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Abstract. For any special unipotent class C' of a split reductive group G over
a finite field F,, a special piece C' is defined. It is known that the cardinality of
C (F,) is a polynomial in g. Geck and Malle proposed a conjectural algorithm for
computing these polynomials, and verified it in the case of exceptional groups. In
this paper we show, in the case of classical groups, that their conjecture is reduced
to another conjecture concerning Springer representations of W. We verify this
conjecture in the case where G is of type B, C, or D, with n < 6.

1. Introduction and the statement of results

1.1. Let W be a finite Coxeter group, and W” the set of irreducible characters of W. To
each x € W" one can attach a polynomial D, € R[t] (where ¢ is an indeterminate), i.e., the
generic degree of x. The a-function a(y) is defined as the biggest integer s > 0 such that ¢°
divides the polynomial D,. Let V' be an RW-module affording the reflection character of W.
The b-function b(x) is defined as the smallest integer r > 0 such that x occurs with non-zero
multiplicity in V. We always have a(x) < b(x), and y is called special if the equality holds.
The set W" is partitioned into various two-sided cells of W. Each two-sided cell contains a
unique special character of W.

Let Sy be the coinvariant algebra of the symmetric algebra S(V). Then Sy = @;50S}y is
a graded regular RW-module. We define, for any character ¢ of W, a polynomial R(y) € Z][t]
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by
R(e) =) (. Siy)wt',

i>0

where (, ) - denotes the inner product of class functions of W, (here the RW-module S¥;, is
also regarded as a character of W). For x € W", R(x) is called the fake degree of x.

1.2. Let G be a connected reductive algebraic group over k, where £ is an algebraic closure
of a finite field. Let W be the Weyl group of G. By the Springer correspondence there
exists a natural injective map from W” to the set Z of all the pairs (C, L), where C is a
unipotent class in G and £ is a G-equivariant irreducible (Q;-) local system on C. We denote
by Z, the subset of Z obtained as the image of this map. If £ is a constant sheaf Q;, any
pair (C, L) is contained in Zy. A unipotent class C is called special if (C, Q;) corresponds
to a special character. Then special unipotent classes are in bijective correspondence with
special characters of W. This was known by Lusztig [8] for good characteristic case, and was
recently verified also for bad characteristic case by Geck and Malle [4]. We define, for a special
unipotent class C, a special piece C as a subset of the unipotent variety Gyy,; consisting of all
the elements in the closure C of C which are not in the closure of any special unipotent class
C' # C,C" c C. Hence C is an irreducible, locally closed subvariety in Gyni. It is known
by [14] that special pieces form a partition of Gyni- (Note that Th.1.4 and Th.1.5 in Chap.
IIT of [14] substantially contains the proof of the above result. However the notion of special
pieces is implicit there).

Let F, be a finite field of ¢ elements with chF, = p. We assume that G' has a split
F,-structure with Frobenius map F' : G — G. Then all the unipotent classes are F-stable.
It is known, once p is fixed, that the cardinality of F-fixed points in a unipotent class C is
expressed by a polynomial in ¢q. The classification of unipotent classes however depends on
p. Nevertheless, Lusztig has shown in [13] the following fact: Let C' be the special unipotent
class corresponding to a special character y of W, and C the special piece associated to C.
Then there exists a polynomial f, € Z[t] such that

|5F| = fx(q)a

i.e., the polynomial expressing the cardinality \GF | is independent of the characteristic of the
base field.

1.3. The above result of Lusztig is based on a case by case argument. In [5], Geck and Malle
proposed a general algorithm for producing polynomials f, (¢) without referring to unipotent
classes. Their algorithm is an analogue of the algorithm for computing Green functions (see
Section 2), and is given as follows: For i € Zj, we denote by x; the corresponding irreducible
character of W. We put a(i) = a(x;). Let us define a matrix 2 = (w;;)i jez, by

wij =t R(x; ® x; ® €) € Z[t],

where N is the number of reflections in W, and ¢ is the sign character of W. We consider
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the following system of equations for unknown \;;, pi; (4,5 € Zo),

(Nirjr =0 unless a(i') = a(j")

pji; =0 unless a(j') > a(j) or j = j'
(1.3.1) \ pjj = t°V) for all j € I,

wy= Y prideppy;  foralli,j €Ty

\ 7,3'€To

We choose a total order on Z; which is compatible with the order reverse to the preorder
induced from a(7), and define matrices A = ()i jrez, and P = (pj1;)j.jez, along this order.
Then the last equations in (1.3.1) can be written as

'tPAP = (2.

We define an equivalence relation ~ on Zy by i ~ j if a(i) = a(j), and consider P, A as
block matrices with respect to this relation. Then P is a block upper triangular matrix, with
diagonal block consisting of identity matrix multiplied by ¢*®, and A is a block diagonal
matrix. Moreover, they proved that A is non-singular. Hence the system of equations (1.3.1)
has a unique solution with \;;, p;; € Q(¢), rational functions on ¢. Under this setting, Geck
and Malle stated the following conjecture.

Conjecture 1.4. (Geck and Malle [5]) Let G be as before and W the Weyl group of G. Then
(1) Nij,pij € Qt] fori,j € Iy,
(i) >, A= 12N where the sum is taken over all i € Ty such that x; is special.
(iii) Fori € Iy such that x; is special, \i; coincides with f,,(t) given in 1.2, i.e., ifi = (C, Q)
with C special, we have

ICT| = Nilg)-

Remarks 1.5. (i) In the case of type A,, the equations (1.3.1) are exactly the same as the
equations for computing Green functions for G, and the conjecture follows from the properties
of Green functions. Geck and Malle verified the conjecture in [5] in the case of all exceptional
groups by using the computer.

(ii) The statements (i) and (ii) in the conjecture make sense also for finite Coxeter groups,
or even for certain finite complex reflection groups under an appropriate setting. (Note that
in the original conjecture, \;; and p;; are required only in R[t]. But in the case of Weyl
groups, Q[t] would be more appropriate.) Geck and Malle verified that even in those cases,
the equations (1.3.1) produce polynomials \; = f, € Z[t] for each special character y € W",
satisfying the equation (ii). Hence those polynomials f,(t) are regarded as those expressing
the cardinality of “special pieces” in G* even if G does not exist.

1.6. Let G be as in 1.2. For a unipotent class C in G, choose u € C and let Ag(u) be
the component group of Zg(u). Then G-equivariant irreducible local systems on C' are in
bijective correspondence with irreducible characters of Ag(u). Hence the pair (C,L) € T is
also represented by a pair (u, p) with p € Ag(u)”. Let B, be the variety of Borel subgroups of
G containing u. We have an action of W x Ag(u) on the [-adic cohomology group H™(B,) =
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H™(B,,Q;) (the Springer action of W and the natural action of Ag(u)). Assume that
(C, L) € T is represented by a pair (u, p). Then the p-isotypic subspace H™(B,), of H™(B,)
is a W-module. Set d, = dimB,. It is known that the pair (C, L) is in Z; if and only
if H?*(B,), # 0, and in that case W x Ag(u)-module H?(B,), is written as x ® p for
an irreducible character x of W. The correspondence (C, L) — x gives rise to a bijection
between Z, and W", which is nothing but the Springer correspondence. Note that the
condition (C, L) € T, is also equivalent to the condition H*(B,), # 0 for some 7 > 0 by [10,
24.4]. Concerning the relationship between Springer representations and the a-function on
W", the followings are known.

1.6.1. ([1]) Assume that (u,1) corresponds to x € W". Then d, = b(x) > a(x). In partic-
ular, if x is special, then we have d, = a(x).

1.6.2. ([7], [12]) More generally, if (u, p) corresponds to x € W", then we have d, > a(x).

We can state the following conjecture, which gives a connection between the a-function and
Springer representations occurring in lower cohomology.

Conjecture 1.7. Let G be as in 1.2. Assume that x E_W/\ corresponds to (C, L), and that
X1 € W’ corresponds to (C1, L) = (uy, p1) with C; C C.

(i) If x occurs in H'(By,),, for some i, then a(x1) > a(x).

(ii) In the setting in (i), assume further that C is special with £ = Q; and that C; ¢ C.
Then a(x1) > a(x).

In the remainder of this section, we assume that p is good for G. Then in the case of excep-
tional groups the first statement of Conjecture 1.7 is obtained from the following stronger
fact which is checked by making use of the tables of Springer correspondence (see, e.g. [3]).

Proposition 1.8. Let G be of exceptional type, and assume that p 1s good for G. Assume
further that x € W corresponds to (C, L), and that x; corresponds to (C1, L) with C; C C.
Then we have a(x1) > a(x).

In the case of exceptional groups, the second statement of Conjecture 1.7 is also verified by
using the table of Green functions. The author is indebted to Frank Liibeck for checking this
by using CHEVIE. Note that in contrast to Proposition 1.8, the second statement does not
hold if one drops the assumption in (i).

We note also that Proposition 1.8 does not hold in the case of classical groups in general
(see 4.13 for counterexamples). In Section 4, we show some properties of Springer represen-
tations, and using them we verify Conjecture 1.7 for G of type B,,C, or D, with n < 6,
without computing Green functions. The main purpose of this note is to show the following
weaker version of Conjecture 1.4 in the case of classical groups, assuming Conjecture 1.7.

Theorem 1.9. Let G be of classical type, and assume that p is odd. Assume further that
Conjecture 1.7 holds for G. Then \;;,pij € Q[t,t™']. Moreover, the statements (ii), (iii) in
Congecture 1.4 hold for M.
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The idea of the proof is to compare the equations in (1.3.1) with the equations used for
computing Green functions, which are obtained by expressing Green functions in terms of
certain functions, associated to pairs (C, L) € Ty, on the set of unipotent elements. These
functions form a basis of the space V, of functions generated by Green functions. We construct
a new basis of V, which has closer relations with the a-function. The theorem is obtained
by expressing Green functions in terms of this new basis. It would be interesting to find a
geometric interpretation of this basis.

The author is grateful to Meinolf Geck and Gunter Malle for valuable discussions con-
cerning their result.

2. Green functions

2.1. In this subsection, we shall recall the definition of Green functions, and give an algorithm
for computing them. We follow the notation in 1.2. Besides it, we assume that p is good for G,
(and ¢ = 1 (mod 3) if G is of type Fg), and that G* is of split type. Then for each unipotent
class C, there exists a good representative u € C¥" as in [16], [2], a “split element” in C,
which is unique up to G¥-conjugacy modulo the center of G. Then F acts trivially on the
component group Ag(u). The set of GF-conjugacy classes in C*" is in bijective correspondence
with the set Ag(u)/~ of conjugacy classes in Ag(u). We denote by u, a representative of
the G"-conjugacy class in C* corresponding to a € Ag(u)/~. For each w € W, the Green
function Q,, : G, — Q, is defined by

uni

dy

(2.1.1) Qulg) = Y Tr((w,a), H*"(B,))q™,

m=0

if g € G, is GF-conjugate to u,. Hence @, is a GF-invariant function on GE ;. We define,

for each x € W, a function @, on GE ., by

Qy = Wi Z X (W) Qu-

wew

Now assume that x corresponds to i = (C, L) € Z, under the Springer correspondence. We
consider the intersection cohomology IC(C', £) on G. Then it is known, by Borho-MacPherson
[1] that the x-isotypic part H*™(B,,), is expressed as

(2.1.2) H*™(B,,)y = Vy @ HZ"?®1C(C, L),

where V, denotes the irreducible W-module affording x, and u € C. (Here K =1IC(C, L) is
regarded as a complex on G by extending by 0 outside of C, and HZ K denotes the stalk at
uy of the j-th cohomology sheaf of the complex K.) Hence @, is also expressed, for a split

element g € GI,, as

(2.1.3) Qx(9) =D (dimH2" % 1C(C, £))q™.

m>0

In what follows, we denote @, by Q; if x corresponds to i = (C, L) € Zy.
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2.2. Let us define, for each i = (C, £) € Z, a G"-invariant function ¢; on GE ; by
pla if g is G¥'-conjugate to u,,
Yi(g) = (@) . F
0 if g ¢ C",

where (C, £) is represented by (u, p).
Let V be the Q;-space of G¥-invariant functions on G
V by

F
uni*

We define an inner product on

(f,ly="Y_ fla)h(g).

geGE

uni

Set pij = (14, ;). We note that

2.2.1. For each i,j € I,, there exists a polynomial p;; € Q[t] such that p;; = uij(q). If
i = (C,Qu), then we have p;(q) = |CT].

In fact, if (u, p) corresponds to ¢ € Iy, p is obtained as the pull back of a character of the
component group associated to the adjoint group. But it is known that if G is of adjoint
type, Ag(u) is isomorphic to the product of various symmetric groups S; (1 <4 < 5). Hence
p(a) € Z for any a € Ag(u). On the other hand, the classification of unipotent classes and
the structure of Ag(u) are independent of p whenever p is good. Furthermore the cardinality
of the G¥-conjugacy class containing u, is expressed as f,(q) for some polynomial f, € Q[t].
The first statement of 2.2.1 follows from these facts. The second statement is clear from the
definition.

It is easily verified that the set {t; | i € Z} forms a basis of V. In turn it is proved by
Lusztig [10] that the set {¢; | i € Zy} forms a basis of the subspace V, of V spanned by Green
functions @Q; (¢ € Zp). (Here @; denotes the function @), if x corresponds to 7). Now one can
express (; as

(2.2.2) Qi =) mit;

J€ZLo
with 7;; € Q;. We note that
2.2.3. There ezists a polynomial 7;; € Z[t] such that m;; = m;;(q).

In fact, assume that j = (u1, p1) € Zy. Then in view of (2.1.1), 7;; can be expressed as

(2.2.4) mii = » (H™(B.,),x ® p1)q"™,

m>0

where (H*™(B,,), x ® p1) denotes the multiplicity of x ® p; in H*™(B,,). It is known that
the structure of H*™(B,,) as W x Ag(u;)-module is independent of p. Hence 2.2.3 holds.

We write C' = C; if i = (C,L£). We define a partial order on the set of C; (i € Z) by
C; < Cj if C; is contained in the closure of C;. Then it is easy to see that p;; = 0 unless
C; = C;. Moreover, it follows from (2.1.2) and (2.2.4) that we have m;; = 0 unless C; < C;
ori=j. If i = j, we have m; = q% for i = (u, p).
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Now the orthogonality relations for Green functions can be transformed to the following
formula for Q;, (see, e.g. [17]),

(Qi, Q) = wij(q)-

The following result gives an algorithm for computing Green functions of GF'.

Proposition 2.3. (Lusztig [10]) The polynomials 7, u;; € Qlt] are the unique solution of
the following system of equations with unknown 7;j, [i;;,

(

iy =0 unless Cy = Cy,
T =0 unless Cjp < Cj or j =7,
(2.3.1) 7y =t for j = (u, p) € I,
wij = %i’i/ji’j’%j’j fO’f‘ all ’i,j € I().
\ i',3' €T

In fact, as discussed in 1.3, if we choose a total order on Z; which is compatible with the
preorder for C;, and define matrices M = (uy;) and II = (7;;) along this order, the last
equation in (2.3.1) can be written as

FITIMIT = 2.

Asin 1.3, we can consider M and II as block matrices with respect to the equivalence relation
~ (1 ~ jif C; = C;). Then M and II have the same shape as A and P. Moreover M is
non-singular since this holds for ¢ = ¢. Hence (2.3.1) has a unique solution f;;, 7;; € Q(%).
But the argument in 2.2 shows that fi;;(¢) (resp. 7;;(t)) coincides with p;;(t) (vesp. ()
if ¢ is a power of a good prime. Hence f1;; = p;; and 7;; = m;; as asserted.

3. Proof of Theorem 1.9

3.1. Before going into details of the proof of Theorem 1.9, we prepare some combinatorial
lemmas. In this section we regard ¢ also as an indeterminate. Let X = {1,2,...,k} for some
integer k£ > 0. We fix positive integers di,ds,...,d;. We denote by Px the set of all the
subsets of X. For each I € Px, let us define O; € Z|q] by

or=1lw" -1 ] @+,

icl X1
We define, for each I € Py, a function ¥; : Px — {£1} by
@ (J) = (—1)1,

For abbreviation, we write ¥; = U;;. Then we can write ¥; = [[,.; %. For each I € Py, set
Yr =3 sep, Os¥r(J). Then we have

Lemma 3.2. Y; = 2% H q%.
ieX I
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Proof. We show the lemma by induction on k& = | X|. The statement of the lemma is easily
verified if £ = 1. So, we assume that the lemma holds for any proper subset X' of X. First
consider the case where I is a proper subset of X. Then there exists € X such that x ¢ I.
We decompose Px as Px = P' UP", where P! = Px» with X' = X — {2} and P" is the set
of all the subsets of X containing . We have

Z(r)l qdm+1 |IﬂJ|+ z O”/ dz )|IﬂJI|’

JEP! JIep

where O coincides with O(JX’), a similar object as O defined by replacing X by X', and
O, coincides with (’)(J),(i){w} under a bijection P" ~ Px:, (J' < J' — {x}). Since [N J'| =
|[IN(J —{x})|, we have

le = 2qdeI(X,)a

where YI(X,) is a similar object as Y; defined by using Px:. Hence by induction, we obtain
the required formula.

Next consider the case where I = X. Again we decompose Px as Px = P’ UP"”, where
P' = Px with X' = {1,2,...,k — 1}, and P" is the set of all the subsets of X containing k.

Then we have
=> O+ 1) (-7 + ) 0y —1),
JeP! J'eP

As before, O’ coincides with (’)SXI) and O, coincides with O _ ;) under a bijection P" ~ Px.
Then the last formula is equal to

2 Y 0y (-n =2v”.

JEPX/

Hence by induction, we have Y; = 2 as asserted. This proves the lemma. [l

3.3. Let Vx be the space of R(g)-valued functions on Px. We define an inner product on

Vx by
= Y Osf()h(])

JEPx

for f,h € Vx. The inner product (¥7, ¥;) is computed as follows. Since ¥; = [[,.,; ¥;, we see
that ¥1¥; = ¥;o;, where I & J denotes the symmetric difference I U J — I N J. Hence we
can write

(3.3.1) W1, %5) =Yy

Let us define, for each J € Px, a function @; € Vx by

(3.3.2) ;= (-1 gpwy,

J'cJ

where ¢ = [, q%. We show
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Lemma 3.4. Let I,J € Px be such that |I| < |J| or |I| = |J| and I # J. Then we have
(¥r,0,) = 0. In particular, (Or,0 1)y =0 for any I, J € Px such that I # J.

Proof. Tt is enough to show the first assertion. We have

(Wr,0;) = Z(_l)\J|+\JIIqJ,<¢I,¢J,>
Jcy

= > (=) lgs Ve,

J'cJ

by (3.3.1). By our assumption, there exists x € J such that = ¢ I. Let P; be the set of all the
subsets in J. Then P, is written as P; = P, U P/, where P’ (resp. PY) is the subset of P,
consisting of J' C J such that x ¢ J' (resp. x € J'). We have P, ~ P} J' < J' = J — {«},
and

(341) (-].)'J‘_HJ”'QJH}/IGJH = _(_1)\J|+\J'|quq']'}/([e']’)uw.

But, by Lemma 3.2, we have Y{;e 0 = ¢~ %Yo Hence the right hand side of (3.4.1) is
equal to —(=1)"+lg; Yo . This implies that (7, ©;), = 0, and we obtain the formula.
This proves the lemma. O

3.5. Let W be the Weyl group of type B, or D,. A notion of “symbols” was introduced
by Lusztig, and irreducible characters of W are parametrized by certain symbols as follows,
(see [8, chap.4]). First assume that W is of type B,. Each irreducible character x of W is
parametrized by an ordered pair («; ) of partitions of n. Here by allowing 0 in the entries
of « or 3, we may write those partitions as

a:0<a; <ay < - < apy,
B:0<G <P << By

for some m > 0 such that Y «o; + > f; = n. We further assume that oy # 0 or ; # 0.
Let us define sequences S = {1, Ao, .-, Amur }, T = {1, pi2, - -+, b} by Xi = a; + (i — 1),
pj = B;+ (j —1). Then A = A(x) = () is called a (reduced) symbol of defect 1 and rank
n corresponding to x of W. We denote by ®, ; the set of symbols of rank n and defect 1.
Thus we have @, ; ~ W".

Next assume that W is of type D,,. Each irreducible character x of W is parametrized
by an unordered pair («; ) of partitions of n, (here if &« = £, the pair («, 3) corresponds
to two distinct irreducible characters). By allowing 0 in the entries of « or §, we may write
them as

a:0<a; <ay < <y,
B:0< B <Bp<---<By

for some m > 0 such that Y o;+ ) §; = n. As before, we may assume that a; # 0 or 8 # 0.
Let us define sequences S = {1, Ao, ..., A}, T = {p1, p2, - st} by i = a; + (i — 1),
pj = B+ (j — 1). Then an unordered pair A = A(x) = (3) is called a (reduced) symbol
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of defect 0 and rank n corresponding to x € W”". We denote by &)n,O the set of symbols of
rank n and defect 0, where the symbols (i) with S = T are counted twice. Thus we have
5n,0 ~ WA,

Using the notion of symbols, the partition of W” into families is easily described as
follows: Take x,x' € W” and let A(x) = (:‘?) and A(x') = (,i:) be associated to , x’. Then
x and Y’ are in the same family if and only if SUT = S"UT' and SNT = S'NT". Moreover,
the condition for x being special is given as follows: In the case where W is of type B,,
x € W" is special if and only if A\; < g < Ay < g < -+, In the case where W is of type
D, x is special if and only if \y < g KA <o < - or g KA < pp <A< vee

The a-function on W is described as follows: For a given A = (;) as above, we arrange
the elements in SUT as v; < vy < --- < Vgpypy (resp. vy S g < -+ < wyy,) if Wis of type
B, (resp. if W is of type D,,), respectively. We prepare a sequence

W<y <---<vyy,  =0<0<1<1---<m—-1<m-1<m
in the case where W is of type B,, and
W<)<-- <y =0<0<1<1<---<m—-1<m~—1

in the case where W is of type D,,. Let a(A) = a(x) for A = A(x). Then we have

(3.5.1) a(A) = Zinf{yi, vj} — Zinf{yzo, v},

i<j 1<j
In fact, the formula for a(A) is given in [8, chap.4] in a slightly different form. The formula
(3.5.1) for type B, is found in [11, 4.11]. The similar formula for type D, is also deduced
easily from the one in [8].

3.6. Let G = Spn (k) or SOn(k) with ch k # 2. The unipotent classes and the structure of the
centralizer of unipotent elements are described as follows. Assume that G = Spy (k). Then
the set of unipotent classes of G is in bijection with the set Xy of partitions A = (1™,2"2,...)
of N such that r; is even for odd i. We denote by u, a unipotent element in GG corresponding
to A € Xy. Then we have

Za(uy) ~ [ Spr. x [ O

4: odd i even

Hence the component group Ag(uy) = Zg(uy)/Z&(uy) is isomorphic to a product Z/2Z x
-+« X Z/2Z, where factors are parametrized by the set Ay = {i: even | r; > 0}. We denote
by «; the generator of Z/2Z corresponding to i € Ay. It follows that the sets Ag(uy) and
Ag(uy)" are parametrized by the set P(A,) of all the subsets of Ay. For each I C A,,
pr € Ag(uy)" is given by

(3.6.1) pr(a) = {1 i g1

-1 itiel.

Next assume that G = SOx(k). Then the set of unipotent classes in G is in bijection
with the set X of partitions A = (1™,2™,...) of N such that r; is even for even i, except
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that to A = (2",4™,...) € X}, there correspond two unipotent classes. Again let u, stand
for a unipotent element corresponding to A € X},. Then we have

Za(uy) ~ ] Spr x {(z:) € [ O | [] det; =1}

2: even 4: odd

Hence Ag(uy) is isomorphic to an index 2 subgroup of [ [, 44 Or/SOr, ~ Z/2Z % - - - x Z/2Z,
where factors are parametrized by the set Ay = {i: odd |r; > 0} and Ag(u,) is defined by
the condition that > u;a; € Ag(u) if and only if Y~ u; = 0 (mod 2). (Here «; is the generator
of Z/2Z corresponding to i € Ay). As in the previous case, the set Ag(u,) is parametrized by
the set Pe, (Ay) = {I C Ay | |I|: even}, and Ag(uy)” is parametrized by the set P(A,)/~,
where ~ is the equivalence relation defined by I ~ A, — I. For each I € P(A))/~, pr is
defined similarly.

We now consider the F,-structure on G. We choose a split element uy in G¥. Let
C) be the conjugacy class containing uy. Then the set of GF-conjugacy classes in Cf is
parametrized by Ag(uy), hence by subsets of Ay. We denote by u; € C§ a representative
corresponding to I C Ay. We define a subset A} of Ay by

A ={ieAy|ri=2 (mod4)}.

For each i € AY, we put d; = r;/2. For I C Ay let O(us) be the GF-conjugacy class
containing u;. Then the cardinality |O(u;)| is a polynomial in ¢q. Furthermore the following
formula is easily verified.

3.6.2. There exists a rational function F\(t) such that

O(un) = F@ ] (¢*-1) ] @ +1).

ieInAY €AY -1

3.7. We now recall combinatorial objects introduced by Lusztig [9] to describe the gener-
alized Springer correspondence of classical groups. (Here we only need the Springer corre-
spondence). For an even integer N > 2, let Wy ; be the set of pairs (g), called u-symbols,
subject to the following conditions: (i) A is a finite subset of {0,1,2,...}, B is a finite
subset of {1,2,...} such that |A| = |B|+ 1, (ii) A, B contain no consecutive integers, (iii)
Yuca @+ Db = 5N + 2(|A| + |B|)(|A| + |B| — 1). Moreover a u-symbol (g) is called
reduced if 0 ¢ A or 0 ¢ B. Unless otherwise stated, we assume that u-symbols are reduced.
We call Wy, the set of (reduced) u-symbols of defect 1 and rank N. Two u-symbols (4), (4)
are said to be similarif AUB = A'"UB’ and AN B = A'"NB'. It is known that there exists
a natural bijection between the set of similarity classes of Wy ; and the set Xy, (see 4.3).
Hence we can identify similarity classes and unipotent classes in Spy.

Next, for any odd integer N > 3, let ¥y, be the set of pairs (g), also called u-symbols,
subject to the following conditions: (i)’ A, B are finite subsets of {0,1,2...} such that
|A] = |B| +1, (ii) the same as above, (ili)’ Y ,coa+ > ,cpb = 3N + 3 ((|A| + |B| —1)* —1).

Also for an even integer N > 4, let W)y, be the set of unordered pairs (g), where the
conditions are the same as (i)’, (ii), (iii)’ except that |A| = |B|, and that (g) is counted twice
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in the case where A = B. A u-symbol (g) is called reduced if 0 ¢ AN B. As before any
elements in Wy ; or W'y is assumed to be reduced. We define similarity classes for W), or
‘I"N,o as in the case of Uy ;. Then it is known that there exists a natural bijection from the

set of similarity classes in W}, (resp. ‘Ev,o) to the set X} for N : odd (resp. N : even).
Hence we can identify similarity classes and unipotent classes in these cases also.

3.8. Each similarity class contains a unique u-symbol (7) of the form A = {a; < as < -},
B ={b <by<...}suchthat a1 < b <ag <byg <---, (orby <a;3 <by<ap<---in
the case of ‘T"N,o)- Such an element is called a distinguished u-symbol. Let £ = &, = (g) be
a distinguished u-symbol corresponding to A € Xy. We consider the symmetric difference
A6 B. A non-empty subset I' in A & B is said to be an interval if it is of the form
{i,i+1,...,7—1,j} withi—1¢ A6 B,j+1¢ AS B, (and furthermore 7 # 0 in the case
of Wy ). Let Ay be the set of intervals of A © B. Then the cardinality of A, is the same as
|A,|, and we can identify A, with A, in the following way. We arrange the elements in Ay
in an increasing order I < Iy < --- < I}, and also write Ay = {i; < iy < --- < i;}, where
I =|Ax| = |A,|. We associate i; to I; (j =1,...,[). Then we have || =r;,.

In the case of Wy, for each I C Ay, a u-symbol & = (gj) is obtained from & by
exchanging the entries AN I and BN I for I' € I. (The entries {0,1,2,...,k} which do
not belong to any interval remain unchanged). If (‘g; ) € Wy 1, this gives an element in the

similarity class of £. In the case of U}y, or W), for each subset I C Aj, a u-symbol {; = (gj )

or (gi ) is obtained from ¢, and it gives an element in the similarity class of £ if it is in ¥y | or
{IVI’N,O. (We regard (gﬁ ) as an unordered pair). In both cases, all the elements in the similarity
class of £ are obtained in this way. Hence one can identify elements in the similarity class of
¢ with a subset of Ag(uy)”.

The following result gives a complete description of the Springer correspondence of clas-

sical groups.

3.8.1. Letw: W" — I be the Springer correspondence. Then under the above identification,
the set Iy coincides with Wop, 1, \Il'QnH’l, Won o according as G = Spaop, SOspi1 0o SOqy,. The
correspondence m is given as follows.

(i) G = Spop. m: Pp 1 Wy, is given by

()\1<)\2<---<)\m+1>H<A1<)\2+1<---<)\m+1+m>
pr < pg < e < fy, mAl<po+2<-<pm+m)

(ii) G = SOgpq1. T: @y X4V, is given by

(A1</\2<"'<)\m+1)'_>( )\1<)\2+1<---<)\m+1+m )
pr < pg < -er < fln p < po+1<-- < pim+(m—=1))

(ili) G = SOq,. 7: Cin,o %‘T’En,o is given by

<)\1<)\2<"'<)\m) H()\1<)\2+1<<)\m+(m—1)>
< prg < < p < pe+1<- < ppm+(m=1))
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3.9. Let £ = (g) be a (not necessarily distinguished) u-symbol belonging to the class of wu,.
For any ¢ € A, such that |I;| is even, we can construct a u-symbol &; by replacing AN T;
and BN I; in the entries of {. (If § € Wy, ¥y, or \TIN,O, &; is again contained in the same
set.) Let us write A = {a; < ag < ---} and B = {by < by < ---}. Assume that |I}| = 2d.
Then we can write AN I; = {a;,aj11, - ,jra—1}, BN I; = {bk, bgt1,- -+ ,bkrq—1} for some
j, k. We have the following lemma.

Lemma 3.10. Let A = 77 1(§) and A; = 771(&) be symbols obtained from & and & via
the Springer correspondence. Let § = 1 (resp. 6 = 0) in the case of Spy (resp. SOy),
respectively.

(i) Assume that j = k+ 6. Then a(A;) = a(A).
(ii) Assume that j > k+ 6. Then

if a; < by,
if a; > by.
(iii) Assume that j < k+ 0. Then

a(/l) Sa(/l)—d ifaj < by,
a >a

Proof. First consider the case G = Spy. We assume that a; = v < £+ 1 = by, since the other
case is discussed by exchanging A and A;. Then we can write

o mEl—g mE2—g e, aHd—j e

o z+1—k, x+2—-k, -, z+d—k, ’
T T e A e A At TV
U\ -k, xx+1-k, -+, xH+d—1—k, |

If j = k+ 1, we see easily that a(4;) = a(A). Assume that j > k + 2. Then the entries in A
can be written in an increasing order as

STt l-j<r+2-j<---<x+l1-k<--,

which we denote by {v;}. The a-function a(A) can be computed by the formula (3.5.1). Let
{v}} be the sequence obtained from {v;} by replacing z+1—j by x+2—jand x+1—k by
x—k. Let « be the value defined by a similar formula as (3.5.1) by using {#/} instead of {v;}.
Then we have o > a(A)+1. Applying a similar procedure as above for z+2—j,--- jz+d—7,
successively, we see that a(A;) > a(A) + d.
In the case where j < k, a similar argument as above shows that a(4;) < a(A) — d.
Next consider the case where G' = SOy. We assume that a; = v < x + 1 = b,. Then we
have
A_(~-x+1—$ r+2—3j, -+  z+d-—j -~>
oo 42—k x+3—k - z4+d+1—k, ’
/L:<~-x+2—$ T+ 3 -7, ~-x+d+1—$-~)
' oo o x+1-k xz4+2-k -+ x+d-k, )
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Then if j = k, we have a(A;) = a(A). The other cases are dealt with in a similar way. This
proves the lemma. O

In the special case where € is a distinguished u-symbol, we have the following result which is
straightforward from Lemma 3.10.

Corollary 3.11. Assume that & is distinguished. Then we have a(A;) < a(A) — d unless
j=k+4, in which case we have a(A;) = a(A).

3.12. Let A} be the complement of A} in Ay. Hence Ay = AS[[A}. For each I C Aj,
let A} be the set of 4 € A such that the interval I satisfies the relation (i) in Lemma 3.10
with respect to & = &. Let A = A} — A}, Then it follows from Lemma 3.10 that there
exists I* C Aj satisfying the following property: For each J C A}, K C Ay, let 17 be the
u-symbol corresponding to U J U (K & I*) € Ay. Set Ay = 7 1(€rsx). Then a(Apy) is
maximal among all a(A;;x) for K C A;. Note that, if £ is distinguished, then in view of
Corollary 3.11 we have I* = (), and so Aggg corresponds to the u-symbol £&. More generally
as a corollary to Lemma 3.10, we have the following.

Corollary 3.13. Let the notations be as above. Then

(i) a(Ark) = a(Arpk) for J,J C Al

(ii) a(Ayk) < a(Apyk) if K' C K C Ay

(i) duy, —a(Asx) > ek dj-
In fact, (i) and (ii) follows from Lemma 3.10 directly. Moreover, we have

a(Arsg) — a(Argx) > Y d
jEK

by a repeated use of Lemma 3.10. Since d,, — a(A759) > 0 by 1.6.2, we obtain (iii). (The

property (iii) in the corollary is not used later).

3.14. As described in 3.6, the set Ag(uy)”" is parametrized by P(A,) or P(A,)/~. Let
pr € Ag(ux)" be as in (3.6.1). Then for i = (uy, pr) € Zy, we obtain a GF-invariant function
1; as defined in 2.2, which we denote by ;. Now I C A, can be written uniquely in the
form I = L UL, U (I3 © If), where I, C A}, I, C A}, I3 C Ay as in 3.12. We define a
GF-invariant function ; on G{; by 0; = ¢, 11,0, where

0, = Z (_1)|13\+|Jf\qJ,wJ,6q = ¢ Z (= 1)1 g
JICIs J'Cls
with ¢y = Hje ;1% . The following property is easily verified by using Corollary 3.13 (ii).

3.14.1. 0; is written in the form 0; = qr,91 + o, where « is a linear combination of vy, with
coefficients in Z[q|, such that J C I and that a(J) > a(1).

When i = (uy, pr) varies over all the elements in Zy, the function 6, gives rise to a basis of
Vo (cf. 2.2). For each i = (uy, pr) € Zo, we define a(I) as a(I) = a(i). Then we have the
following lemma.
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Lemma 3.15. Let I,J C Ax. Then(6;,0;)=0 unless a(I) = a(J).

Proof. To simplify the notation, we write pr(ug), O(ug) for a unipotent element ug as
pr1(K), O(K). For I,J C A,, we can write

(r,9s) = ZK’) )pr(K)p.(K),

where K runs over all the elements in P(A)) (resp. Pey(A))) in the case where G = Spy
(resp. G = SOy), respectively. We decompose I and J as [ = [ UL U (I3 6 1}), J =
JiU Jy U (J3 o Jik) where Il,Jl S A)\, I, € All,fg € A[I,Jg S A{Il,Jg € AJl. We also
decompose K as K = K; U K} with K; C A} and K} € AY. By 3.6.2, |O(K)| only depends
on the K parts. Hence, the last formula is equal to (up to non-zero scalar)

(3.15.1) Z pr, (K1)ps, (K1) - Z |O(K3) | pr (Ky) p (K3),

KjeAl KjeAl

where I' = LU (I3 6 I7), J' = JyU (J; © J7). Moreover, the first part > pr, (K1) p.p (K1)
coincides with the inner product for characters p;, and p;, of the elementary abelian 2-group
generated by A}. Hence it is 0 unless [; = J;.

We assume that I, = J;. We decompose K, € AO as Kj = KhbUK3 with Ky € A’Il = Af,l,
K3 € AIl = AJI. Then

Z |O(K3)|pr (K3)p (K3)

K’EAO

=c Z O(K2)|pr, (K2)p, (K2) Z |O(K3)|prser: (K3) paser; (K3),

KQEA’ K3EA]1

since pr,or: (K3) = pr,(K3)pr: (K3). Here ¢ is a non-zero constant depending only on I;.
We now compute the inner product (¢, @) under the assumption || < |J|. The previous
computation shows that

Wr,0)=c > |OK2)|pr,(K2)ps(Ka) D |O(Ks)pr, (K3)0), (Ks).

KQEAII K3€A11

The last sum of the right hand side coincides with (¥r,, @ ,)y in the notation of 3.3, applied
for X = Aj, under the identification Wy, <> r,, O, <> 0'.. Hence by Lemma 3.4, we know
that (Uy,,05,)y = 0, and so (¢r,0;) = 0 unless I3 = Js. It follows that (fr,60,) = 0 unless
I, = J; and Iy = J5. Now assume that (67,60;)# 0. Then I and J differs only by I, and J,
parts. But then by Corollary 3.13 (i), we see that a(I) = a(J). This proves the lemma. O

3.16. For i = (u, pr) € Ty, we write 0y as 0;. Also in this case we write g; for qr, = [, q%.
We consider the expression @); = Zj 7 as in (2.2.2). For each i € Zp, let us define a
by

GF-invariant function 6; on G,

(3.16.1) 0; =Y g "Vg; 0
J
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where the sum is taken over all j such that a(j) = a(i). If ¢ # j, then m; = 0 unless
C; < C;. This implies that the 0; (1 € Ip) form a basis of V. In view of 3.14.1, §; is a linear
combination of ; with coefficients in Z[g, ¢ ']. Hence, if we set \;; = (0;,0, ;) 2.2.1 implies
that \;; € Q[g, ¢ ']. Moreover, it follows from Lemma 3.15 that A;; = 0 unless a(i) = a(j).
We can express Q; in terms of gj as Q; = ZjeIo pjigj. Now Conjecture 1.7 (i) implies that
a(j) > a(i) unless 7;; = 0. Hence in view of 3.14.1, we see that p;; = 0 unless a(j) > a(i) or
i = j, and that p; = ¢®®. Moreover, we have pji € Qlg, ¢ ']. Finally, the fourth formula in
(1.3.1) is obtained from the relation (Q;, Q;) = w;;(¢). Summing up the above argument, we
have the following.

Proposition 3.17. Let us write \g; = (0;,0;), and Q; = > it p;i;. Assume that Conjecture
1.7 holds for G. Then \;j,pi; satisfy the relations in (1.3.1). Moreover, we have \;j,pi; €

Qlg, 7.

Now in order to prove Theorem 1.9, it is enough to show the following lemma.

Lemma 3.18. Let )\; be as above. Then
(1) 3o, Ni = ¢*, where the sum is taken over all i € Ty such that x; is special.

(ii) Fori= (C,Q) € Ty with C special, \y; coincides with \GF\

Proof. First we argue on the group G, the algebraic group defined over C. Let C = C; be
the corresponding special unipotent class in G¢ with u € C. Then by [6], C is a rational
homology manifold, and so the restriction IC(C, C)|5 of IC(C, C) to C is a constant sheaf
C. It follows from (2.1.2) that H*"(B,,)ysp is non-zero only when m = d, and p; = 1.
Moreover in this case (H*™(B,,), x®p1)= 1. The corresponding fact also holds for G. Hence
we see that m;; = ¢™ for j = (C’], Q) such that C; C C’ On the other hand, by Conjecture
1.7 (ii), if C; ¢ C; and C; ¢ C;, and if a(j) = a(i), we must have mj; = 0. Moreover by [11],
if j = (C},Q;) with C; C C;, then a(i) = a(j). Hence in (3.16.1) the sum is taken exactly
over j = (Cj, Q) € I, such that C; C C’,-. Furthermore by a remark in 3.12, we see that
g; = 1 and 0; = 1¢; in this case. Hence 0; = 2 ; 0; coincides with the characteristic function
1 on CF. This implies that Ay = (6;,6;) = |CF|. Thus we have Y7, A = 3, [CF| = ¢2V
This proves the lemma, and so the theorem follows. U

3.19. It is likely that a similar construction of a basis 51 will work also for the case of
exceptional groups. As an example, we consider the case of Fj. So, assume that G is of
type Fy, and let C' be a unipotent class in G. If the a-function is constant for all y; € W"
belonging to C, we may choose 6; = ;. In the case of Fj, there exist two unipotent classes
where the a-function is non-constant. They are given as follows; (here we follow the notation
in [3]).

C ="Fylaz):  aldog) =2, a(dy,) =1
C=A4,: a(d’g,g) =9, o 11’2) =4.
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In the case where C' = Fj(ay), we have Ag(u) ~ Z/2Z, and |Zg(u)"| = |Zg(u')"| = 2¢®
for two representatives u, u’ of G¥'-classes in C¥'. Therefore (1;,1y)= 0 for i, € Iy belonging

to C, and so we may choose 6;, 0;; so that they coincide with v;, 1. In the case where C' = A,,
we have Ag(u) ~ Z/2Z, and

1Za()] =2¢"(¢* = 1)(¢* = 1),  |Za(u)T| =2¢""(¢* = 1)(¢* + 1),

for two representatives u,u’ in G¥-classes in C¥. Let i = (u,1),i' = (u,—1) € Z,, where
—1 denotes the non-trivial character of Ag(u). We put 6; = ¢3p; — by, 0y = 1by. Then
(6;,05) = 0, and one can define 0; (i € Zp) in a similar way as (3.16.1). In this way, we can
verify the same statement as in Theorem 1.9 for G = F.

4. Springer representations

4.1. In this section we shall prove some properties of Springer representations of W related
to the a-function in the case of classical groups. This makes it possible to check Conjecture
1.7 in the case of low rank classical groups without computing Green functions. In what
follows we assume that G = Spy or SOy with rank G = n. First we recall some results from
[16]. Let P be a maximal parabolic subgroup of G with a Levi subgroup L of the same type
as G. We consider the variety B, as before for a fixed unipotent element v = uy with A € Xy
or Xj. Let P, be the variety of parabolic subgroups of G containing v and conjugate to
P. We have a natural surjective map 7 : B, — P,. According to [16], the map 7 has the
following locally trivial filtration: There exists a filtration of P,,

such that for each = € Y; — Y;4, the fibre 77!(x) is isomorphic to B, the variety of Borel
subgroups of L containing a unipotent element u' = wuy in L. Here X' € Xy o (resp.

A € X} ,) is obtained from the Young diagram of A by (under the notation in [16])
Case I-(aq), (ag) replacing two rows of length £ by two rows of length k — 1, for k£ € A,,
Case I-(b1), (b2) replacing one row of length k by a row of length k — 2, for k € A,
Case II replacing two rows of length &k by two rows of length k — 1, for k ¢ A,.

Moreover, Y; — Y;11 has the following form: It is isomorphic to an affine space A" for some
r in Case II, Case I-(a;) or Case I-(bs), to A"[J A" in Case I-(az), and to A" — A" ! in
Case I-(b;). The Case I-(az) occurs only when 7y is even for k£ € Ay, and the Case I-(b,)
occurs only when 7y, is odd for k € Ay. Set X; = 77'(Y; — Y;;1). Then in each case, we have
X; ~ (Y; = Yiy1) x BL, or its étale covering version holds. Let W' be the Weyl group of L,
regarded as a Weyl subgroup of W of type C,,_; or D,,_;. The cohomology group H"(X;) has
a natural structure of W' x Ag(u)-module, which is compatible with the action of W' x A (u)

on H™(B,) obtained by restriction from W x Ag(u). Then we have

Proposition 4.2. ([16, Prop. 2.4]) Let X = X; be as above for some i. Then the following
formulas hold for any m > 0, where d is a positive integer depending only on X.



132 Toshiaki Shoji: Green Functions and a Conjecture of Geck and Malle

b‘

(i) Case II H™(X) ~ H™4(BL),
(ii) Case I(ay) H™(X)~ H™%(BL),
(iii) Case I-(ay) H™(X)~ H™4(BL) @ H™4(BL),
(iv) Case I-(by) H™X)~ H™ 4BL)" @ H™ 41 (BL)T,
)

Case I-(by) H™(X) ~ H™ ¢(BL

‘ )

The isomorphisms are those of W'-modules. T is the element o - of,_, € Ar(u'), where
ap, 0 _o are generators of Ap(u') corresponding to k,k —2 € Ay as in 3.6, and the right
hand side stands for the T-invariant subspace. The action of Ag(u) on H"(X) is described
by the action of Ap(u') as follows: In the cases (i) and (ii), the actions on both sides are
compatible with the natural map Ag(u) — Ap(u') given by o; — of. In (iii), the same is true
for a; (i # k), and oy permutes two components of the right hand side. In (iv), the actions
are compatible with the map Ag(u) — Ap(u')/{T). In (v), the same as (i), (ii) is true for ;
(i # k), while oy acts as o, on the right hand side.

4.3. For a locally closed subvariety X' of B, let H}(X') = > (—1)"H*(X'). Note that
we have H*(B,) = D,,5¢ H*™(B.). Then for X as in 4.1, H}(X) is a virtual W’ x Ag(u)-
module. We denote by HY(X), its p-isotypic subspace for each p € Ag(u)". It follows from
Proposition 4.2 that we have

H*(B),y case (i) or (ii)
* L * L
(4:3.1) H: (), = { LB @ HY (i) case (i)
H°(By),y case (iv),
H*(Bg)y case (v),

where in the case (i), p' € Ay (u')" is obtained from p by the isomorphism Ag(u) ~ A (u')
if 7,1 # 0, and by setting p/(a),_;) = 1 if 7,—y = 0, and p'(ef) = p(eu) for i # k. While
in the case (ii), p' is obtained by p'(c},) = p(ax) if 7 > 3, and similarly for ¢ # k. In the
case (iii), o/, p" € AL(u') are obtained by p'(cf) = 1,p/(a},) = —1 if py > 4, and similarly
for i # k. In the case (iv), H°(BL) ~ C is a trivial W’-module, and so H}(X), = 0 except
when p(ay) = p(ak—2) and p(a;) =1 for i # k, k — 2. In the case (v), H(X) # 0 only when
plag) = p(ak—2), and then we have p'(c)) = p(o).
Summing up the above arguments, we have an isomorphism of W’-modules,

(432) H*(B’u)p ~ @ m’u’,p’H*(qu')p’ @ U,

where U is a trivial W'-module and m,, , denotes the multiplicity of the W’-modules. The
sum is taken over all the pairs (v, p’) as in (i), (ii), (iii) and (v) in (4.3.1).

4.4. We consider a pair (u, p) such that H*(B,), # 0. Then by 1.6, (u, p) € Zy. Let x € W"
be the character corresponding to (u,p) via the Springer correspondence, and for (u', p')
appearing in the right hand side of (4.3.2) let x' € (W’)" be the corresponding character.
We shall investigate the relationship between a(x) and a(x’). In order to avoid too much
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complication, we pose the following assumption on (u, p). (In fact, a weaker assumption is
enough for the discussion below. See Remark 4.12.)

4.4.1. p € Ag(u)” is the character satisfying the condition that p(a;) = 1 for any i € Ay
such that r; is odd.

In the following, we denote by D(u) = D()\) the Young diagram associated to u = uy. Let
u = uy with A = (1™,2™ ... t™). So, t is the length of the longest rows in D(\). We define
an integer t(u), for G = Spy, or SOy, by

Hu) T — 2 ifte Ay and r, > 2,
u) =
re— 1 otherwise,

and for G = SOy,41 by

e — 2 if r, >2
t(u) = .
0 otherwise.

We have the following lemma.

Lemma 4.5. Assume that (u, p) satisfies the condition 4.4.1.
(i) For any (v, p') occurring in the expression in (4.3.2), we have a(x) > a(x') + t(u).
(ii) Assume further that u' is obtained from u by replacing the rows, which are not largest
among the rows in D(u). Then we have a(x) > a(x') + t(u).

Proof. We give the proof only in the case where G = Spy, or SOy,. The case where
G = SOqp 41 is dealt with by a trivial modification. (The difference of these two cases arises
from the maps in 3.8.1.) Let & be the u-symbol associated to (u, p). Then by our assumption
4.4.1, any interval of odd length is in the same position as in the distinguished u-symbol
associated to u, (see 3.9). We consider each (v, p') separately for the cases (i), (ii), (iii) and
(v) in Proposition 4.2. Let & be the u-symbol associated to (', p').

First assume that (v, p') is as in (i). Then & is written as

( a, a+2, ... a+2r—2 >

&= a, a+2, ... a-+2r—2,

where 2r is the number of rows of length £ in D(\). Then ¢’ is obtained from & by replacing
a by a — 1. (The choice of a is taken subject to the condition that it produces a u-symbol
in Uy_g; or {IV’IN—2,0)- Hence the corresponding symbol A" = A(x’) is also obtained from
A = A(x) by replacing the element b corresponding to a by b—1. In the case where a+ 2r —2
is the largest number in the entries of £, we have ¢(u) = 2r — 1. In this case the order of
elements a < a <a+2<--- <a+ 2r — 2 remains unchanged by the transformation from
€ to &'. Hence we have a(x') = a(x) — 2r + 1 = a(x) — t(u). If a + 2r — 2 is not the largest
number, it may happen that a < a goes to by < by by the transformation & — & and A’
is obtained from A by replacing by by by — 1. Since the order of the other parts remains
unchanged by 4.4.1, we have

a() =a(x) —H{z €|z >a+2}
< a(x) — t(u).



134 Toshiaki Shoji: Green Functions and a Conjecture of Geck and Malle

Next assume that (v, p') is as in (ii). Then £ contains an interval I' = {a,a + 1,...,a +
T, — 1} corresponding to k € Ay, and &' is obtained from & by replacing a + 1 by a. Hence if
I' lies in the top part of £, we see that a(x') = a(x) — 7x + 2. The general case is also dealt
with easily, and we have a(x') < a(x) — t(u).

Next assume that (u', p') is as in (iii). As in the case (ii), £ contains an interval I' =
{a,a+1,...,a+r,—1}. Let &, &" be the u-symbols associated to (v, p'), (v, p""), respectively.
Then &' is obtained from £ by replacing a + 1 by a, and £” is obtained from &' by exchanging
lower entries and upper entries of I = {a + 2,a+ 3,...,a + ry — 2} contained in £'. (Note
that |I"'| is even.) Hence a similar argument as in the case (ii) can be applied.

Finally assume that (u',p’) is as in (v). Let I" be an interval {a,a +1,...,a + r, — 1}
contained in £ and corresponding to £ € A,. In the case where r,_; = 0, by using the fact
that p(ag) = p(ak—2) if K —2 € A, we see that & is obtained from & by replacing a by
a — 1. Hence a similar argument as in the case (i) shows the required inequality. However, a
somewhat different phenomenon occurs in the case where r,_; # 0. In this case r,_; is even
since k — 1 ¢ Ay, and £ can be expressed as

e a—2r, ... a—4, a—2, a+1, ...
" \... a=2r", ... a—4, a-2, a, ’

or in the form obtained by exchanging a and a + 1 in the above form. Here 2r' = ry_;. (We
assumed here that 7, > 3. But the argument below works as well for the case r, = 1.) We
may assume that £ is as above. Then £ is given as

N a—=2r'+1, -+ a=3, a=—1, a+1, ---
o a—2r'—-1, --- a—5, a—3, a—1, ’

i.e., the last element a in I" is replaced by a — 1, and each pair (a — 2i, a — 2i) is changed to
a pair (a —2i —1,a — 2i + 1). Note that again we used the property that p(ax) = p(ayg_2) if
k—2¢e Ay. We express £ as £ = (g) with A={---<ay<a;}and B={---< by < b}
Then by our assumption 4.4.1, @ + 1 and a can be written as a + 1 = a;, a = b; 4, for some j
with e € {1,0,—1}. Moreover in this case A and A’ can be expressed as

e b—r, o =2 b—1, b+1, ---
S \--- b—r'+e, - b—2+e b—1+e, bte ---)’
we b—1r'"+1, b—1, b, b+1,
N b—r'—1+e€, --- b—3+e, b—2+e¢, b—1+e,

for some b (b is an element corresponding to a under the map 7 in 3.8.1). Let Z = {2 <
2o < ---} be the sequence consisting of all the entries in A arranged in an increasing order,
and Z' the similar sequence for A’. Then Z' is obtained from Z by replacing b + 1 by b if
e = 1, by replacing b — ' by b — ' — 1 if e = 0, and by replacing b — ' — 1,b—r',b — 1 by
b—r"—2,b—1"—1,b, respectively if e = —1. It follows that

a(x) —2j ife=1,
a(x)=1qa(x) —2r —2j+1 ife=0,
a(x) —4r' =25 +3 if e=—1.

In any case we have a(x’) < a(x) — t(v). The lemma is now proved. O
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4.6. We consider the setting in Conjecture 1.7. So u; € Ci,u € C with C; < C, and let
X, X1 € W” be characters corresponding to (u, p), (u1, p1) respectively. Let A(x) = (g) be a
symbol associated to x, and let ¢ be the largest element in the entries in A(x) such that the
replacement ¢ — ¢ — 1 produces a symbol A’ of rank n — 1. Set

s(x) =t{r€e AUB |z >c} — 1.
Then if we denote by x’ the character of W’ corresponding to A’, we have

(4.6.1) a(x) = a(x') + s(x)-
Moreover, x' appears in the restriction of x to W’. We have the following proposition.

Proposition 4.7. Let the notations be as above. Suppose that Conjecture 1.7 holds for W'.
Let py € Ag(up)” be the character satisfying the condition 4.4.1. Assume that x occurs in
H*(By,)p,- Then we have a(x1) > a(x) + t(u1) — s(x).

Proof. Assume that x occurs in H%(B,,),, for some i > 0. Let x' € (W’)" be as in 4.6.
We may assume that x’ is not the trivial character. In fact, if x' = 1y, then x = 1y and
the proposition is easily verified for x. Hence by (4.3.2), there exists a pair (u}, p}) such
that x' occurs in H*(By, ), . Let X} be the character corresponding to (u}, p}). Then by our
assumption, we have a(x}) > a(x’). On the other hand, by applying Lemma 4.5 to x; and
X}, we have

a(x1) = a(xy) + t(u).
It follows that
a(x1) > a(x') +t(u) = a(x) +t(w1) — s(x)-
by (4.6.1). Hence the proposition holds. O

The following special case seems worth mentioning.

Proposition 4.8. Under the same assumption as in Proposition 4.7, let uy = uy, with
Ay = (1™,272, .. t™) be such that t,t — 2 € Ay,,r, = 1 and that p1(ow) # p1(ce_2), (if
ri o = 0, we assume that pi(cy) # 1). Further assume that s(x) = 0. Then we have
a(x1) > a(x).

Proof. Let (u',p}) be as in the proof of Proposition 4.7. We note that u) satisfies the
assumption in Lemma 4.5 (ii), since r; = 1 and p1(y) # p1(ay_2), (see 4.3). In this case
t(u1) = 0 and we have a(x1) > a(x}) by Lemma 4.5 (ii). The proposition then follows from
a similar argument as in the previous proposition. [l

4.9. By making use of the following formula of Spaltenstein on Springer representations, we
can exploit another type of criterion for the above inequality. Let G be of type B, or C,.
For each x € W, we define the parity p(x) by the condition that p(x) = 0 (resp. p(x) = 1)
if x(—=1) = x(1) (resp. x(—1) = —x(1)). For a pair (u, p) € Ty, let xu,, be the corresponding
character of . Then by Spaltenstein [15], the following formula holds.
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4.9.1. Assume that x € W" occurs in H*(B,),. Then we have

i = dy +p(X) +P(Xu,p) (mod 2).

We now consider the split F -structure on G with Frobenius map F. We choose u € GE;

as in 2.1. For an F-stable locally closed subvariety X' of B,, let F* be the map on H'(X")
induced from F. We denote by H:(X")? (resp. H:(X')!) the sum of generalized eigenspaces
of F* corresponding to the eigenvalues ¢% (resp. ¢%¥*!) for j > 0. Note that the eigenvalue
of F* on H*(B,) is ¢*. Hence 4.9.1 implies that x occurs in either H*(B,)) or H*(B,),, and
does not occur simultaneously.

Let X = X; C B, be as in 4.1. It is possible to choose a filtration so that all the X are
F-stable. Since taking 0- or 1-part is an exact functor, we have, for ¢ € {0, 1},

H*(B,)" = D HI(X)",

where the sum is taken over all the pieces X appearing in the filtration in 4.1. The isomor-
phisms in Proposition 4.2 are all F'-stable, where u’ can be taken to be a split element except
in the case (iv). In each case (i) ~ (v) (in the last case (v) we need to assume that r,_; = 0),
there exists a maximal choice of X so that d = 2d, — 2d,». We have the following lemma.

Lemma 4.10. Let G be of type B, or C,. Assume that x € W occurs in H"‘(Bul);1 for
e € {0,1}. Let X be a piece satisfying the condition d = 2d,, — 2d,,. Let (uy, p}) € (W')"
be the pair corresponding to X in (4.3.1). Set X1 = Xu,,», aS before, and x| = xut ;. Let
xX'€ (W be a character occurring in the restriction of x to W', satisfying the condition that

(4.10.1) p(x) +p0x1) Zp(x') +p(x1) (mod 2).

Then x' does not occur in H;(X)5, .

Proof. Suppose that X' occurs in H(X)5 . Then x" occurs in H* (Bﬁ,);ﬁl with &' = e+dy, —dy; .
By 4.9.1 we have
e =dy, +p(X) +p(x1)-

On the other hand, since x occurs in H*(B,,);,, we have

& = dy, +p(x) +p(x1)-
This contradicts (4.10.1). O

Proposition 4.11. Let G be of type B,, or C,,. Under the same assumption as in Proposition
4.7, let uy =wuy, with Ay =(1",2",...,1") be such that (a) t € Ay, withr,=2, or (b) t € Ay,
with ry = 1,71 = 0. Let X', x} € (W) be as in 4.6 for x, x1, respectively. Assume further
that x, x1, X', X\ satisfy the condition (4.10.1). Then we have a(x1) > a(x) + t(u1) — s(x).

Proof. Let (ul, p}) be the pair corresponding to x}. Then ] is obtained from u; by removing
two boxes from the top and second top rows of D(u;) in the case (a), and removing two
boxes from the top row of D(u;) in the case (b), respectively. In view of (4.3.1), there exists
a piece X corresponding to (uf, p}). In our case, such X is unique (it is the last one in the
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filtration of B,,), and it satisfies the assumption of Lemma 4.10. Hence we see that x’' does
not occur in Hy(X)5 . It follows that x' occurs in another H}(X'); . If we denote by (uf, o)
the pair corresponding to X', (uf, p{) satisfies the assumption in Lemma 4.5 (ii). Hence we
have a(x1) > a(xY) + t(u1), where x{ € (W")" corresponds to (uf, p{). Now the assertion
follows by a similar argument as in Proposition 4.8. O

Remark 4.12. Until now, we have assumed the condition 4.4.1 for (uy,p;). But this
condition is not essential. What is necessary in the proof of Lemma 4.5 is actually that (in
the notation there) in the u-symbol &, any interval of odd length has the same shape as in
the case of distinguished u-symbol. So, Proposition 4.8 and Proposition 4.11 can be applied,
for example, to the case of (uy, p;) with u; = (1335), and p;(a3) = p1(as) = —1.

4.13. By applying the previous results, one can verify Conjecture 1.7 for G of type B,,C,
or D, with n < 6. First consider the statement (i) in the conjecture. The following gives a
list of the cases where Proposition 1.8 can not be applied, i.e, C,, < Cy, but a(x1) < a(x)-
In the following, we give A; = A(x1) and A = A(x). Note that for B,, (n < 4),Cp, (n < 4)
and D, (n < 6) there exist no such y and x;.

Cs : uy = (122%4), u = (2°4).
134 024\ (012
e (o) 2= (05) (50)
a(A;) =5, a(A) = 6.
Ce : uy = (142%4), u = (172°4).
A1:(1245), A:<0135>’ (0123)
012 123 135
a(A;) = 10, a(A) = 11.
Bs : uy = (1223%), u = (173%).
A1:(012>’ A:<023)’ <123)’
2 4 13 03
a(A;) =6, a(A) =T1.
Bs : uy = (12%35), u = (123%5).
A1:<012>’ A:<024)7 <124)’ (034)7 (134),
25 13 03 12 02
a(A;) =6, a(A) =T1.

In each of the above cases, it is enough to show that x does not occur in H*(B,,),,.
In the case of type Cs or Cg, we have s(x) = t(u1) = 0. In these cases, Proposition 4.8 (or
Proposition 4.7) can be applied to show that x does not occur in H*(B,,),,. Note that if
x € W is given by a pair («, 3) of partitions of n, it is easy to see that p(x) = (=1)/l. In
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the case of type Bg, we have t(u;) = 1, and s(x) = 0 for the first two x, and s(x) = 1 for the
other two x. For each of these 4 cases, we can check that (4.10.1) holds. Hence by applying
Proposition 4.11, one knows that a(x1) > a(x) if x occurs in H*(B,,),,.- This contradicts
a(x1) < a(x). Finally consider the case of type By. In this case, neither Proposition 4.8
nor Proposition 4.11 can be applied. However, in this case, we consider A’ = A(x’) of the

following type,
1
Y. 013 for A — 023,
13 13

s 023 _ 12 for A— 123’
03 2 03

respectively. According to each step of the filtration of B,,, we have two kinds of (u}, p}).
The corresponding A} = A(x}) are

012 012
0= o (1)
The pieces X corresponding to the pairs (u}, p}) always satisfy the condition in Lemma 4.10.
Moreover, for each x' and x} as above, we see that (4.10.1) holds. Hence by Lemma 4.10, x’
does not occur in any of H;(X); , where X runs over all the pieces in the filtration of B,,.

This means that x does not occur in H*(B,,),, as asserted. Now the statement (i) of the
conjecture is verified for these cases.

and

p1

4.14. Next consider the statement (ii) of the conjecture. So assume that u is special and x is
the special character corresponding to (u, 1). Let x; correspond to (uq, p1) with C; < C such
that O, ¢ C. The following is the list of pairs y and x; such that a(x1) < a(x). There are
no such pairs for Cy,, (n < 3), By, (n < 3) and D, (n < 5). We note that in the list below,
Ay and A are always in the same family and so we have a(A4;) = a(A).

Cit oun=(224), A= (203) u=(#), A= (023>,
Cs: u = (2%), = (204) = (46), A= (024>,
w = (12224), A, = (10314) w=(1242), A= (01134>,
Co: wo=(2%8), A= (205) —(8), A= (025>,
= (246), A, = (304) u = (62), A= (034>,
= (172%6), A, = (10315) u = (1246), A= (01135>,
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1245 0125
U1:(14224), /11:(012), ’U,:(1442), A1:<124),

01
By: wy = (135), A= ) u=(1?7), A=

up = (133%), A = 01 2), u=(1'5), A=

1
Bs: wu;=(137), A= 05>, u=(1%9), A=

u; = (15%), A, = : u=(137), A=

u; = (1335), A, = : u=(1*7), A=

u; = (1223%), A; = : u = (1?2%5), A=

( (

( (

( (

( (

( (

( (

(Vas) wmt 4= (0)
Bs: w =(139), A= (0 1), w=(111), A= (

(%) (

( (

( (

( (

( (

(

up = (1°3%), A, =

up = (157), A= : u=(139), A=

12
up = (1337), A, = 0 ) u=(1'9), A=

12
u; = (12235), A, = 0 ) u = (1?227), A=

012
up = (13%), Ay = ) u=(123%5), A=

Ul = (1732), /11 = u = (185), A=

01 03
) — (132 2:2
Dg: wuy = (13%5), A= ), u = (1°5%), 4_<1 >

In order to verify the statement (ii) in the conjecture, it is enough to show that x does not
occur in H*(B,,),, for each case listed above. In all the cases in Cy ~ Cg and Dg, Proposition
4.8 can be applied to show that x does not occur in H*(By,),,. On the other hand, in all
the cases in By ~ Bg, Proposition 4.11 can be applied to show the required property. Note
in these cases, the situation described in Remark 4.12 appears, and we have to apply the
proposition in this modified form. In this way, the statement (ii) in the conjecture is verified.
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