Generators of Order Two for S_n and its Two Double Covers

John Brinkman

Department of Mathematics, Liverpool Hope University College Hope Park, Liverpool L16 8ND, England

1. Introduction

This paper considers the minimum number of involutions, i(G), required to generate both of the double covers G of the symmetric group. In particular, explicit generators, of order two, for each of the groups are also introduced. These generators may, for example, be useful for implementation in Magma-Cayley or GAP.

As a starting point we observe that if i(G) = 1 then G is cyclic and if i(G) = 2 then G is dihedral. Hence for any group of order greater than two that is not isomorphic to a dihedral group we have $i(G) \geq 3$.

It is also well-known that the symmetric group S_n , $n \geq 3$, may be generated by the two cycles (1,2) and $(1,2,3,\ldots,n)$. But as we may write $(1,2,3\ldots,n)$ as the product of, multiplying from the left,

$$(1, n-1)(2, n-2)\dots(r, n-r)$$
 and $(1, n)(2, n-1)\dots(t, n+1-t)$

where r is the integer part of (n-1)/2 and t the integer part of n/2, it is clear that S_n , $n \ge 4$, may be generated by three involutions. Moreover, for $n \ge 4$, $i(S_n) = 3$.

$2.~~i(ilde{S}_n)$

This double cover of S_n , which lifts a transposition of S_n to an element of order 4, will be denoted by \tilde{S}_n . So that \tilde{S}_n is the group with generators $z, r_1, r_2, \ldots, r_{n-1}$ and relations

$$z^2 = 1$$
,

0138-4821/93 \$ 2.50 © 2000 Heldermann Verlag

$$zr_i = r_i z, \quad r_i^2 = z \quad \text{for} \quad 1 \le i \le n-1,$$

 $(r_j r_{j+1})^3 = z \quad \text{for} \quad 1 \le j \le n-2,$
 $r_k r_h = z r_h r_k \quad \text{for} \quad |h-k| > 1 \quad \text{and} \quad 1 \le h, k \le n-1.$

For computations in \tilde{S}_n we will use a method first described by Conway and others at Cambridge (Atlas [2]). This method is outlined in a paper by David B. Wales [5]. In this the elements of \tilde{S}_n are products of the form $\pm [\sigma_i]$, where the σ_i are disjoint cycles in S_n and $\pm [\sigma_i]$ are the corresponding lifts in \tilde{S}_n .

Definition 2.1. For distinct elements a_1, \ldots, a_m we define $[a_1 a_2 \ldots a_m] = a_1 a_2 \ldots a_m a_1$. We call $\pm [a_1 a_2 \ldots a_k]$ signed cycles in \tilde{S}_n . Each is a lift of the cycle $(a_1 a_2 \ldots a_k)$ in S_n .

In fact each a_i corresponds to an element of a subgroup of a Clifford algebra which is isomorphic to \tilde{S}_n . But the following rules are sufficient to enable the calculation of products of disjoint signed cycles in \tilde{S}_n (these appear as 2.3 and 2.4 in [5]).

$$[a_i] = -1,$$

$$[a_1 a_2 \dots a_m] = (-1)^{m+1} [a_2 a_3 \dots a_m a_1],$$

$$[a_1 a_2 \dots a_{m-1}] a_m = (-1)^m a_m [a_1 a_2 \dots a_{m-1}].$$

In particular, these are used in [1] to prove the following proposition.

Proposition 2.2. Any product of k disjoint signed transpositions in \tilde{S}_n has order two if the integer part of (k+1)/2 is a multiple of two, and order four otherwise.

Hence in \tilde{S}_n an involution is of the form $\pm \pi$ where π is a signed cycle consisting of k disjoint transpositions and k is congruent to 0 or 3 modulo 4. Also as the only other element of order two in \tilde{S}_n is -1, we have immediately that \tilde{S}_4 and \tilde{S}_5 may not be generated by involutions.

Also, as we will be making repeated use of this fact, it is convenient at this point to note that factoring out \tilde{S}_n by the subgroup $Z = \langle 1, -1 \rangle$ recovers S_n . That is $\tilde{S}_n/Z \cong S_n$.

Proposition 2.3. For $n \geq 3$, \tilde{S}_n may be generated by $a = \pm [1, 2]$ and $b = \pm [1, 2, \ldots, n]$.

Proof. As S_n is generated by (1,2) and $(1,2,3,\ldots,n)$ it follows that a and b will generate at least one, up to parity of sign, of every type of signed cycle. Hence we only need show that we may also generate -1. But $a^2 = -1$.

Proposition 2.4. $i(\tilde{S}_6) = 5$ and $i(\tilde{S}_7) = 3$.

Proof. That $i(\tilde{S}_6) = 5$ is proved in Section 3. However, in order to give specific generators, we note that (1,2)(3,4)(5,6), (1,3)(2,4)(5,6), (1,4)(2,3)(5,6), (1,5)(2,6)(3,4) and (1,6)(2,3)(4,5) generate S_6 . Thus, as in Proposition 2.3, the corresponding signed cycles will generate \tilde{S}_6 .

For \hat{S}_7 we only need note that

$$(1,2)(3,4)(5,6)$$
, $(1,4)(3,5)(2,7)$ and $(2,3)(3,7)(1,6)$

generate S_7 . Hence the corresponding signed cycles generate \tilde{S}_7 .

Proposition 2.5. For $8 \le n \le 12$, the following involutions generate \tilde{S}_n . When n = 8

$$a = [1, 2][3, 8][4, 7][5, 6], b = [1, 3][4, 8][5, 7]$$
 and $c = [3, 8][4, 7][5, 6].$

For $9 \le n \le 12$ a = [1, 2][3, 9][4, 8][5, 7], b = [1, 3][4, 9][5, 8][6, 7]

$$and \quad c = \left\{ \begin{array}{ll} [3,9][4,8][5,7] & \textit{when} \quad n=9, \\ [3,10][4,8][5,7] & \textit{when} \quad n=10, \\ [3,10][4,11][5,7] & \textit{when} \quad n=11, \\ [3,10][4,11][5,12] & \textit{when} \quad n=12. \end{array} \right.$$

Proof. For n=8 and 9 we have $ac=\pm[1,2]$ and $ab=\pm[1,2,\ldots,n]$ from which the result follows.

When n = 10, 11 or 12, $(ac)^3 = \pm [1, 2]$ and $ab = \pm [1, 2, ..., 9]$ so for each n we may generate the subgroup \tilde{S}_9 , in particular the signed cycles d = [1, 3], e = [1, 4] and f = [1, 5].

It only remains to show that [1, 2, ..., n] can also be generated for each n. But when n = 10 we have $abcdc = \pm [1, 2, ..., 10]$, when n = 11, $abcdec = \pm [1, 2, ..., 11]$ and when n = 12, $abcdefc = \pm [1, 2, ..., 12]$.

Proposition 2.6. $i(\tilde{S}_{13}) = 4$.

Proof. Note that in \tilde{S}_{13} the only involutions are -1 and signed cycles of type 2^3 and 2^4 . Also we require at least 12 signed transpositions in our generators to ensure that all the numbers from 1 to 13 have some link. However we cannot use three signed cycles of type 2^4 , the minimum needed, as they are all even and thus cannot generate any odd signed cycles. Thus $i(\tilde{S}_{13}) > 3$. That $i(\tilde{S}_{13}) = 4$ follows by noting that (1, 12)(2, 11)(3, 10)(4, 9), (5, 8)(6, 7)(1, 13)(2, 12), (3, 11)(4, 10)(5, 9)(6, 8) and (1, 2)(4, 11)(5, 6) will generate S_{13} . Thus the corresponding signed cycles generate \tilde{S}_{13} .

Proposition 2.7. For $14 \leq n \leq 16$, the following involutions generate \tilde{S}_n .

$$\begin{array}{lll} n=14 & a=&[1,2][3,14][4,13][5,12][6,11][7,10][8,9],\\ b=&[1,3][4,14][5,13][2,9],\\ c=&[6,12][7,11][8,10][2,9].\\ n=15 & a=&[2,15][3,14][4,13][5,12][6,11][7,10][8,9],\\ b=&[1,2][3,15][4,14][5,13][6,12][7,11][8,10],\\ c=&[3,14][4,13][6,11][7,10].\\ n=16 & a=&[2,16][3,15][4,14][5,13][6,12][7,11][8,10],\\ b=&[1,2][3,16][4,15][5,14][6,13][7,12][8,11][9,10],\\ c=&[3,16][4,15][5,14][6,13][7,12][8,11][9,10].\\ \end{array}$$

Proof. For n=16, $bc=\pm[1,2]$ and $ab=\pm[1,2,\ldots,16]$ from which the result follows. Now for n=14, $abc=\pm[1,2,\ldots,14]$ and for n=15, $ab=\pm[1,2,\ldots,15]$. Thus in both cases we need only show that we may also generate $\pm[1,2]$. But when n=15, $(ab)^4((abc)^2bab)^{13}(ab)^{-4}=\pm[2,9]$ and $(b.\pm[2,9])^3=\pm[1,2]$. While for n=14, $d=((ba)^2(ca)^2bc)^{15}=\pm[1,5][7,13]$ and $f=(abcedb)^9=\pm[5,6]$, from which we obtain $(abc)^4f(abc)^{10}=\pm[1,2]$.

It is convenient at this point to introduce some notation.

Definition 2.8. We will denote the following product of $\delta + 1$ signed transpositions $[\alpha, \beta][\alpha + 1, \beta - 1][\alpha + 2, \beta - 2] \dots [\alpha + \delta, \beta - \delta]$ by $T(\alpha, \alpha + \delta, \alpha + \beta)$.

As an example of this notation, in the previous proposition, we could express the generators for \tilde{S}_{16} as

$$a = T(2, 8, 18), b = [1, 2]T(3, 9, 19)$$
 and $c = T(3, 9, 19).$

Proposition 2.9. For $n \geq 17$, the following involutions, which are dependent on the value of n modulo 8, generate \tilde{S}_n .

$$\begin{array}{lll} n\equiv 1 & a=&[1,2]T(3,(n+1)/2,n+3),\\ b=&[1,3]T(4,(n+3)/2,n+4),\\ c=&T(3,(n+1)/2,n+3).\\ n\equiv 2 & a=&[1,2]T(3,n/2,n+2),\\ b=&[1,3]T(4,(n+2)/2,n+3),\\ c=&[3,n]T(4,n/2,n+2).\\ n\equiv 3 & a=&[1,2]T(3,(n-1)/2,n+1),\\ b=&[1,3]T(4,(n+1)/2,n+2),\\ c=&[3,n][4,n-1]T(5,(n-1)/2,n+1).\\ n\equiv 4 & a=&[1,2]T(3,(n-2)/2,n),\\ b=&[1,3]T(4,n/2,n+1),\\ c=&T(3,5,n+3)T(6,(n-2)/2,n).\\ n\equiv 5 & a=&[1,2]T(3,(n-3)/2,n-1),\\ b=&[1,3]T(4,(n-1)/2,n),\\ c=&T(3,6,n+3)T(7,(n-3)/2,n-1).\\ n\equiv 6 & a=&[1,2]T(3,(n-4)/2,n-2),\\ b=&[1,3]T(4,(n-2)/2,n-1),\\ c=&T(3,7,n+3)T(8,(n-4)/2,n-2).\\ n\equiv 7 & a=&[1,2]T(3,(n-5)/2,n-3),\\ b=&[1,3]T(4,(n-3)/2,n-2),\\ c=&T(3,8,n+3)T(9,(n-5)/2,n-3).\\ n\equiv 0 & a=&[1,2]T(3,(n-6/2,n-4),\\ b=&[1,3]T(4,(n-4)/2,n-3),\\ c=&T(3,9,n+3)T(10,(n-6)/2,n-4).\\ \end{array}$$

Note that when n = 24 we have (n-6)/2 < 10. So we define T(10, (n-6)/2, n-4) to be 1.

Proof. For $n \not\equiv 1$ we have $(ac)^3 = \pm [1, 2]$ and when $n \equiv 1$, $ac = \pm [1, 2]$. Hence we only need show that $\pm [1, 2, \ldots, n]$ is also generated in each case. When $n \equiv 1$, we have directly that

 $ab = \pm [1, 2, \dots, n]$. For the remaining values of n we note that when

$$n \equiv 2$$
 $ab = \pm [1, 2, \dots, n-1]$ so \tilde{S}_{n-1} is generated, $n \equiv 3$ $ab = \pm [1, 2, \dots, n-2]$ so \tilde{S}_{n-2} is generated, $n \equiv 4$ $ab = \pm [1, 2, \dots, n-3]$ so \tilde{S}_{n-3} is generated, $n \equiv 5$ $ab = \pm [1, 2, \dots, n-4]$ so \tilde{S}_{n-4} is generated, $n \equiv 6$ $ab = \pm [1, 2, \dots, n-5]$ so \tilde{S}_{n-5} is generated, $n \equiv 7$ $ab = \pm [1, 2, \dots, n-6]$ so \tilde{S}_{n-6} is generated.

In particular, as $n \ge 17$, we may generate for each n the signed cycles d = [1, 9], e = [1, 8], f = [1, 7], g = [1, 6], h = [1, 5], j = [1, 4], k = [1, 3]. Thus we may obtain $\pm [1, 2, \ldots, n]$ from abckc when $n \equiv 2$, abckjc when $n \equiv 3$, abchjkc when $n \equiv 4$, abcghjkc when $n \equiv 5$, abcfghjkc when $n \equiv 6$, abcefghjkc when $n \equiv 7$ and abcdefghjkc when $n \equiv 0$.

The previous propositions give directly the following theorem.

Theorem 2.10. For $n \geq 7$ and $n \neq 13$ $i(\tilde{S}_n) = 3$.

3. $i(\hat{S}_n)$

We denote by \hat{S}_n the double cover of S_n that lifts a transposition of S_n to an element of order 2. Hence \hat{S}_n is the group with generators $z, r_1, r_2, \ldots, r_{n-1}$ and relations

$$z^2 = 1,$$
 $zr_i = r_i z, \quad r_i^2 = 1 \quad \text{for} \quad 1 \le i \le n - 1,$ $(r_j r_{j+1})^3 = 1 \quad \text{for} \quad 1 \le j \le n - 2,$ $r_k r_h = z r_h r_k \quad \text{for} \quad |h - k| > 1 \quad \text{and} \quad 1 \le h, k \le n - 1.$

For computations in \hat{S}_n we multiply each of the generators of the Clifford Algebra $C(\Omega)$, where $\Omega = \{1, 2, ..., n\} \cup \{\delta\}$ (see [5]), by the complex number i to obtain an algebra over \mathbf{C} generated by $f_1, f_2, ..., f_n, f_\delta$ where $f_j^2 = 1$ and $f_j f_k = -f_k f_j$ for $j \neq k$. The subgroup of this complex algebra generated by

$$(f_1-f_2)/\sqrt{2}, (f_2-f_3)/\sqrt{2}, \dots, (f_n-f_\delta)/\sqrt{2}$$

is isomorphic to \hat{S}_n .

By identifying D_{a_j} with $(f_j - f_\delta)/\sqrt{2}$, where a_j are distinct in $\Omega \setminus \delta$, the following two relations are readily verified.

$$D_{a_i}D_{a_i}=1$$
 and $D_{a_1}D_{a_2}\dots D_{a_m}D_{a_1}=(-1)^{m+1}D_{a_2}D_{a_3}\dots D_{a_m}D_{a_1}D_{a_2}$.

Now, misusing notation, as in [5], we may write these as

$$a_j a_j = 1$$
 and $a_1 a_2 \dots a_m a_1 = (-1)^{m+1} a_2 a_3 \dots a_m a_1 a_2$.

We are now in a position to define a signed cycle in \hat{S}_n .

Definition 3.1. For distinct elements a_1, \ldots, a_m we define $\langle a_1 a_2 \ldots a_m \rangle = a_1 a_2 \ldots a_m a_1$. We $call \pm \langle a_1 a_2 \ldots a_k \rangle$ signed cycles in \hat{S}_n . Each is a lift of the cycle $(a_1 a_2 \ldots a_k)$ in S_n .

Using this definition with the above relations we obtain the following rules for multiplying signed cycles in \hat{S}_n .

$$\langle a_j \rangle = 1,$$

$$\langle a_1 a_2 \dots a_m \rangle = (-1)^{m+1} \langle a_2 a_3 \dots a_m a_1 \rangle,$$

$$\langle a_1 a_2 \dots a_{m-1} \rangle a_m = (-1)^m a_m \langle a_1 a_2 \dots a_{m-1} \rangle.$$

As an example of the multiplication of signed cycles we recover our presentation for \hat{S}_n as follows: Let $r_1 = \langle 1, 2 \rangle$, $r_2 = \langle 2, 3 \rangle$,..., $r_{n-1} = \langle n-1, n \rangle$ and z = -1. Clearly $z^2 = 1$ and

$$zr_{j} = -\langle j, j+1 \rangle = r_{j}z, \quad \text{for} \quad 1 \leq j \leq n-1,$$

$$r_{j}^{2} = \langle j, j+1 \rangle \langle j, j+1 \rangle = j, j+1, j, j, j+1, j=1,$$

$$(r_{j}r_{j+1})^{3} = (\langle j, j+1 \rangle \langle j+1, j+2 \rangle)^{3} = (-\langle j+1, j \rangle \langle j+1, j+2 \rangle)^{3}$$

$$= (-j+1, j, j+2, j+1)^{3} = -j+1 \langle j, j+2 \rangle \langle j+2, j \rangle j+1$$

$$= j+1 \langle j+2, j \rangle \langle j+2, j \rangle j+1$$

$$= j+1, j+1=1 \quad \text{for} \quad 1 \leq j \leq n-2$$
and
$$r_{j}r_{k} = \langle j, j+1 \rangle \langle k, k+1 \rangle = -\langle k, k+1 \rangle \langle j, j+1 \rangle$$

$$= zr_{k}r_{j} \quad \text{for} \quad |j-k| > 1 \quad \text{and} \quad 1 \leq j, k \leq n-1.$$

Note that, for $n \geq 4$, $\hat{S}_n \not\cong \tilde{S}_n$ if $n \neq 6$, see [3]. Also note that we will again be taking advantage of the fact that by factoring out \hat{S}_n by the subgroup $Z = \langle 1, -1 \rangle$ we recover S_n . That is $\hat{S}_n/Z \cong S_n$.

Proposition 3.2. Any product of k disjoint signed transpositions in \hat{S}_n has order two if the integer part of k/2 is a multiple of two, and order four otherwise.

Proof. Let S denote a product of k disjoint signed transpositions so that we have, for $k \geq 2$,

$$S = \pm \langle a_1, b_1 \rangle \langle a_2, b_2 \rangle \dots \langle a_k, b_k \rangle,$$

where a_i and b_i are distinct integers in the signed transpositions of \hat{S}_n . Then a straight forward induction proof gives, for k > 1,

$$S^2 = (-1)^{k-1}(-1)^{k-2}\dots(-1)^2(-1).$$

While for k = 1, $\langle a_1, b_1 \rangle \langle a_1, b_1 \rangle = 1$.

So in \hat{S}_n an involution is of the form $\pm \pi$ where π is a signed cycle consisting of k disjoint transpositions and k is congruent to 0 or 1 modulo 4.

Proposition 3.3. For $n \geq 4$, \hat{S}_n may be generated by $a = \pm \langle 1, 2 \rangle$ and $b = \pm \langle 1, 2, \dots, n \rangle$.

Proof. As in Proposition 2.3 we need only show that -1 is generated. Now in \hat{S}_n we may generate either

$$g = +\langle 1, 2 \rangle \langle 3, 4 \rangle$$
 or $h = -\langle 1, 2 \rangle \langle 3, 4 \rangle$,

but in either case $q^2 = h^2 = -1$.

The investigation into the value of $i(\hat{S}_n)$ closely follows that of the previous section, except that here involutions are products of k signed transpositions for $k \equiv 0$ or 1 modulo 4. So in particular $\pm \langle 1, 2 \rangle$ is an involution in this double cover.

Hence in \hat{S}_5 , \hat{S}_6 and \hat{S}_7 the only elements of order two are -1 and signed transpositions of the form $\pm \langle a, b \rangle$. Thus we have immediately that $i(\hat{S}_5) = 4$, $i(\hat{S}_6) = 5$ (which, as $\hat{S}_6 \cong \tilde{S}_6$, implies $i(\hat{S}_6) = 5$) and $i(\hat{S}_7) = 6$, generators being $\langle 1, 2 \rangle, \ldots, \langle 1, n \rangle$. Also, as the only involutions in \hat{S}_8 are -1 and signed cycles of type 2^1 and 2^4 , it is readily verified (via GAP [4]) that $i(\hat{S}_8) > 3$. But as

$$\langle 1, 2 \rangle$$
, $\langle 1, 6 \rangle$, $\langle 1, 2 \rangle \langle 3, 8 \rangle \langle 4, 7 \rangle \langle 5, 6 \rangle$ and $\langle 1, 6 \rangle \langle 2, 3 \rangle \langle 4, 8 \rangle \langle 5, 7 \rangle$

generate \hat{S}_8 we have $i(\hat{S}_8) = 4$.

Proposition 3.4. For $n \geq 9$, when $n \equiv 1$, 2 or 3 modulo 8, \hat{S}_n may be generated by three involutions.

Proof. We only need apply the decomposition referred to in the introduction to see that we may express $\pm \langle 1, 2, \ldots, n \rangle$ as the product ab where

$$a = \langle 1, n-1 \rangle \langle 2, n-2 \rangle \dots \langle r, n-r \rangle, \quad b = \langle 1, n \rangle \langle 2, n-1 \rangle \dots \langle t, n+1-t \rangle.$$

Hence if we take a, b along with $\langle 1, 2 \rangle$ the result follows.

Proposition 3.5. For $12 \le n \le 16$, the following involutions generate \hat{S}_n .

When n = 16

$$a = \langle 1, 15 \rangle \langle 2, 14 \rangle \langle 3, 13 \rangle \langle 6, 10 \rangle \langle 7, 9 \rangle$$

$$b = \langle 4, 12 \rangle \langle 5, 11 \rangle \langle 7, 10 \rangle \langle 2, 15 \rangle \langle 3, 14 \rangle$$

$$c = \langle 4, 13 \rangle \langle 5, 12 \rangle \langle 6, 11 \rangle \langle 1, 16 \rangle \langle 8, 9 \rangle.$$

For $12 \le n \le 15$

$$a = \langle 1, 2 \rangle \langle 3, 11 \rangle \langle 4, 10 \rangle \langle 5, 9 \rangle \langle 6, 8 \rangle, \ b = \langle 1, 3 \rangle \langle 4, 11 \rangle \langle 5, 10 \rangle \langle 6, 9 \rangle \langle 7, 8 \rangle$$

$$and \quad c = \left\{ \begin{array}{ll} \langle 3,12 \rangle \, \langle 4,10 \rangle \, \langle 5,9 \rangle \, \langle 6,8 \rangle & when \quad n=12, \\ \langle 3,12 \rangle \, \langle 4,13 \rangle \, \langle 5,9 \rangle \, \langle 6,8 \rangle & when \quad n=13, \\ \langle 3,12 \rangle \, \langle 4,13 \rangle \, \langle 5,14 \rangle \, \langle 6,8 \rangle & when \quad n=14, \\ \langle 3,12 \rangle \, \langle 4,13 \rangle \, \langle 5,14 \rangle \, \langle 6,15 \rangle & when \quad n=15. \end{array} \right.$$

Proof. For n=16 we have $abc=\pm\langle 1,2,\ldots,16\rangle$ so we need only show that $\langle 1,2\rangle$ is also generated. But

$$(abc)^6 ((c(ab)^4 cb)^3 (b(abcb)^3 b)^3)^3 (abc)^{-6} = \pm \langle 1, 4 \rangle$$
 and $((abc)^2 b(abc)^3)^2 \pm \langle 1, 4 \rangle ((abc)^2 b(abc)^3)^{-2} = \pm \langle 1, 2 \rangle$.

When n = 12, 13, 14 or $15, (ac)^3 = \pm \langle 1, 2 \rangle$ and $ab = \pm \langle 1, 2, ..., 11 \rangle$ so for each n we may generate the subgroup \hat{S}_{11} , in particular the signed cycles $d = \langle 1, 3 \rangle$, $e = \langle 1, 4 \rangle$, $f = \langle 1, 5 \rangle$ and $g = \langle 1, 6 \rangle$.

Hence we need only show that $\langle 1, 2, ..., n \rangle$ can also be generated for each n. But when n = 12 we have $abcdc = \pm \langle 1, 2, ..., 12 \rangle$. When n = 13, $abcdec = \pm \langle 1, 2, ..., 13 \rangle$. When n = 14, $abcdefc = \pm \langle 1, 2, ..., 14 \rangle$ and when n = 15, $abcdefgc = \pm \langle 1, 2, ..., 15 \rangle$.

We again make use of the notation $T(\alpha, \alpha + \delta, \alpha + \beta)$, as in the previous section, but here this represents the $\delta + 1$ signed transpositions

$$\langle \alpha, \beta \rangle \langle \alpha + 1, \beta - 1 \rangle \langle \alpha + 2, \beta - 2 \rangle \dots \langle \alpha + \delta, \beta - \delta \rangle$$
.

Proposition 3.6. For $n \geq 17$, the following involutions, which are dependent on the value of n modulo 8, generate \hat{S}_n .

$$n \equiv 0 \qquad a = \langle 1, 2 \rangle T(3, (n-4)/2, n-2),$$

$$b = \langle 1, 3 \rangle T(4, (n-2)/2, n-1),$$

$$c = T(3, 7, n+3)T(8, (n-4)/2, n-2).$$

$$n \equiv 4 \qquad a = \langle 1, 2 \rangle T(3, n/2, n+2),$$

$$b = \langle 1, 3 \rangle T(4, (n+2)/2, n+3),$$

$$c = \langle 3, n \rangle T(4, n/2, n+2).$$

$$n \equiv 5 \qquad a = \langle 1, 2 \rangle T(3, (n-1)/2, n+1),$$

$$b = \langle 1, 3 \rangle T(4, (n+1)/2, n+2),$$

$$c = \langle 3, n \rangle \langle 4, n-1 \rangle T(5, (n-1)/2, n+1).$$

$$n \equiv 6 \qquad a = \langle 1, 2 \rangle T(3, (n-2)/2, n),$$

$$b = \langle 1, 3 \rangle T(4, n/2, n+1),$$

$$c = T(3, 5, n+3)T(6, (n-2)/2, n).$$

$$n \equiv 7 \qquad a = \langle 1, 2 \rangle T(3, (n-3)/2, n-1),$$

$$b = \langle 1, 3 \rangle T(4, (n-1)/2, n),$$

$$c = T(3, 6, n+3)T(7, (n-3)/2, n-1).$$

Proof. For each n here we have $(ac)^3 = \pm \langle 1, 2 \rangle$, so we only need show that $\pm \langle 1, 2, \dots, n \rangle$ is also generated in each case. Now for

$$\begin{array}{lll} n\equiv 4 & ab=\pm \langle 1,2,\ldots,n-1\rangle & \text{so } \hat{S}_{n-1} \text{ is generated,} \\ n\equiv 5 & ab=\pm \langle 1,2,\ldots,n-2\rangle & \text{so } \hat{S}_{n-2} \text{ is generated,} \\ n\equiv 6 & ab=\pm \langle 1,2,\ldots,n-3\rangle & \text{so } \hat{S}_{n-3} \text{ is generated,} \\ n\equiv 7 & ab=\pm \langle 1,2,\ldots,n-4\rangle & \text{so } \hat{S}_{n-4} \text{ is generated,} \\ n\equiv 0 & ab=\pm \langle 1,2,\ldots,n-5\rangle & \text{so } \hat{S}_{n-5} \text{ is generated.} \end{array}$$

In particular, as $n \ge 17$, we may generate for each n the signed cycles $d = \langle 1, 7 \rangle$, $e = \langle 1, 6 \rangle$, $f = \langle 1, 5 \rangle$, $g = \langle 1, 4 \rangle$ and $h = \langle 1, 3 \rangle$. Thus we may obtain $\pm \langle 1, 2, \ldots, n \rangle$ from abchc when $n \equiv 4$, abcghc when $n \equiv 5$, abcfghc when $n \equiv 6$, abcefghc when $n \equiv 7$ and abcdefghc when $n \equiv 0$.

These last three propositions, along with the fact that (1,2), (1,3) and (1,4) generate S_4 , give directly the following theorem.

Theorem 3.7. For n = 4 and $n \ge 9$, $i(\hat{S}_n) = 3$.

Acknowledgements. This paper is an extension of a portion of a thesis which the author undertook while being supported by the SERC and supervised by Dr. J. F. Humphreys, to whom the author is greatly indebted, at Liverpool University.

References

- [1] Brinkman, J.: Involutions in the Decorations of M_{12} . Comm. Algebra 23 (5) (1995), 1975–1988.
- [2] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker R. A.; Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford 1985.
- [3] Hoffman, P. N.; Humphreys, J. F.: Projective Representations of the Symmetric Groups. Oxford Mathematical Monographs, 1992.
- [4] Schönert, M. et.al.: *GAP Groups, Algorithms, and Programming*. Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule Aachen, Germany, fifth edition 1995.
- [5] Wales, D. B.: Some projective representations of S_n . J. Algebra **61** (1979), 37–57.

Received November 4, 1998