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1. Introduction

This paper considers the minimum number of involutions, i(G), required to generate both of
the double covers G of the symmetric group. In particular, explicit generators, of order two,
for each of the groups are also introduced. These generators may, for example, be useful for
implementation in Magma-Cayley or GAP.

As a starting point we observe that if i(G) = 1 then G is cyclic and if i(G) = 2 then G is
dihedral. Hence for any group of order greater than two that is not isomorphic to a dihedral
group we have i(G) > 3.

It is also well-known that the symmetric group S,, n > 3, may be generated by the
two cycles (1,2) and (1,2,3,...,n). But as we may write (1,2,3...,n) as the product of,
multiplying from the left,

(Ln—-1)2,n—2)...(r,n—7) and (1,n)(2,n—1)...(t,n+1—1)

where 7 is the integer part of (n — 1)/2 and ¢ the integer part of n/2, it is clear that S,
n > 4, may be generated by three involutions. Moreover, for n > 4, i(S,) = 3.

2. i(S,)
This double cover of S, which lifts a transposition of S, to an element of order 4, will be
denoted by S,,. So that S, is the group with generators z,7;,79,...,7,_ 1 and relations

22 = 1,
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zri = 1z, ri=z for 1<i<n-—1,
(rjrj1)® = 2z for 1<j<n-2,
et = zrprg for |h—Fk|>1 and 1<hk<n-1.

For computations in S, we will use a method first described by Conway and others at
Cambridge (Atlas [2]). This method is outlined in a paper by David B. Wales [5]. In this
the elements of S, are products of the form +[o;], where the o; are disjoint cycles in S,, and
+[0;] are the corresponding lifts in S,,.

Definition 2.1. For distinct elemqnts ai, . .., 0y we define [a1as . .. am] = aiay . . . ama;. We
call £]ayas . .. ay) signed cycles in S,. Each is a lift of the cycle (a1as...ax) in Sy.

In fact each a; corresponds to an element of a subgroup of a Clifford algebra which is iso-
morphic to S,. But the following rules are sufficient to enable the calculation of products of
disjoint signed cycles in S, (these appear as 2.3 and 2.4 in [5]).

;] = -1,
[a1ag...a,] = (=1)""agas...anail,
[a1as...0m_1]am = (=1)"aplaras ... am_1]-

In particular, these are used in [1] to prove the following proposition.

Proposition 2.2. Any product of k disjoint signed transpositions in S, has order two if the
integer part of (k+ 1)/2 is a multiple of two, and order four otherwise.

Hence in S, an involution is of the form +7 where 7 is a signed cycle consisting of k disjoint
transpositions and k is congruent to 0 or 3 modulo 4. Also as the only other element of order
two in S, is —1, we have immediately that S, and S5 may not be generated by involutions.

Also, as we will be making repeated use of this fact, it is convenient at this point to note
that factoring out S, by the subgroup Z = (1, —1) recovers S,. That is S,/Z = S,.

Proposition 2.3. Forn >3, S, may be generated by a = +[1,2] and b= +£[1,2,...,n].

Proof. As S, is generated by (1,2) and (1,2,3,...,n) it follows that ¢ and b will generate at
least one, up to parity of sign, of every type of signed cycle. Hence we only need show that
we may also generate —1. But a? = —1. O

Proposition 2.4. i(S5) =5 and i(S;) = 3.

Proof. That i(Ss) = 5 is proved in Section 3. However, in order to give specific gener-
ators, we note that (1,2)(3,4)(5,6), (1,3)(2,4)(5,6), (1,4)(2,3)(5,6), (1,5)(2,6)(3,4) and
(1,6)(2,3)(4,5) generate Sg. Thus, as in Proposition 2.3, the corresponding signed cycles

will generate Sg.
For S; we only need note that

(1,2)(3,4)(5,6), (1,4)(3,5)(2,7) and (2,3)(3,7)(1,6)

generate S;. Hence the corresponding signed cycles generate 5. O
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Proposition 2.5. For 8 < n < 12, the following involutions generate S,. When n =8
a=1[1,2][3,8][4,7][5,6] , b=[1,3][4,8][5,7] and c=[3,8][4,7][5,6].

For9<n<12 a=1[1,2][3,9][4,8][5,7], b=[1,3][4,9][5, 8][6, 7]

[3,9][4, 8][5, 7] when n =29,

[3,10][4,8][5,7]  when n =10,

[3,10][4,11][5,7] when n =11,

[3,10][4,11][5,12] when n = 12.

Proof. For n = 8 and 9 we have ac = £[1,2]| and ab = +[1,2,...,n] from which the result

follows.

When n = 10, 11 or 12, (ac)® = £[1,2] and ab = £[1,2,...,9] so for each n we may
generate the subgroup Sy, in particular the signed cycles d = [1,3], e = [1,4] and f = [1, 5].

and

It only remains to show that [1,2,...,n] can also be generated for each n. But when
n = 10 we have abcde = £[1,2,...,10], when n = 11, abedec = £[1,2,...,11] and when
n =12, abcdefc = £[1,2,...,12]. a

Proposition 2.6.  i(S;3) = 4.

Proof. Note that in S5 the only involutions are —1 and signed cycles of type 2% and 2%
Also we require at least 12 signed transpositions in our generators to ensure that all the
numbers from 1 to 13 have some link. However we cannot use three signed cycles of type
2%, the minimum needed, as they are all even and thus cannot generate any odd signed
cycles. Thus i(Sy3) > 3. That i(Sy3) = 4 follows by noting that (1,12)(2,11)(3,10)(4,9),
(5,8)(6,7)(1,13)(2,12), (3,11)(4,10)(5,9)(6, 8) and (1,2)(4,11)(5,6) will generate Sy3. Thus

the corresponding signed cycles generate Sis. O

Proposition 2.7. For 14 < n < 16, the following involutions generate S,,.

n=14 a= [1,2][3,14][4,13][5,12][6, 11][7, 10][8, 9],
b= [1,3][4,14][5,13][2, 9],
= [6,12][7,11][8,10][2,9].

n=15 = [2,15][3,14][4, 13][5, 12][6, 11][7, 10][8, 9],
b= [1,2][3,15][4, 14][5, 13][6, 12][7, 11][8, 10],
= [3,14][4,13][6, 11][7, 10].

n =16 = [2,16][3, 15][4, 14][5, 13][6, 12][7, 11][8, 10],
b= [1,2][3,16][4,15][5, 14][6, 13][7, 12][8, 11][9, 10],
c= [3,16][4,15][5, 14][6, 13][7, 12][8, 11][9, 10].

Proof. Forn =16, bc = +[1,2] and ab = +£[1, 2, ..., 16] from which the result follows. Now for
n =14, abc = £[1,2,...,14] and for n = 15, ab = £[1,2,...,15]. Thus in both cases we need
only show that we may also generate #[1,2]. But when n = 15, (ab)*((abc)?bab)'®(ab)™* =
+[2,9] and (b. £ [2,9])® = +[1,2]. While for n = 14, d = ((ba)?(ca)?bc)'® = £[1,5][7,13] and
f = (abcedb)® = +[5, 6], from which we obtain (abc)? f(abc)l® = +[1, 2]. O
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It is convenient at this point to introduce some notation.

Definition 2.8. We will denote the following product of § + 1 signed transpositions
[aaﬂ][a—i_ ]-aﬂ_ 1][a+25ﬁ_ 2] [a/—i_éaﬁ_ 5] by T(oz,oz—l—d,a—i—ﬂ)

As an example of this notation, in the previous proposition, we could express the generators
for 516 as
=17(2,8,18), b=[1,2]7(3,9,19) and c¢=1T(3,9,19).

Proposition 2.9. For n > 17, the following involutions, which are dependent on the value
of n modulo 8, generate S,,.

n=1 a= [1,2]T(3,(n+1)/2,n+ 3),

b= [1,3]T(4,(n+3)/2,n+4),
c= T3,(n+1)/2,n+3).

n=2 a= [1,2]T(3,n/2,n+2),

b= [L,3]T(4,(n+2)/2,n+ 3),

c= [3,n]T(4,n/2,n+ 2).
n=3 a= [1,2]T(3,(n—1)/2,n+1),

b= [1,3]T(4,(n+1)/2,n+2),

c= [3,n][4,n—-1T(5,(n—1)/2,n+1).
n=4 a= [1,2|T(3,(n—2)/2,n),

b= [1,3]T(4,n/2,n+1),

c= T(3,5,n+3)T(6,(n—2)/2,n).
n=>5 a= [1,2|]T(3,(n—3)/2,n—1),

b= [1,3]T(4,(n—1)/2,n),

c= T(3,6,n+3)T(7,(n—3)/2,n—1).
n=6 a= [1,2]T(3,(n—4)/2,n—2),

b= [1,3]T(4,(n—2)/2,n—1),

c= T3, 7,n+3)T(8,(n—4)/2,n—2).
n="7 a= [1,2]T(3,(n—5)/2,n—3),

b= [1,3]7(4,(n—3)/2,n—2),

c= T(3,8,n+3)T(9,(n—"5)/2,n—3).
n=0 a= [1,2|]T(3,(n—6/2,n—4),

b= [1,3]T(4,(n—4)/2,n—3),

c= T(3,9,n+3)T(10,(n —6)/2,n — 4).

Note that when n = 24 we have (n —6)/2 < 10. So we define T(10,(n —6)/2,n —4) to be 1.

Proof. For n # 1 we have (ac)® = £[1,2] and when n = 1, ac = £[1, 2]. Hence we only need
show that +[1,2,...,n] is also generated in each case. When n = 1, we have directly that
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ab = £[1,2,...,n]. For the remaining values of n we note that when

n=2 ab=4[1,2,...,n—1
n=3 ab==+[1,2,...,n—2
n=4 ab=4[1,2,...,n—3
n=>5 ab=+[1,2,...,n—4
n=6 ab==+[1,2,...,n—5
n="7 ab=+[1,2,...,n—6

s0 S,y is generated,
S0 Sp_s is generated,
s0 S,_3 is generated,
SO S’n_4 is generated,
SO S’R,g, is generated,

S0 S,_¢ is generated.

In particular, as n > 17, we may generate for each n the signed cycles d = [1,9], e = [1, §],
f=1[,7, 9 =1[1,6], h =[1,5], 7 = [1,4], £ = [1,3]. Thus we may obtain +[1,2,...,n]
from abckc when n = 2, abckjc when n = 3, abchjkc when n = 4, abcghjkc when n = 5,
abcfghjkc when n = 6, abcefghjkc when n =7 and abedefghjkc when n = 0. O

The previous propositions give directly the following theorem.

Theorem 2.10. Forn > 7 and n # 13 i(S,) = 3.

3. i(S,)
We denote by S’n the double cover of S, that lifts a transposition of S,, to an element of order
2. Hence S, is the group with generators z,7,,79,...,7,_ 1 and relations
2 = 1,
Zri = T2, 7'3:1 for 1<i1<n-1,
(Tj’f‘j+1)3 = 1 for 1 S j S n — 2,
gt = zrprg for |h—Fk|>1 and 1<hk<n-—1.

For computations in S, we multiply each of the generators of the Clifford Algebra C(£2),
where Q = {1,2,...,n}U{d} (see [5]), by the complex number i to obtain an algebra over
C generated by fi, fo, ... fa, fs Where f]-2 =1 and f;fyx = —fif; for j # k. The subgroup of
this complex algebra generated by

(fi = f2)/V2, (fo— f3)/V2ho o (fu — f5)/V2

is isomorphic to S,
By identifying D,, with (f; — f5)/v/2, where a; are distinct in Q \ 6, the following two
relations are readily verified.

DaDy, =1 and Dy Dy, ... Dy, Dy = (—1)™"' Dy, Dy ... Dy, Dy, Dy
Now, misusing notation, as in [5], we may write these as

m+1a

aja; =1 and aias...ama = (1) 203 . . . Ay (10

We are now in a position to define a signed cycle in S,..
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Definition 3.1. For distinct elements ay, . .., ay we define (a1as . .. ap) = @10z ... apa;. We
call £ {ajas . ..ay) signed cycles in S,. Fach is a lift of the cycle (aiay...ax) in S,.

Using this definition with the above relations we obtain the following rules for multiplying
signed cycles in S,,.

<aj> = 1,
(arag...0m) = (=1)""{ayas...ana),
(a1a2 . CLm_1> Ay = (—l)mam (a1a2 e am_1> .

As an example of the multiplication of signed cycles we recover our presentation for S, as
follows: Let ry = (1,2), ro = (2,3),...,7n_1 = {(n—1,n) and z = —1. Clearly 22 =1 and

zrj = —(J,j+1)=rjz, for 1<j<n-1,
7= G+ DG+ ) =40+ 1550+ 1,5 =1,

(rirjr1)® = (Gi+1D)G+1Li+2)°=(=G+1,0)G+1,7+2))°
= (—J+1,5,i+2,j+ 1) =—j+10,i+2)G+2,5)j+1
JHIG+2,)(+2,5)7+1
j+1Lj+1=1 for 1<j<n-2
and

rire = @i+ D (kk+1)=—(kk+1)(j,7+1)
= zrgr; for |j—k[>1 and 1<jk<n-—1

Note that, for n >4, S, % S, if n # 6, see [3]. Also note that we will again be taking
advantage of the fact that by factoring out S, by the subgroup Z = (1, —1) we recover S,.
That is S,,/Z = S,.

Proposition 3.2. Any product of k disjoint signed transpositions in S, has order two if the
integer part of k/2 is a multiple of two, and order four otherwise.

Proof. Let S denote a product of k£ disjoint signed transpositions so that we have, for £ > 2,
S =4 <CL1, b1> <a2, b2> . (ak, bk> y

where a; and b; are distinct integers in the signed transpositions of S,. Then a straight
forward induction proof gives, for £ > 1,

S% = (—=1)F L (=12 (=1)3(-1).
While for £ = ]_, <a1,b1> <CL1, b1> =1. |

So in S, an involution is of the form 47 where 7 is a signed cycle consisting of k disjoint
transpositions and k is congruent to 0 or 1 modulo 4.

Proposition 3.3. Forn > 4, S, may be generated by a = = (1,2) and b==+(1,2,...,n).
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Proof. As in Proposition 2.3 we need only show that —1 is generated. Now in S, we may

generate either
g=+(1,2)(3,4) or h=-—(1,2)(3,4),

but in either case ¢ = h? = —1. O

The investigation into the value of Z(Sn) closely follows that of the previous section, except
that here involutions are products of k signed transpositions for £ = 0 or 1 modulo 4. So in
particular & (1,2) is an involution in this double cover.

Hence in S5, S(,- and 57 the only elements of order two are —1 and signed transp051t10ns
of the form + (a, b). Thus we have immediately that i(S5) = 4, i(Sg) = 5 (which, as S = S,
implies i(S5) = 5) and i(S7) = 6, generators being (1,2),...,(1,n). Also, as the only
involutions in Sg are —1 and 81gned cycles of type 2! and 24, 1t is readily verified (via GAP
[4]) that i(Ss) > 3. But as

(1,2), (1,6), (1,2)(3,8)(4,7)(5,6) and (1,6)(2,3)(4,8)(5,7)
generate Sg we have i(Sg) = 4.

Proposition 3.4. Forn > 9, whenn =1, 2 or 3 modulo 8, S, may be generated by three
involutions.

Proof. We only need apply the decomposition referred to in the introduction to see that we
may express £ (1,2,...,n) as the product ab where

=(Ln—-12,n—=2)...{r,n—r), b=(L,n)2,n—1)...(t,n+1—1).
Hence if we take a, b along with (1,2) the result follows. O

Proposition 3.5. For 12 < n < 16, the following involutions generate S,.
When n =16

o = (1,15)(2,14) (3,13) (6,10) (7,9)
b = (4,12) (5,11)(7,10)(2,15) (3, 14)
¢ = (4,13)(5,12)(6,11) (1, 16) (8,9).

For12<n <15

= (1,2)(3,11) (4,10) (5,9) (6,8), b = (1,3) (4,11) (5,10) (6,9) (7, 8)

(3,12) (4,10) (5,9) (6,8)  when n =12,

d - (3,12) (4,13) (5,9) (6,8)  when n =13,
G C= (3,12) (4,13) (5,14) (6,8) when n = 14,
(3,12) (4,13) (5,14) (6,15) when n = 15.
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Proof. For n = 16 we have abc = £(1,2,...,16) so we need only show that (1,2) is also
generated. But

(abc)®((c(ab)*ch)? (b(abeb)?b))?(abc)™® = £(1,4) and
((abe)®b(abe)?)? £ (1,4) ((abe)*b(abe)®) ? = £(1,2).

When n = 12, 13, 14 or 15, (ac)® = £(1,2) and ab = +(1,2,...,11) so for each n
we may generate the subgroup Sj;, in particular the signed cycles d = (1,3), e = (1,4),
f=1(1,5) and g = (1,6).

Hence we need only show that (1,2,...,n) can also be generated for each n. But when
n = 12 we have abcde = £ (1,2,. 12} When n = 13, abedec = +(1,2,...,13). When
n =14, abcdefec = £(1,2,.. ., 14) and when n = 15, abedefge = +(1,2,...,15). O

We again make use of the notation 7'(a, o + 6, + ), as in the previous section, but here
this represents the J + 1 signed transpositions

(o, By {a+1,6—1{(a+2,6—2)...{a+,5—9).

Proposition 3.6. For n > 17, the following involutions, which are dependent on the value
of n modulo 8, generate S,,.

n=0 a= (1,2)T(3,(n—4)/2,n—2),

b= (1,3)T(4,(n—2)/2,n—1),

c= T(3,7,n+3)T(8,(n—4)/2,n—2).
n=4 a= (1,2)T(3,n/2,n+2),

b= (1,3)T(4,(n+2)/2,n+3),

= (3,n)T(4,n/2,n+ 2).
n=>5 a= (1,2)T(3,(n—1)/2,n+1),

b= (L3)TE, (1+1)/2,n+2)

c= B,n)y{d,n-1T(5,(n—1)/2,n+1).
n==6 a= (1,2)T(3,(n—-2)/2,n),

b= (1,3)T(4,n/2,n+ 1),

c= T(3,5,n+3)T(6,(n—2)/2,n).
n=T  a= (LYTE (1-3)/2n 1),

b= (1,3)T(4,(n—1)/2,n),

c= T(3,6,n+3)T(7,(n—3)/2,n—1).

Proof. For each n here we have (ac)® = 4 (1,2), so we only need show that +(1,2,...,n) is
also generated in each case. Now for

n=4 ab==+(1,2,...,n—1) so S, ; is generated,
n=>5 ab==+(1,2,...,n—2) so S, 5 is generated,
n=6 ab==+(1,2,...,n—3) so S,_s is generated,
n=7 ab==+(1,2,...,n—4) so S,,_4 is generated,

=0 ab=+(1,2 ,m—>5) so S, s is generated.
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In particular, as n > 17, we may generate for each n the signed cycles d = (1,7), e = (1, 6),
f=1(1,5), g =(1,4) and h = (1,3). Thus we may obtain +(1,2,...,n) from abchc when
n = 4, abcghc when n = 5, abcfghc when n = 6, abcefghc when n = 7 and abede f ghc when
n=0. O

These last three propositions, along with the fact that (1,2), (1,3) and (1,4) generate Sy,
give directly the following theorem.

Theorem 3.7. Forn=4andn >9, i(S,)=3.
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