

)
+
(
1−W(k)

1 + · · ·+W(k)
n−k−1−W

(k)
n−k
)]
.

The term preceeding dn−k−j−1 can be regrouped as(
d+ 1−W(k)

1

)
+
(
−W(k)

1 d+W(k)
2 +W(k)

2 d−W(k)
3

)
+ · · ·+

(
−W(k)

j−1d+W(k)
j +W(k)

j d−W(k)
j+1

)
.

Now, Lemma 1 and the hypothesis imply

d+ 1−W(k)
1 ≤ 0

and
−W(k)

j−1d+W(k)
j +W(k)

j d−W(k)
j+1 < 0,

so that N
(
i∗Fd,Vn−k

(d1,...,dk)

)
≤ 0. This proves the lemma.

Lemma 3. Let x1, . . . , xk be nonnegative integers. Then, for j ≥ 1(
W(k)
j

)2
(x1, . . . , xk) ≥ W(k)

j−1(x1, . . . , xk)W(k)
j+1(x1, . . . , xk).

Also,

min
1≤j≤n−k

{
W(k)
j (x1, . . . , xk)

W(k)
j−1(x1, . . . , xk)

}
=
W(k)
n−k(x1, . . . , xk)

W(k)
n−k−1(x1, . . . , xk)

.

Proof. Let us writeW(m)
j (x1, . . . , xm) asW(m)

j . The proof is by induction
on the number of variables. If k = 1 then(

W(1)
j

)2
(x1) = x2j

1 ≥ x
j−1
1 xj+1

1 =W(1)
j−1(x1)W(1)

j+1(x1).

Assume it holds for k − 1, so that
(
W(k−1)
j

)2
≥ W(k−1)

j−1 W
(k−1)
j+1 . Observe that

this inequality implies

(∗) W(k−1)
1

W(k−1)
0

≥ W
(k−1)
2

W(k−1)
1

≥ · · · ≥
W(k−1)
j

W(k−1)
j−1

≥
W(k−1)
j+1

W(k−1)
j

≥ · · · ≥
W(k−1)
n−k

W(k−1)
n−k−1

.
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Now note that, since

(∗∗) W(k)
j−1 =W(k−1)

0 xj−1
k +W(k−1)

1 xj−2
k + · · ·+W(k−1)

j−1

we have

W(k)
j =W(k−1)

0 xjk +W(k−1)
1 xj−1

k + · · ·+W(k−1)
j−1 xk +W(k−1)

j

=W(k)
j−1xk +W(k−1)

j

and

W(k)
j+1 =W(k−1)

0 xj+1
k +W(k−1)

1 xjk + · · ·+W(k−1)
j−1 x2

k +W(k−1)
j xk +W(k−1)

j+1

=W(k)
j−1x

2
k +W(k−1)

j xk +W(k−1)
j+1 .

With this at hand we get(
W(k)
j

)2
=
(
W(k)
j−1

)2
x2
k + 2W(k)

j−1W
(k−1)
j xk +

(
W(k−1)
j

)2

and

W(k)
j−1W

(k)
j+1 =

(
W(k)
j−1

)2
x2
k +W(k)

j−1W
(k−1)
j xk +W(k)

j−1W
(k−1)
j+1 .

Hence,

(∗ ∗ ∗)
(
W(k)
j

)2
−W(k)

j−1W
(k)
j+1 =

(
W(k−1)
j

)2
+W(k)

j−1W
(k−1)
j xk−W(k)

j−1W
(k−1)
j+1 .

Let us consider the term

W(k)
j−1W

(k−1)
j xk −W(k)

j−1W
(k−1)
j+1 =W(k)

j−1

(
W(k−1)
j xk −W(k−1)

j+1

)
.

Using (∗∗) we obtain

W(k)
j−1

(
W(k−1)
j xk −W(k−1)

j+1

)
=W(k−1)

j xjk +
(
W(k−1)

1 W(k−1)
j −W(k−1)

0 W(k−1)
j+1

)
xj−1
k

+
(
W(k−1)

2 W(k−1)
j −W(k−1)

1 W(k−1)
j+1

)
xj−2
k + · · ·

+
(
W(k−1)
j−1 W

(k−1)
j −W(k−1)

j−2 W
(k−1)
j+1

)
xk −W(k−1)

j−1 W
(k−1)
j+1 .

By (∗), all the coefficients of x`k are nonnegative, for ` ≥ 1. Taking this into
(∗ ∗ ∗) we conclude that(

W(k)
j

)2
−W(k)

j−1W
(k)
j+1 ≥

(
W(k−1)
j

)2
−W(k−1)

j−1 W
(k−1)
j+1 ≥ 0
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by inductive hypothesis. From this it follows that

min
1≤j≤n−k

{
W(k)
j

W(k)
j−1

}
=
W(k)
n−k

W(k)
n−k−1

.

Lemma 3 is proved.

Lemma 4. Let α = min
1≤j≤n−k

{
W(k)
j

W(k)
j−1

}
and

β = min

{
W(k)

1 , min
2≤j≤n−k

{
W(k)
j −W(k)

j−1

W(k)
j−1 −W

(k)
j−2

}}
.

Then α ≥ β > α− 1.

Proof. Write aj =
W(k)
j

W(k)
j−1

≥ 0 for 1 ≤ j ≤ n − k and b1 = W(k)
1 ≥ 0,

bj =
W(k)
j −W(k)

j−1

W(k)
j−1 −W

(k)
j−2

≥ 0 for 2 ≤ j ≤ n− k. Now, a1 = b1 and aj ≥ bj since by

Lemma 3

W(k)
j−1W

(k)
j −W(k)

j W
(k)
j−2 ≥ W

(k)
j−1W

(k)
j −

(
W(k)
j−1

)2
.

Therefore, min
1≤j≤n−k

{aj} ≥ min
1≤j≤n−k

{bj}. Write

α = min
1≤j≤n−k

{aj} and β = min
1≤j≤n−k

{bj}.

We know, by Lemma 3, that α =
W(k)
n−k

W(k)
n−k−1

. Let us say

β =
W(k)
m −W(k)

m−1

W(k)
m−1 −W

(k)
m−2

for some 2 ≤ m ≤ n− k. Then,

1 ≥ β

α
=
W(k)
n−k−1

W(k)
n−k

·
W(k)
m −W(k)

m−1

W(k)
m−1 −W

(k)
m−2

=
W(k)
n−k−1

W(k)
n−k

W(k)
m

W(k)
m−1


1−
W(k)
m−1

W(k)
m

1−
W(k)
m−2

W(k)
m−1

 .
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By (∗) of Lemma 3,
W(k)
n−k−1

W(k)
n−k

W(k)
m

W(k)
m−1

≥ 1 and hence, by using (∗) again

β

α
≥

1−
W(k)
m−1

W(k)
m

1−
W(k)
m−2

W(k)
m−1

≥
1−
W(k)
n−k−1

W(k)
n−k

1− 1

W(k)
1

> 1−
W(k)
n−k−1

W(k)
n−k

> 1− 1
α
.

Therefore α ≥ β > α− 1 and the lemma is proved.

Theorem II follows, since by Theorem I, N
(
i∗Fd,Vn−k

(d1,...,dk)

)
> 0, which

happens, by Lemma 2, for d ≥ β; and as, by Lemma 4, β > α − 1 we obtain
d > α− 1. Now, d is a positive integer and this gives d ≥ α. By the corollary
to Theorem I, %j

(
Vn−k

(d1,...,dk)

)
= (d1 · · · dk)W(k)

j (d1 − 1, . . . , dk − 1) so that

α =
%n−k

(
Vn−k

(d1,...,dk)

)
%n−k−1

(
Vn−k

(d1,...,dk)

) .
Remark 1. It is clear from the proof of Theorem II that all that is needed

to obtain the bound d ≥
%n−k

(
Vn−k

(d1,...,dk)

)
%n−k−1

(
Vn−k

(d1,...,dk)

) are the following relations in-

volving polar classes: %1%j−1 − %j ≥ %1%j−2 − %j−1 and %2
j ≥ %j−1%j+1 for

1 ≤ j ≤ n − k. It would be interesting to know if such relations hold for
the polar classes of a variety Vn−k i−→ Pn

C
which is not necessarily a complete

intersection.

Remark 2. If n− k is even, N
(
i∗Fd,Vn−k

(d1,...,dk)

)
is automatically positive

so, assuming the foliation is nondegenerate just along the variety, we cannot
use the same arguments as given in Theorem II to relate d to the polar classes
of Vn−k

(d1,...,dk)
. In [14] we considered the codimension 1 case, regardless of n− 1

been even or odd, but assumed the foliation was nondegenerate in the whole
of Pn

C
. This allowed us to bound from above the number of singularities of the

foliation in Vn−1
d1

by dn + dn−1 + · · ·+ d+ 1, the total number of singularities
of Fd in Pn

C
, whenever n − 1 is even. However, if n − k is even and we make

the stronger hypothesis that both Vn−k
(d1,...,dk)

and Vn−k+1
(d1,...,dk−1) ⊃ Vn−k

(d1,...,dk)
are

invariant by Fd, which is also nondegenerate along Vn−k+1
(d1,...,dk−1) then, using the

relation

W(k)
δ (x1, . . . , xk) =W(k+1)

δ (x1, . . . , xk+1)− xk+1W(k+1)
δ−1 (x1, . . . , xk+1),
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the same argument given in the proof of Theorem II works, only this time
we bound N

(
i∗Fd,Vn−k

(d1,...,dk)

)
from above by the corresponding number of

singularities of Fd in Vn−k+1
(d1,...,dk−1). In this case we obtain precisely the same

relations as in the odd dimensional case.
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