**Beiträge zur Algebra und Geometrie / Contributions to Algebra and GeometryVol. 40, No. 1, pp. 27-51 (1999)
**

#
Multisymmetric Functions

##
John Dalbec

Department of Mathematics, Yale University, 10 Hillhouse Ave., P. O. Box 208283, New Haven CT 06520-8283, USA

**Abstract:** We develop a theory of multisymmetric functions along the lines of the theory of ordinary symmetric functions presented in [M]. We extend this theory to the multihomogeneous case (factorizable forms) in characteristic $0$. In addition, we present proofs of several results that appear in [J] without proof, as well as counterexamples to some claims made therein.

[M] Macdonald, Ian G.: * Symmetric Functions and Hall Polynomials.* Oxford University Press, New York 1979. \smallskip [J] Junker, F.: * Über symmetrische Funktionen von mehreren Reihen von Veränderlichen.* Math. Ann. ** 43** (1893), 225-270.

**Classification (MSC91):** 05E05

**Full text of the article:**

[Previous Article] [Next Article] [Contents of this Number]