Beitrige zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 41 (2000), No. 2, 371-389.

Double Coverings and
Reflexive Abelian Hypermaps

Antonio J. Breda d’Azevedo Gareth A. Jones

Departamento de Matemdtica, Universidade de Aveiro
3800 Aweiro, Portugal

Department of Mathematics, University of Southampton
Southampton SO17 1BJ, United Kingdom

Abstract. We describe a general theory of hypermaps on surfaces, possibly non-
orientable or with boundary. This includes techniques for constructing hypermaps
as products and as double coverings, and for representing hypermaps as maps
using homomorphisms between extended triangle groups. As a corollary we obtain
a classification of the 16 reflexible hypermaps with abelian automorphism groups.

1. Introduction

Our aim is to describe some general techniques which we will use in [3] to classify the reflexible
hypermaps (on orientable or non-orientable surfaces) with the same automorphism groups as
the regular platonic solids, and in [4] to classify the rotary hypermaps of genus 2. These are
combinatorial techniques, which we will interpret both topologically and algebraically.

One such technique, described in Section 2, is the construction of a product H; x Hs of
two hypermaps H; and H,. This is a generalisation of Wilson’s parallel product of maps [23];
it allows us to construct double coverings of a hypermap H by forming its product H x B with
a hypermap B having two blades. There are seven such hypermaps B: we classify them in
Section 5, and describe the seven associated double coverings in Section 6. As a by-product
of this, we also obtain in Section 5 a classification of the reflexible hypermaps with abelian
automorphism groups; there are sixteen of them, all formed by taking products of 2-blade
hypermaps B.

Another technique we will use is Walsh’s bijection W [22] from hypermaps to bipartite
maps; Corn and Singerman explained W algebraically for orientable hypermaps in [9], and
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in Section 7 we extend their ideas to all hypermaps by interpreting W and other similar
representations of hypermaps in terms of homomorphisms between extended triangle groups.

The basic definitions we require are given in Section 3, but first in Section 2 we give a
combinatorial description of a simple example of our methods; this is in order to provide
motivation and illustration for the rather more abstract ideas in later sections, which can be
seen as generalising this example.

Many of the ideas in this paper are based on the first author’s Ph.D. thesis [2]; we
wish to thank the Research and Development Joint Research Centre of the Commission of
the European Communities for financially supporting this research, and the Mathematics
Departments at the Universities of Coimbra and Aveiro for their hospitality and financial
support for subsequent collaboration. This paper is dedicated to the memory of our colleague
and friend Lynne James, whose work on hypermaps had a great influence on our research.

2. An example

Let T be the tetrahedron, a reflexible hypermap of type (3,2,3) — that is, a reflexible map
of type {3,3} — with automorphism group Aut7 = S; (including orientation-reversing au-
tomorphisms). We will construct a second reflexible hypermap 7' with Aut7’ = S,. We
regard 7 as drawn on the sphere S?, and take a double covering T? of S? branched at the
centres of the four faces of 7. To form 72 we take two copies 7; and 75 of T, cut each 7;
along the geodesics joining the face- centres, and join 77 and 7, edge-to-edge along these six
cuts (see Figure 1, where the vertices of 7; and 75 are coloured black and white respectively).

® vertices o edges o face-centres

Figure 1. Construction of T2

The resulting surface T2 is a torus, inscribed with a map W of type {6, 3} (that is, a hypermap
of type (3,2,6)) which is a branched double covering of 7 with 8 vertices, 12 edges and 4
hexagonal faces (see Figure 2); W is the reflexible map {3+ 3,3} = {6,3}4 = {6,3}2, in the
notation of Coxeter and Moser [10, Ch.8|, who give further examples of such double coverings
in their §8.8.

Figure 2. The map W
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Note that W is bipartite, the two sets of vertices (black and white) corresponding to the two
copies 7; of 7. The automorphism group AutW of W is a direct product Aut7T x Cy =
Sy x Cy: the first factor represents the simultaneous action of Aut7 on the two copies 7;
of T, while the second factor transposes pairs of points p; € 7; (i = 1,2) covering the same
point p € T (this corresponds to the rotation of Figure 2 by an angle = about the centre of
the parallelogram). Likewise, we will see in Section 6 that W can be regarded as the product
T x B9 of T with a certain 2-blade hypermap BO having two blades, one coloured black and
one white.

In [22], Walsh introduced a bijection W between hypermaps H and bipartite maps M on
the same surface: the black vertices, white vertices and faces of M = W (#) correspond to the
hypervertices, hyperedges and hyperfaces of 7. Since our map W is bipartite, W = W (T")
for a hypermap 7' on T? with 4 hypervertices, 4 hyperedges and 4 hyperfaces, shown in
Figure 3.

Figure 3. The hypermap 7’

T has type (3,3,3), with Aut 7" = Aut7 = S, (the subgroup of Aut W fixing the vertex-
colours of W). Since Aut 7' acts transitively on the 24 blades, 7 is reflexible.
Just as T corresponds to the representation of S, as an image of the extended triangle

group
A(3,2,3) = (Ro, Ri, Ry | R? = (R1R»)? = (RoRo)* = (RoR1)* = 1)

(in fact, Sy = A(3,2,3)), 7' corresponds to the representation of Sy as an image of A(3, 3, 3).
Indeed, Figure 3 shows that 7' is the quotient of the universal hypermap of type (3,3, 3),
drawn in R?, by a subgroup 27T of index 4 in the translation subgroup T = Z? of A(3,3,3),
namely the kernel of the epimorphism A(3,3,3) — Sy4; Figure 3 shows a fundamental region
for 2T. (See [9] for a general discussion of universal hypermaps.)

We have constructed 7' from a branched double covering of 7 so that Aut 7’ = Aut 7,
and our aim in the rest of this paper is to generalise this construction. We will see in
Section 5 that there are just seven hypermaps B with two blades, giving rise to seven general
methods of forming double coverings H x B — H of hypermaps H, described in Section 6.
Similarly we will see in Section 7 that Walsh’s bijection W is one of many such transformations
of hypermaps induced by homomorphisms between extended triangle groups. For further
examples and applications of these results, see [2, 3, 4].
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3. Hypermaps
3.1. Definitions

We will base our definition of a hypermap # on that given by James in [13]. This definition,
closely related to the coloured triangulations of Bracho and Montejano [1], the crystalliza-
tions of Ferri, Gagliardi and others [11, 12], the graph-encoded maps of Lins [16] and the
combinatorial maps of Vince [20, 21], is an extension to hypermaps of an algebraic approach
to maps introduced by Tutte [19] and further developed by Bryant and Singerman [5]. It
also generalises the algebraic theory of oriented hypermaps introduced by Cori in [6] and sur-
veyed by Cori and Machi in [7] (see also Section 4.2). It has the two advantages of allowing
group-theoretic methods to be introduced efficiently, and of allowing the underlying surface
S of H to be non-compact, non-orientable, or with boundary; our only restriction is that S
should be connected.

When S is without boundary we define a hypermap H to be an imbedding (without
crossings) of a connected trivalent graph G (possibly with multiple edges, but no loops), such
that each face (connected component of S\ G) is homeomorphic to an open disc, together
with a labelling of the faces with labels 0,1 and 2 so that each edge of G is incident with two
faces carrying different labels. An i-face (a face labelled @) is called a hypervertez, hyperedge
or hyperface of H as ¢ = 0,1 or 2 respectively, and a vertex of G is called a blade of H.

It is useful to extend these definitions to the case where S has boundary dS # (). We
now allow G (still connected and trivalent) to have free edges: these are homeomorphic to the
closed interval [0, 1], with only one end-point a vertex of G, the other being free. We require
that G N OS is the set of all such free end-points (so S contains no vertices of G), and that
each face meeting S is homeomorphic to a half-disc. Figure 4 illustrates a hypermap, which
we shall denote by B°, with S a closed disc; there are two blades and five edges (four free);
B0 has two hypervertices, one hyperedge and one hyperface.

— G

— 0S

Figure 4. The hypermap Bo

For later use in constructing branched coverings, we will choose an arbitrary point ¢ in
each face F' of a hypermap H, called the centre of F'; the only restriction is that ¢ should lie
in F'N S if this is non-empty.

3.2. Algebraic hypermaps

Given a hypermap H, each edge of G can be assigned the label 7 complementary to the two
labels j, k # i of its incident faces; such an edge is called an i-edge of . Thus each blade is
incident with a unique i-edge for 7 = 0,1 and 2, so we can define permutations rg, r; and 7o
of the set ) of blades of H: r; transposes pairs of blades incident with the same i-edge, and
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fixes blades incident with a free i-edge. In Figure 5 for example (based on the hypermap B0
in Figure 4), ro transposes the two blades while 7y and r, fix them.

Figure 5. Edge-labelling of B

Clearly 7?2 = 1 for each 7, and the connectedness of G implies that ry,r; and 7, generate
a transitive group G of permutations of Q. We call (G, Q,ry,71,72) the algebraic hypermap
Alg(H) associated with H (see [9] for a similar definition where S is orientable and without
boundary). Each hypermap H determines a transitive permutation representation 7 : A —
G < 8% of the group

A:<R0,R1,R2|R82R%:Rg:1>202*02*02

(a free product of three cyclic groups (R;) of order 2), given by R; — r;. We call the subgroup
H < A fixing a blade a hypermap subgroup; these are determined by A up to conjugacy, and
G can be regarded as the Schreier coset graph for H in A with respect to the generators R;,
with free edges replacing loops.

3.3. Equivalence of definitions

This process is reversible: given any transitive permutation representation 7 of A, one can
reconstruct G as the Schreier coset graph of a point-stabiliser H < A. To reconstruct A from
g, we take a 2-simplex o, for each vertex a of G, and label its vertices 0,1 and 2 (in any
order); we then join the centre ¢, of o,, by an edge labelled i, to the mid-point of the side jk
of o, opposite the vertex ¢, for i = 0,1 and 2. Whenever vertices a # 3 of G are joined by an
i-edge, we join o, to og by identifying their sides j& so that vertices 7 and k& and mid-points
match up; the resulting surface S = U, 0, carries a graph homeomorphic to G, with vertices
Cq and with edges labelled 0,1 and 2. This is the required hypermap H, the i-faces being the
faces incident with edges labelled j and k. (See Figure 6 for the construction of H = BY.)

Figure 6. Construction of B0
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For this reason, it is often convenient to ignore the formal distinctions between the represen-
tation 7, the algebraic hypermap Alg(#), the edge-labelled graph G, and the hypermap H:
we shall use whichever concept is most suitable for the particular context.

3.4. Valency and type

The valency v of an i-face F' is the length of the corresponding cycle of r;74 on €2; the edges of
F are alternately labelled j and &, and there are 2v or v+ 1 of them as F' is disjoint from 0S8
or not. We say that # has type (lo,l1,12) if [; is the order of 7,7, that is, the least common
multiple of the valencies of the i-faces. A hypermap of type (lo,l1,l2) can be regarded as a
transitive permutation representation of the extended triangle group

Alo, 11, lo) = (Ro, Ri, Ro | R} = (RiR2)" = (RoRp)"* = (RoRy)" = 1).

(Note that A = A(oo, 00, 00), where we regard a relation (R;Ry)® =1 as vacuous.)

A hypermap H with [; =1 or 2 is called a map [5, 15, 19]; the usual way of representing
H is to contract each hypervertex to a point (now called a vertex of H), and each hyperedge
to a line-segment (now called an edge), as in Figure 7. The hyperfaces of a map are usually
called faces.

Figure 7. A map

3.5. Automorphisms and coverings

The automorphism group AutH of a hypermap H is the group of permutations of €2 com-
muting with G; it is isomorphic to Na(H)/H, where Na(H) denotes the normaliser of H in
A. We say that H is reflexible (the term regular is sometimes used, for instance in [21]) if
Aut H acts transitively on €2; this is equivalent to G acting regularly on €2, and hence to H
being normal in A. When H is reflexible we have

AutH = A/H = G.

(See Figure 5, where Aut BY =~ Oy, for example.)

A covering, or morphism H; — H, between two hypermaps is a morphism between their
associated permutation representations of A, that is, a function €2; — €2, between the sets of
blades which commutes with the actions of A. Coverings correspond to inclusions H; < H,
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between hypermap subgroups, and they induce coverings G; — G, and §; — &> between
the underlying graphs G; and surfaces S; (we allow branch-points and pairwise identifications
along boundary-segments). An automorphism of H is simply a bijective covering of H by
itself.

3.6. Orientability and colourings

A hypermap H (or more precisely its underlying surface S) is without boundary if and only
if G has no free edges, that is, no R; fixes a blade. By the torsion theorem for free products
(see Theorem 1.6 in §IV.1 of [17]), the conjugates of Ry, Ry and Ry are the only non-identity
elements of finite order in A, so this is equivalent to H being torsion-free. Similarly, H
is orientable and without boundary if and only if its blades can be 2-coloured with each
R; (i =0,1,2) transposing the colours; the two monochrome sets of blades are those around
which the orientation induces the cyclic permutations (012) and (210) of the edge-labels.

We say that H is i-face bipartite if Q2 can be 2-coloured with R; transposing the colours
and R;, Ry, preserving them (j, k # 7). Equivalently, the i-faces can be assigned two colours,
so that each i-edge joins faces of different colours (thus an i-edge cannot be free, and cannot
join an i-face to itself). A O-face bipartite map or hypermap is often simply called “bipartite”
(see Figures 2 and 4, for example). Similarly, H is i-edge bipartite if Q can be 2-coloured
with R; preserving colours and Rj;, Rj transposing them; equivalently, the i-edges can be
2-coloured so that neighbouring i-edges (joined by a j- or k-edge) have different colours (thus
a j- or k-edge cannot be free or join an i-edge to itself). If #H, of type (ly,l1,13), is i-face or
1-edge bipartite, then /; and [, are both even, but not conversely.

3.7. Operations

An operation on hypermaps is a transformation of hypermaps induced by an outer automor-
phism # of A (inner automorphisms induce isomorphisms of hypermaps). If % has hypermap
subgroup H, and is associated with a permutation representation 7 : A — S, then H? has
hypermap subgroup H? and is associated with the representation #~' o7 : A — S. Machi
[18] has described a group S = S; of six operations on oriented hypermaps without boundary;
these correspond to permuting the face-labels {0, 1,2}, and extend to six operations on all
hypermaps, induced by permuting the three generators R; of A. James [13] has classified
all operations on hypermaps, showing that they form an infinite group Out A = PGLy(Z)
containing Machi’s group S. Operations preserve algebraic properties of hypermaps such as
reflexibility, automorphism group, coverings, number of blades, etc., but in general they do
not preserve topological properties such as Euler characteristic, orientability, boundary or
type. For a survey on operations on maps and hypermaps, see [14].

4. Products of hypermaps

If Hy = (G1,,70,71,72) and He = (G, s, So, 1, S2) are algebraic hypermaps, with hy-
permap subgroups Hi, Hy < A, then there is a natural action of A on Q = Q; x 5. This
action is transitive if and only if the pair H; and H, are disjoint, meaning that A = H; H,.
(When each €; is finite, this is equivalent to the condition that the permutation characters
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g [{a€ Q| ag = a}| of A on ©; and Qs have only the principle irreducible complex
character in common; hence the name “disjoint”.)

When H; and H, are disjoint, the transitive action of A on 2 corresponds to a third
hypermap, with hypermap subgroup H = H; N Hy, which we will call the disjoint product
H = Hi X Hy of H; and Hy. (This is an extension to hypermaps of the parallel product of
orientable maps introduced by Wilson in [23].) The inclusions H < H;, Hy induce coverings
H — Hi,Hs, and any hypermap which covers H; and H, must also cover H.

If H; has type (l;, m;, n;) then H has type (I, m,n), where [ is the least common multiple
of I; and [y, etc. If @ is an operation on hypermaps, then #? = H? x H5. If H, is any covering
hypermap of 1, also disjoint from #s,, then H; x H, is a covering of H; x Ho.

If H, and H, are both reflexible then each H; is normal in A, so H is normal and hence
H is reflexible. Since A/H = (A/H;) x (A/Hy) =2 G x G4, we then have

H = (Gl X G2: Ql X QZatﬂatlatZ)
where t; = (r;, s;) for i = 0,1, 2; in particular,

AutH = Gl X GZ = Aut?—[l X Aut’HQ.

5. Reflexible abelian hypermaps

Many examples of double coverings of a hypermap A can be formed by taking disjoint
products of H with 2-blade hypermaps B. In this section we will classify these hypermaps B,
and more generally determine all reflezible abelian hypermaps — those reflexible hypermaps
with an abelian automorphism group.

A hypermap B has two blades if and only if its hypermap subgroup B has index 2 in
A. All such subgroups are normal, so B is reflexible, with AutB = A/B = (; which
is abelian. More generally, any hypermap H is reflexible and abelian if and only if its
hypermap subgroup H contains the derived group A’ of A. Since A = (5 x Cy x Cy, we have
AJA" = A% 2 0y x Cy x Cy, so |A : A’| = 8 and there are sixteen subgroups H > A,
corresponding to the sixteen subgroups of A?: there is one subgroup of index 1, seven each
of indices 2 or 4, and one of index 8. Hence there are sixteen reflexible abelian hypermaps
‘H, of which one has 1 blade, seven each have 2 or 4 blades, and one has 8 blades. In each
case Aut’H = A/H is an elementary abelian 2-group of rank 0, 1,2 or 3 respectively.

Since the subgroups H > A’ can all be formed as intersections (including the empty
intersection A) of subgroups B of index 2, these sixteen hypermaps #H can all be formed by
taking products of 2-blade hypermaps B (provided we regard the trivial hypermap, with one
blade, as the empty product).

In each of the following four sections we give a table describing the reflexible abelian
hypermaps H, as H has || = 1,2,4 or 8 blades respectively. The columns give a symbol
for # (and in some cases a representation for # as a product), the hypermap subgroup H,
topological illustrations of # (with i-faces black, grey and white for s = 0,1 and 2) and of the
bipartite Walsh map W (H), the underlying surface S, the type of #, and finally a description
of the hypermaps H covering H (those with hypermap subgroup H < H).
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5.1. |Q|=1, AutH = 1
H H S type H

A A @ disc (1,1,1) any hypermap

Table 1. The 1-blade hypermap A

In this case H is the trivial hypermap A with one blade, associated with the hypermap
subgroup H = A.

5.2. |Q| =2, AutH = C,

There are 22 — 1 = 7 epimorphisms A = Cy x Cy ¥ Cy — O, their kernels giving the seven
subgroups B of index 2 in A. Let {...)» denote normal closure in A, let {0,1,2} = {i, 5, k},
and let w; denote the image of an element w € A under the epimorphism A — Z, R; —
1, R, Ry — 0. Then the subgroups B are:

Al = {weA|w;=0mod(2) } = <Rj;Rk>Aa
Al={weA| wj = wy mod(2) } = <Ri,Rij>A7
AT ={we A|wy+w +ws =0mod(2) } = (RoRa, R1 R)?,

where ¢ = 0,1,2. The last group A*, the “even subgroup” of A, is a free group of rank 2,
with a pair of free generators RyRs and R; Ry corresponding to the rotations o and ¢ around
hyperedges and hypervertices in the theory of oriented hypermaps [6, 7, 9]. Associated with
these seven subgroups B, we have the following seven 2-blade hypermaps B:

H H H W(H) S type H

B AD 8 Q disc  (1,2,2) O-face bipartite
Bl Al @ @ disc  (2,1,2) 1-face bipartite
B> A? @ @ disc  (2,2,1) 2-face bipartite
B® A° @ @ disc  (1,2,2) 0-edge bipartite
B Al @ @ disc  (2,1,2) 1-edge bipartite
B? A? @ @ disc  (2,2,1) 2-edge bipartite
Bt AT @ sphere (1,1,1) orientable

Table 2. The 2-blade hypermaps B
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5.3. |Q| =4, AutH = C, x C,

There are seven epimorphisms A — Cy X Cy, and their kernels are:
AV ={weA|w=w;=0mod2)} = ((RiR;)* Rp)> = Al N A,

At ={weA|w =0, w;=w, mod(2) } = (R; Ry, (R;R;)*)® = At N A
A" =LweAlw =wj=w,mod(2) } = (R;RjR,)® = A'n AT = AN A N A2

Corresponding to these seven subgroups C' < A we have the following seven 4-blade hyper-
maps C:

H H  H WH) S type "
poan () ) e @z Pl
g% A @ s disc (22.2) 3E% Dibartie
B2 AR @ — disc (22.2)  3fe Dibartie
B0 A+ @ sphere (1,2,2) gf%gggal?ilsartite
BH A 3‘ @ sphere (2,1,2) (ffigggaﬁlﬁarme
B2 A+? :‘ sphere (2,2,1) (z)f%grcl(taall))iISartite
BY12  A012 @ projective plane (2,2,2) %g;dzg e:%l’p 1a,r5ite

Table 3. The 4-blade reflexible abelian hypermaps C

In the case of B2, the coverings H are those whose blades can be 4-coloured so that Ry, R;
and R, induce the three double-transpositions of the four colours; by identifying pairs of
colours in each of the three possible ways, one easily sees that this is equivalent to H being
1-edge bipartite for each 7 = 0,1 and 2.

5.4. |Q| =8, AutH =2 C, x Cy; X C,

The last of the reflexible abelian hypermaps is the 8-blade hypermap D corresponding to the
derived group

A'={weA|w=w =wmod(2)} = ((RoR1)%, (R1R2)?, (RoRo)*)™ = AN AT N A%,
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H H S type H

orientable and
D A2 sphere (2,2,2) i-face bipartite
for i =0, 1,2

Table 4. The 8-blade reflexible abelian hypermap D

5.5. Coverings

The inclusions between the various subgroups H > A’ are those shown in Figure 8:

0 \ / 0 \ / 0 \
Al A AF A+ Al Al A° Al A2
\M ye O \Am
AI AI A,

Figure 8. Inclusions

Hence BY covers B, B/ and BF; similarly B+ covers B, B! and B¢, while B2 covers B°, B!
and B2. All of these hypermaps cover A and are covered by D

6. Double coverings

We now describe the double coverings H x B — H induced by the seven 2-blade hypermaps
B. Each such B is reflexible, so if H is reflexible then so is H x B.

The group Out A = PGLy(Z) of all operations on hypermaps, determined by James
in [13], acts on the quotient group A/A’ = Cy x Cy x Cy by permuting the three factors
(R;A") =2 Cy (since the conjugates of the generators R; are the only elements of order 2 in
A). It permutes them transitively, so it has three orbits on the set of subgroups B of index
2 in A, namely {Af | i =0,1,2},{A"|i=0,1,2} and { AT }. Consequently Out A has
orbits {B% |1 =0,1,2},{B" | i=0,1,2} and { B" } on the 2-blade hypermaps B, and it
is sufficient to consider one representative from each orbit, namely BO, B® and B*t. Indeed,
Machi’s subgroup S = S of label-permuting operations (see Section 3.7) also has these orbits,
so we can obtain all the 2-blade hypermaps and their associated double coverings from these
three by permuting the labels i = 0,1 and 2 of the faces.

We will apply these double coverings to a hypermap H = (G, 2, 7o, r1, r2) of type (I, m,n),
with hypermap subgroup H < A. We will assume throughout that # and B are disjoint
(equivalently H £ B), so that 7 x B is connected; in the cases where H and B are not disjoint
(that is, H covers B), the constructions we will describe would give rise to two disjoint copies

of H.
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6.1. B=B

By applying a permutation of the face-labels we can assume that : = 0. We will assume

that H and B° are disjoint (equlvalently H £ AO), so H is not bipartite. As an algebraic

hypermap, the double covering H := # x B has the form (G x Cs, Q x Cs, so, 51, 52) Where
= {%1}, 50 = (r0,—1), 51 = (r1,1) and so = (72, 1).

Figure 9. Construction of gﬁ

The construction of the underlying graph Qﬁ of 7-[0, illustrated in Figure 9, is based on the
fact that R, transposes the two blades of B® while R; and R, fix them. We take two copies
G: and G_ of the underlying graph G of H. Whenever a 0-edge e of G joins disjoint blades
3,7 of H we cut the corresponding 0-edges e, and e_ of G, and G _, and rejoin them as in
Figure 9(a) so that they now join ; to v_ and S to 7,. Similarly, if e is any free 0-edge
in G, incident with a blade 3 of H, we join e, to e_ thus creating a single 0-edge joining [,
to B_, as in Figure 9(b). The resulting edge-labelled graph G° is connected, for otherwise it
would have two components, giving rise to a 2-colouring of the hypervertices of H, against
our assumption that # is not bipartite. We can therefore take #° to be the hypermap
corresponding to G°.

The natural isomorphisms G, =2 G = G induce a double covering QO — G which, in
turn, induces the double covering %% — H. One can see that H? is bipartite (that is, O-face
blpartlte) by colouring the vertices of G, and G_ respectively black and white (as in Figure
9), and observing that in GO the colours are transposed by Ry but preserved by R; and Rs.

We can reinterpret the above construction of 0 in terms of surface topology by taking
two copies Hy and H_ of H, and cutting them across each non-free 0-edge between the
centres of the incident 1-face and 2-face, as shown in Figure 10.
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Figure 10. Construction of HO

We then join H, and H_ across these cuts (just as in the standard construction of the 2-
sheeted Riemann surface of /z, see Figure 11), and also along boundary segments between
the centres of adjacent 1-faces and 2-faces (see Figure 12).

A — <

e BT

Figure 11. Joining across cuts

X

H4+ B

Figure 12. Joining along boundary segments

Away from the boundary, the resulting surface is a 2-sheeted branched covering of H. The
branch-points are at the centres ¢ of those 1-faces and 2-faces F' of H whose valency v
is odd: this is because v cuts meet at ¢, so a rotation around ¢ induces the permutation
(—=1)? € Cy 2 S, of the two sheets, and this is non-trivial if and only if v is odd. Such a face
F (with v odd) lifts to a 1- or 2-face of valency 2v in M9, whereas when v is even it lifts to
two disjoint faces of valency v. Thus M9 has type (I, m,n') where m’ is the least common
multiple of m and 2, and likewise for n'.
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For example, if H is the tetrahedron 7, a reflexible hypermap of type (3,2, 3), then HO
is the reflexible hypermap W of type (3,2,6) described in Section 1 and illustrated (as a
bipartite map) in Figure 2.

6.2. B=RB

As in Section 6.1 we can assume that s = 0. The construction of G° is similar to that for gﬁ,
except that now we cut and rejoin the 1-edges and 2-edges of G, U G_, and likewise we join
pairs of free 1- and 2-edges, but we do nothing to the 0-edges. In terms of the surfaces, we
cut and rejoin H, and H_ across all 1- and 2-edges (between centres of incident faces), and
also join along segments of the boundary between the centre of each 0-face and the centres of
adjacent 1-faces and 2-faces. Away from the boundary, H° is a 2-sheeted branched covering
of H. If ¢ is the centre of a j-face F' of valency v, then 2v cuts meet at ¢ if 7 = 0, so there is
no branching at ¢; however, if j = 1 or 2 then v cuts meet at ¢, so ¢ is a branch-point if and
only if v is odd, in which case F lifts to a j-face of valency 2v. Thus H° has type (I, m’,n’)
where m' and n' are as in Section 6.1. By colouring the vertices of G, and G_ black and
white, one can see that H° is 0-edge bipartite. A

It is not hard to see that if % is orientable and without boundary then H° = H°:
one can continuously deform the cuts used for H° until they coincide with those for HO.
Algebraically, this is because H < AT with AT N A% = AT N AY (= A0 see Figure 8), so
that HNA = HNATNA° = HNATNAY = HN AL, Similarly #! = H! and H2 = H2
for such hypermaps H.

6.3. B=BTt

Since each R; acts non-trivially on the two blades of B*, we form G* from two copies of G by
cutting and rejoining all corresponding pairs of non-free edges, and joining all corresponding
pairs of free edges. Equivalently, we cut two copies of H across all non-free i-edges (i = 0,1, 2),
and then join across the cuts and along all the boundary segments. Since 2v cuts meet at
the centre of an i-face of valency v, there are no branch-points, and H™ has type (I, m,n).
Clearly H™* has no boundary, and moreover H™ is orientable: one can use the cyclic orderings
(012) and (210) of i-edges around the blades of the two copies of H to define an orientation
on H*, which is thus the orientable double covering of H.

6.4. Other abelian coverings

Although it is possible to give similar direct constructions for the 4- and 8-fold coverings
induced by taking products with the remaining eight non-trivial reflexible abelian hypermaps,
it is simpler to observe that such hypermaps are themselves products of 2-blade hypermaps,
so the corresponding coverings can be obtained as compositions of two or three of the double
coverings described above.
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6.5. Coverings which are not disjoint products

Just as not every group extension is a direct product, not every covering between reflexible
hypermaps is a disjoint product. We have concentrated on the latter class of coverings because
they are widely applicable and easy to describe, but for a more general theory of coverings
see [21, 23].

There are many examples of coverings which are not disjoint products, and here we will
describe one infinite family. Let #, be the universal hypermap of type (2,2,n), a reflexible
spherical map with two faces (the north and south hemispheres) separated by an equatorial
circuit of n vertices and n edges, as in Figure 13. Its automorphism group is the extended
triangle group

AutH, = A(2,2,n) = D,, x Cy,

with D,, (the dihedral group of order 2n) acting as the rotation group Aut™H,, and the
second factor generated by the reflection in the equatorial plane.

Figure 13. The hypermap Hg

Now consider Hs,. Rotation by 7 about the vertical axis is an automorphism of Hs,, which
commutes with all other automorphisms, so it generates a central subgroup C' = (5 in
Aut Ho,. By identifying points equivalent under C'; we obtain a double covering

HQn — HQn/C = %n;

with branch-points of order 1 at the two face-centres of Hs,. This corresponds to the group

extension
1—-C— A(2,2,2n) > A(2,2,n) = 1

induced by the epimorphism Ds,, — Dy, /C = D,,.

If n is odd, this extension splits: Hs, is bipartite, and we have D,, = D, x C and
A(2,2,2n) = A(2,2,n) x C, with the first factors preserving the two vertex-colours while C
transposes them. This gives rise to a disjoint product decomposition

HZn g%n X C:

where H,, = H,,, /C and C = Hy,/A(2,2,n) =2 B°, so Ha, = HY.

If n is even, however, the extension does not split, since each of the seven subgroups of
index 2 in A(2,2,n) contains C' (which now preserves vertex-colours); it follows that in this
case the double covering H,, — H, cannot arise from any disjoint product decomposition.
(Note that #, is now bipartite, so it is not disjoint from B°.)



386 A.J. Breda d’Azevedo; G. A. Jones: Double Coverings and Reflexive Abelian Hypermaps

7. The Walsh and Vince correspondences

The Walsh map W (H) [22] of a hypermap # is the dual of the map formed by contracting
each hyperface of H to a point; it is a bipartite map, the two monochrome sets of vertices
(usually coloured black and white) corresponding to the hypervertices and hyperedges of H,
while the faces and edges of W () correspond to the hyperfaces and 2-edges of 7. Corn and
Singerman [9] have given an algebraic interpretation of W for orientable hypermaps without
boundary; we shall extend their ideas to all hypermaps, and give a similar interpretation of
a representation of hypermaps due to Vince [20].
Each map M corresponds to a conjugacy class of map subgroups M < T', where

I'= A(OO,Z,OO) = <P0,P1,P2 | PZ-2 = (POP2)2 = 1)’

under the epimorphism a : A — T, R; = P;. In particular, the 2-blade hypermap B =W(A)
is a map, with map subgroup I'’ = a(A%) of index 2 in I". Thus I'? is the normal closure of P,
and P, in I',; and the Reidemeister-Schreier process [17, §11.4] shows that it has a presentation

I =(Q0,Q1,Qs | Q2 =1)

where Qg = PyP1 Py, Q1 = P, and Q2 = P>, so there is an isomorphism ¢ : A — ro given
by R; — @Q;. Each hypermap H determines a hypermap subgroup H < A; we define ®(H)
to be the map M corresponding to the map subgroup M = ¢(H) < I'. It is bipartite since
M < T (see Figure 14).

r
2
A ¢ 1o
U M = ¢(H)
H ? M
1 1

Figure 14. The homomorphism ¢

Intuitively, one can regard ®(#) as a covering of B° with fibre #; we shall show that ® (%)
is, in fact, the Walsh map W (H).

Each blade 8 of H corresponds to a coset Hg (g € A) of H in A; we let 3’ and " (coloured
black and white respectively) be the blades of M corresponding to the cosets M¢(g) and
M¢(g)Py of M in ' (notice that Py € I'\ I'%). Since P, acting by right-multiplication,
transposes these two cosets, we join (' to §” by an edge labelled 0. Similarly P, sends
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Mo(g) to M¢(g)P, = ¢(HgRy) and M¢(g)Py to Mp(g)PoPy = Mp(g) PPy = ¢(HgR) P,
so if v denotes the blade SRy of H corresponding to the coset HgRs then we join 5’ to
and " to 7" by edges labelled 2. Finally, P; sends M¢(g) to ¢(HgR;) and M@(g)P, to
Mo(g)PoPy = Mo(9)QoPy = ¢(HgRy) Py, so if 6 = BR; and € = SR, then we join ' to
0" and (" to € by edges labelled 1. This gives us the edge-labelled graph underlying the
hypermap M, and as can be seen in Figure 15(a), M is a 0-face bipartite hypermap, with
black and white 0-faces corresponding to the hypervertices and hyperedges of H, while the
1-faces and 2-faces of M correspond to the 2-edges and hyperfaces of H. Figure 15(b) shows
M as a bipartite map superimposed on H; clearly M = W (H).

Figure 15. M and H

One can reverse this process: any map M corresponds to a subgroup M < I', and one can
define ®~1(M) to be the hypermap #H corresponding to H = ¢—1(M) < A. If M is bipartite
then M < I'® and # = W~1(M); in particular, if M is reflexible then so is H (since if M
is normal in T then H is normal in A), with Aut# isomorphic to a subgroup of index 2 in
Aut M. If M is not bipartite then M N Fﬁ, of index 2 in M, corresponds to the bipartite
double cover M = M x B° of M described in Section 6.1, and now H = W~1(M?); again,
if M is reflexible then so is H, but now (see Figure 16) we have

AutH 2 A/H=T/(MNTO) 2T /M =~ Aut M.

For example, if we take M to be the tetrahedron 7 (which is reflexible but not bipartite)
then ®~1(M) is the reflexible hypermap 7" constructed in Section 2, with Aut 7’ = Aut 7.

Finally, we note that many other transformations and representations of hypermaps (such
as all operations on hypermaps) can be explained in a similar way in terms of homomorphisms
between extended triangle groups. For example Vince [20] represents a hypermap H as a 2-
face bipartite map V(H) formed by contracting each hypervertex of H to a point. (Thus
V(H) = W (H)©? where the superscript (02) denotes the classical duality operation for
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r
¢ /
A o0 Aut M
AutH M
A
® t
H MNTO
1 1
Figure 16.

maps and hypermaps, transposing the labels 0 and 2.) Just as W is induced by ¢ : A & 0 <
', Vince’s correspondence V' is induced by an isomorphism between A and the subgroup
[? = (P, P,)" of index 2 in T. There is, in fact, a third subgroup of index 2 in T which is
isomorphic to A, namely the normal closure I'! of P, and PyP,. By choosing an isomorphism
from A to I'' we obtain a third representation of hypermaps by maps; in this case, rather
than the vertices or the faces of the map, it is the Petrie polygons (closed zig-zag paths
turning alternately left and right) which can be 2-coloured so that every edge meets one of

each colour. For similar examples, where H is orientable and without boundary, see Chapter
6 of [8].
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