Multi-helicoidal Euclidean Submanifolds of Constant Sectional Curvature

Jaime Ripoll Ruy Tojeiro

Instituto de Matemática, Universidade Federal do R. G. do Sul (UFRGS) Av. Bento Gonçalves 950, 91540-000 Porto Alegre-RS, Brasil e-mail: ripoll@mat.ufrgs.br

Departamento de Matemática, Universidade Federal de São Carlos (UFSCar) Rod. Washington Luiz km 235 CP 676, 13565-905 São Carlos–SP, Brasil e-mail: tojeiro@dm.ufscar.br

Abstract. We classify *n*-dimensional multi-helicoidal submanifolds of nonzero constant sectional curvature and cohomogeneity one in the Euclidean space \mathbb{R}^{2n-1} , that is, *n*-dimensional submanifolds of nonzero constant sectional curvature in \mathbb{R}^{2n-1} that are invariant under the action of an (n-1)-parameter subgroup of isometries of \mathbb{R}^{2n-1} with no pure translations. This is accomplished by first giving a complete description of all these subgroups and then deriving a multidimensional version of a lemma due to Bour. We also prove that such submanifolds are precisely the ones that correspond to solutions of the generalized sine-Gordon and elliptic sinh-Gordon equations that are invariant by an (n-1)-dimensional subgroup of translations of the symmetry group of these equations.

MSC 2000: 53B25, 53C42, 35Q53

Keywords: multi-helicoidal submanifolds, constant sectional curvature, generalized sine-Gordon and elliptic sinh-Gordon equations

1. Introduction

The classical correspondence between solutions of the sine-Gordon and elliptic sinh-Gordon equations and surfaces in Euclidean three-space with constant negative and positive gaussian curvature, respectively, was extended to higher dimensions in [1], [13] and [11], [7], respectively, where similar correspondences were obtained between n-dimensional submanifolds

0138-4821/93 $2.50 \odot 2001$ Heldermann Verlag

 $M^n(c)$ with constant negative or positive sectional curvature in (2n - 1)-dimensional Euclidean space \mathbb{R}^{2n-1} and solutions of certain nonlinear systems of partial differential equations called the generalized sine-Gordon and elliptic sinh-Gordon equations, respectively (cf. §5 below). These systems will be referred to hereafter as GSGE and GEShGE.

The symmetry groups of local Lie-point transformations of the *n*-dimensional GSGE and GEShGE were determined in [14] and [8], [9], respectively, for $n \ge 3$. It was shown that they are finite-dimensional and consist only of translations. Moreover, the class \mathcal{L} of all solutions invariant by an (n-1)-dimensional translation subgroup was explicitly described.

As pointed out in [2], it is in general a nontrivial problem to determine the submanifolds associated to a particular class of solutions. For the special subclass of \mathcal{L} consisting of solutions that depend on a single variable, this was done in [12] and [4] (see also [7] for more general results), where the submanifolds were shown to be multi-rotational submanifolds with curves as profiles. The general class of submanifolds associated to elements of \mathcal{L} was studied in [2]. It was shown, among other things, that the submanifolds carry a foliation by flat hypersurfaces, which are foliated themselves by curves with constant Frenet curvatures in the ambient space. However, a classification has not been achieved.

In this paper we prove that these submanifolds are precisely the multi-helicoidal *n*dimensional submanifolds of nonzero constant sectional curvature and cohomogeneity one in \mathbb{R}^{2n-1} , that is, *n*-dimensional submanifolds of nonzero constant sectional curvature that are invariant under the action of an (n-1)-parameter subgroup of isometries of \mathbb{R}^{2n-1} with no pure translations (see §2 for the precise definitions). Moreover, after providing a complete description of these subgroups, we are able to give explicit parametrizations of all such submanifolds. Our main tool is a multi-dimensional version of a lemma due to Bour ([3]; cf. also [6], pp. 129–130 and [5]), which is of independent interest and should have other applications.

We point out that the aforementioned results in [2] were actually derived for submanifolds of constant sectional curvature in arbitrary pseudo-Riemannian space forms. On the other hand, our proof that solutions in \mathcal{L} correspond to multi-helicoidal submanifolds of cohomogeneity one (cf. Theorem 7 below) extends to this more general setting with minor changes. However, classifying all (n-1)-parameter subgroups of arbitrary pseudo-Riemannian space forms and deriving the corresponding Bour's-type lemmas would require a lengthy case-bycase study which we do not undertake here.

2. (n-1)-parameter subgroups of $\mathbb{ISO}(\mathbb{R}^{2n-1})$

A k-parameter subgroup of isometries of \mathbb{R}^m is a continuous homomorphism $G : (\mathbb{R}^k, +) \to \mathbb{ISO}(\mathbb{R}^m)$ into the isometry group of \mathbb{R}^m . A 1-parameter subgroup of isometries R is said to be generated by G if there is $a = (a_1, \ldots, a_k) \in \mathbb{R}^k$ such that R(s) = G(sa) for any $s \in \mathbb{R}$. We say that G has no pure translations if no one-parameter subgroup R generated by G is a pure translation, that is, given by R(s)(x) = x + sv for some $v \in \mathbb{R}^m$ and all $x \in \mathbb{R}^m, s \in \mathbb{R}$.

Let \mathbb{R}^{2n-1} be identified with the affine hyperplane

$$\mathbb{R}^{2n-1} = \{(x_1, \dots, x_{2n}) \in \mathbb{R}^{2n}; x_{2n} = 1\}.$$

Denote

$$R(\theta, k) = \begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix}, \quad L(\phi, h) = \begin{pmatrix} 1 & h\phi \\ 0 & 1 \end{pmatrix}$$

and consider the (n-1)-parameter subgroup F of $\mathbb{ISO}(\mathbb{R}^{2n-1})$ given by

$$F(\phi) = F_1(\phi_1) \circ \ldots \circ F_{n-1}(\phi_{n-1}),$$

where $\phi = (\phi_1, \dots, \phi_{n-1}) \in \mathbb{R}^{n-1}$ and $F_i(\phi_i) \in \mathbb{ISO}(\mathbb{R}^{2n-1}), 1 \leq i \leq n-1$, is represented by the $2n \times 2n$ matrix $(R_i^1, \dots, R_i^{n-1}, L_i)$ with 2×2 diagonal blocks

$$R_{i}^{j} = \begin{cases} R(\phi_{i}, k_{i}), & j = i, \\ 0, & j \neq i \end{cases}, \qquad L_{i} = L(\phi_{i}, h_{i}), & k_{i}, h_{i} \in \mathbb{R}, & k_{i} \neq 0 \end{cases}$$

The action of F has a simple description in terms of cylindrical coordinates $r_1, \theta_1, \ldots, r_{n-1}$, θ_{n-1}, z in \mathbb{R}^{2n-1} , which are related to cartesian coordinates by

$$(x_1, x_2, \dots, x_{2n-3}, x_{2n-2}, x_{2n-1}) = (r_1 \exp i\theta_1, \dots, r_{n-1} \exp i\theta_{n-1}, z).$$

In fact, the orbit of a point $P = (r_1, \theta_1, \ldots, r_{n-1}, \theta_{n-1}, z)$ under F is the (n-1)-dimensional submanifold of \mathbb{R}^{2n-1} parametrized by

$$F(\phi)(P) = (r_1, \theta_1 + k_1\phi_1, \dots, r_{n-1}, \theta_{n-1} + k_{n-1}\phi_{n-1}, z + \sum_{i=1}^{n-1} h_i\phi_i)$$

with flat induced metric

$$ds^{2} = \sum_{i=1}^{n-1} (k_{i}r_{i}^{2} + h_{i}^{2})d\phi_{i}^{2} + \sum_{i \neq j} h_{i}h_{j}d\phi_{i}d\phi_{j}.$$

Our first result shows that F is essentially the only (n-1)-parameter subgroup of $\mathbb{ISO}(\mathbb{R}^{2n-1})$ with no pure translations.

Theorem 1. Let G be an (n-1)-parameter subgroup of isometries of \mathbb{R}^{2n-1} with no pure translations. Then, there is $H \in \mathbb{O}(2n-1)$ and $B \in \mathbb{GL}(\mathbb{R}^{n-1})$ such that $G(\phi) = H^{-1} \circ F(B\phi) \circ H$ for any $\phi \in \mathbb{R}^{n-1}$.

Proof. Denote by I the component of the identity of $\mathbb{ISO}(\mathbb{R}^{2n-1})$ and by \mathcal{I} the Lie algebra of I. Identify \mathcal{I} with the Lie algebra of the $2n \times 2n$ -matrices

$$\left\{ \begin{pmatrix} u_1 \\ A & \vdots \\ u_{2n-1} \\ 0 & 0 \end{pmatrix}, A^t = -A, \quad u_1, \dots, u_{2n-1} \in \mathbb{R} \right\}$$

acting (as Killing fields) in \mathbb{R}^{2n-1} by

$$((0,x),X) \mapsto X(0,x)^t$$

for $x \in \mathbb{R}^{2n-1}$ and $X \in \mathcal{I}$. Then, for $X, Y \in \mathcal{I}$ the Lie bracket [,] of \mathcal{I} is given by [X, Y] = XY - YX. It is easy to prove that $X \in \mathcal{I}$ is induced by a pure translation if and only if X is nilpotent, that is, the endomorphism $ad_X(Z) = [X, Z], Z \in \mathcal{I}$, is nilpotent.

Let G_i be the 1-parameter subgroup generated by G given by $G_i(s) := G(se_i)$, where e_1, \ldots, e_{n-1} is the canonical basis of \mathbb{R}^{n-1} . Then $G_i(s) = \exp sX_i$ for some $X_i \in \mathcal{I}$, where $\exp \mathcal{I} \to \mathbb{I}$ is the exponential map. Since $G_i(s) \circ G_j(t) = G_j(t) \circ G_i(s)$ for all $s, t \in \mathbb{R}$, it follows that $[X_i, X_j] = 0$ for $1 \leq i, j \leq n-1$. Let Λ be the commutative Lie subalgebra of \mathcal{I} spanned by X_1, \ldots, X_{n-1} . By the Jordan-Chevalley decomposition theorem (Proposition of [10], §4.2), we may write $X_i = S_i + N_i$, where N_i is nilpotent and S_i is semisimple, that is, the operator ad_{S_i} is diagonalizable over \mathbb{C} . We observe that S_1, \ldots, S_{n-1} are linearly independent vectors, otherwise G would contain a pure translation, contrary to the hypothesis. Since any endomorphism commuting with X_i commutes with S_i and N_i , it follows that the Lie algebra \mathcal{K} spanned by S_1, \ldots, S_{n-1} is commutative. Moreover, \mathcal{K} is a Cartan subalgebra of \mathcal{I} , because dim $\mathcal{K} = n-1$.

Denote by E_i , i = 1, ..., n-1, the skew-symmetric matrix of \mathcal{I} having 1 at the (2i - 1, 2i)entry, -1 at the (2i, 2i - 1) entry and 0 at the other entries. We observe that each E_i is semisimple. Let \mathcal{H} be the commutative (n - 1)-dimensional Lie subalgebra of \mathcal{I} spanned by E_1, \ldots, E_{n-1} . Since \mathcal{I} is a semisimple Lie algebra of rank n - 1 which has only one Cartan subalgebra up to conjugation, there is $H \in \mathbb{I}$ such that $H\mathcal{K}H^{-1} = \mathcal{H}$. For any given i, it follows that HN_iH^{-1} commutes with all E_j . Some matrix computations then show that $HN_iH^{-1} = a_iE$ for some a_i , where $E \in \mathcal{I}$ has 1 at the (n - 1, n) entry and 0 at the other ones. Thus

$$H\Lambda H^{-1} \subset \operatorname{span}\{E_1,\ldots,E_{n-1},E\}$$

One may find a basis R_1, \ldots, R_{n-1} of $H\Lambda H^{-1}$ such that

$$R_i = k_i E_i + h_i E$$

for some $k_i, h_i \in \mathbb{R}, 1 \leq i \leq n-1$. Let $A = (a_{ij}) \in \mathbb{GL}(\mathbb{R}^{n-1})$ be given by

$$\sum_{j=1}^{n-1} a_{ij} H X_j H^{-1} = R_i.$$

Set $\mu_j = \sum_i a_{ij}\phi_i$ for $\phi = (\phi_1, \dots, \phi_{n-1}) \in \mathbb{R}^{n-1}$. Then,

$$G(A\phi) = G(\mu_1, \dots, \mu_{n-1}) = G_1(\mu_1) \circ \dots \circ G_{n-1}(\mu_{n-1})$$

= $\exp(\mu_1 X_1) \circ \dots \circ \exp(\mu_{n-1} X_{n-1}) = \exp(\sum \mu_j X_j),$

hence

$$H \circ G(A\phi) \circ H^{-1} = \exp(\sum_{j} \mu_{j} H X_{j} H^{-1}) = \exp(\sum_{j} (\sum_{i} a_{ij} \phi_{i}) H X_{j} H^{-1})$$

= $\exp(\sum_{i} \phi_{i} (\sum_{j} a_{ij} H X_{j} H^{-1})) = \exp(\sum_{i} \phi_{i} R_{i})$
= $F_{1}(\phi_{1}) \circ \ldots \circ F_{n-1}(\phi_{n-1}) = F(\phi),$

and the conclusion follows by setting $A = B^{-1}$.

We say that an isometric immersion $f: M^n \to \mathbb{R}^{2n-1}$ is a multi-helicoidal submanifold of cohomogeneity one if it is invariant under the action of an (n-1)-parameter subgroup G of $\mathbb{ISO}(\mathbb{R}^{2n-1})$, that is, there exists an (n-1)-parameter subgroup T of $\mathbb{ISO}(\mathbb{M}^n)$ such that

$$G(\phi) \circ f = f \circ T(\phi), \text{ for any } \phi \in \mathbb{R}^{n-1}.$$

An isometric immersion $g: M^n \to \mathbb{R}^{2n-1}$ is said to be *congruent* to f if there exists $H \in \mathbb{ISO}(\mathbb{R}^{2n-1})$ such that $g = H \circ f$.

Corollary 2. Any multi-helicoidal submanifold $f: M^n \to \mathbb{R}^{2n-1}$ of cohomogeneity one is congruent to a submanifold that is invariant under the action of F.

Proof. Let G and T be (n-1)-parameter subgroups of $\mathbb{ISO}(\mathbb{R}^{2n-1})$ and $\mathbb{ISO}(\mathbb{M}^n)$, respectively, such that $G(\phi) \circ f = f \circ T(\phi)$ for any $\phi \in \mathbb{R}^{n-1}$. By Theorem 1, there is $H \in \mathbb{O}(2n-1)$ and $A \in \mathbb{GL}(\mathbb{R}^{n-1})$ such that $G(A\phi) = H^{-1} \circ F(\phi) \circ H$ for any $\phi \in \mathbb{R}^{n-1}$. Hence,

$$F(\phi) \circ (H \circ f) = (H \circ f) \circ (T \circ A)(\phi)$$

thus $H \circ f$ is invariant under F.

3. A Bour's-type lemma

A parametrization $X(s, t_1, \ldots, t_{n-1})$ of a multi-helicoidal submanifold of cohomogeneity one is said to be *natural* if the coordinate hypersurfaces $s = s_0 \in \mathbb{R}$ are orbits of F and the induced metric has the form

$$d\sigma^{2} = ds^{2} + \sum_{i=1}^{n-1} U_{i}(s)^{2} dt_{i}^{2} + \sum_{i \neq j} h_{i} h_{j} dt_{i} dt_{j}.$$
 (1)

We now prove the extension of Bour's lemma referred to in the introduction.

Lemma 3. 1) Every multi-helicoidal submanifold M^n of cohomogeneity one in \mathbb{R}^{2n-1} has locally a natural parametrization.

2) Suppose that $U_1(s), \ldots, U_{n-1}(s)$ and $h_1, \ldots, h_{n-1} \in \mathbb{R}$ satisfy $U_i^2 > h_i^2$, $1 \le i \le n-1$, and let $\lambda_i = \lambda_i(s)$ be defined by

$$\lambda_i = \sqrt{U_i^2 - h_i^2}$$

if $n \geq 4$, and by

$$\lambda_1 = m\sqrt{U_1^2 - h_1^2}, \quad \lambda_2 = \frac{1}{m}\sqrt{U_2^2 - h_2^2}, \quad m \neq 0,$$

if n = 3. Suppose further that $\sum_{i=1}^{n-1} (\lambda'_i)^2 \leq 1$ everywhere and define

$$\lambda_n(s) = \int_0^s \psi(\tau)\xi(\tau) \ d\tau,$$

where

$$\psi(s) = \sqrt{1 - \sum_{i=1}^{n-1} (\lambda'_i)^2}$$
 and $\xi(s) = \sqrt{1 + \sum_{i=1}^{n-1} \frac{h_i^2}{\lambda_i^2}}$.

Finally, define $\phi_i = \phi_i(s, t_i), \ 1 \le i \le n-1, \ by$

$$\phi_i = t_i - h_i \int_0^s \frac{\psi(\tau)}{\lambda_i^2(\tau)\xi(\tau)} d\tau$$

if $n \geq 4$ and

$$\phi_1 = mt_1 - h_1 \int_0^s \frac{\psi(\tau)}{\lambda_1^2(\tau)\xi(\tau)} d\tau, \quad \phi_2 = \frac{1}{m}t_2 - h_2 \int_0^s \frac{\psi(\tau)}{\lambda_2^2(\tau)\xi(\tau)} d\tau$$

if n = 3. Then

$$X(s, t_1, \dots, t_{n-1}) = (\lambda_1, \phi_1, \dots, \lambda_{n-1}, \phi_{n-1}, \lambda_n + \sum_{i=1}^{n-1} h_i \phi_i)$$
(2)

is a natural parametrization of a multi-helicoidal submanifold of cohomogeneity one in \mathbb{R}^{2n-1} with induced metric given by (1).

Proof. 1) Let the intersection of M^n with the subspace

$$\mathbb{R}^{n} = \{ (r_{1}, \theta_{1}, \dots, r_{n-1}, \theta_{n-1}, z); \theta_{1} = \dots = \theta_{n-1} = 0 \}$$

be locally parametrized by the curve $\lambda: (-\epsilon, \epsilon) \to \mathbb{R}^n$, $\lambda = (\lambda_1, \ldots, \lambda_n)$, with $\lambda_i(\rho) > 0$ for all $\rho \in (-\epsilon, \epsilon)$, $1 \le i \le n$. Then, a local parametrization of M^n is

$$X(\rho, \phi_1, \dots, \phi_{n-1}) = (\lambda_1(\rho), \phi_1, \dots, \lambda_{n-1}(\rho), \phi_{n-1}, \lambda_n(\rho) + \sum_{i=1}^{n-1} h_i \phi_i),$$

where we assumed $k_i = 1$ for all $1 \le i \le n-1$ after a change of coordinates. The metric induced by X is

$$d\sigma^{2} = \sum_{i=1}^{n} (\lambda_{i}')^{2} d\rho^{2} + \sum_{i=1}^{n-1} (\lambda_{i}^{2} + h_{i}^{2}) d\phi_{i}^{2} + 2\lambda_{n}' \sum_{i=1}^{n-1} h_{i} d\rho d\phi_{i} + \sum_{i \neq j} h_{i} h_{j} d\phi_{i} d\phi_{j},$$

where the prime denotes derivative with respect to ρ . Let t_1, \ldots, t_{n-1} be locally defined by

$$dt_i = d\phi_i - \lambda'_n f_i d\rho_i$$

where the functions $f_i = f_i(\rho)$ are to be determined. Then

$$d\sigma^{2} = \left(\sum_{i=1}^{n} (\lambda_{i}')^{2} + (\lambda_{n}')^{2} \sum_{i=1}^{n-1} f_{i}(h_{i} + g_{i})\right) d\rho^{2} + \sum_{i=1}^{n-1} (\lambda_{i}^{2} + h_{i}^{2}) dt_{i}^{2} + 2\lambda_{n}' \sum_{i=1}^{n-1} g_{i} d\rho dt_{i} + \sum_{i \neq j} h_{i} h_{j} dt_{i} dt_{j},$$

where

$$g_i = f_i(\lambda_i^2 + h_i^2) + h_i + \sum_{j \neq i} h_i h_j f_j.$$

Let $A = A(\rho)$ be the $(n-1) \times (n-1)$ -matrix with entries

$$\begin{cases} A_{ii} = (\lambda_i^2 + h_i^2) \\ A_{ij} = h_i h_j, \ i \neq j \end{cases}$$

Since

$$\det A = \prod_{i=1}^{n-1} \lambda_i^2 + \sum_{i=1}^{n-1} h_i^2 \prod_{j \neq i}^{n-1} \lambda_j^2 > 0,$$

the linear system Af = -h, where $h = (h_1, \ldots, h_{n-1})^t$, has a solution $f = (f_1, \ldots, f_{n-1})^t$. Therefore, the f'_is can be chosen so that $g_i = 0$ for all $1 \le i \le n-1$. Explicitly, an easy computation shows that

$$f_{i} = \frac{-h_{i}}{\det A} \Pi_{j \neq i}^{n-1} \lambda_{j}^{2} = -\frac{h_{i}}{\lambda_{i}^{2} \left(1 + \sum_{j=1}^{n-1} \frac{h_{j}^{2}}{\lambda_{j}^{2}}\right)}.$$
(3)

Now observe that

$$\sum_{i=1}^{n} (\lambda_i')^2 + (\lambda_n')^2 \sum_{i=1}^{n-1} h_i f_i = \sum_{i=1}^{n-1} (\lambda_i')^2 + \frac{(\lambda_n')^2}{\det A} \prod_{i=1}^{n-1} \lambda_i^2 > 0,$$

hence a function $s = s(\rho)$ is locally well-defined by

$$ds^{2} = \left(\sum_{i=1}^{n} (\lambda_{i}')^{2} + (\lambda_{n}')^{2} \sum_{i=1}^{n-1} h_{i} f_{i}\right) d\rho^{2} = \sum_{i=1}^{n-1} d\lambda_{i}^{2} + \frac{\prod_{i=1}^{n-1} \lambda_{i}^{2}}{\det A} d\lambda_{n}^{2}.$$
 (4)

From

$$\frac{\partial(s, t_1, \dots, t_{n-1})}{\partial(\rho, \phi_1, \dots, \phi_{n-1})} = \sqrt{\sum_{i=1}^n (\lambda_i')^2 + (\lambda_n')^2 \sum_{i=1}^{n-1} h_i f_i}$$

we have that s, t_1, \ldots, t_{n-1} define locally a system of coordinates. Let

$$\rho = \rho(s, t_1, \dots, t_{n-1}), \ \phi_i = \phi_i(s, t_1, \dots, t_{n-1})$$

be the coordinate change. Since $\partial s / \partial \phi_i = 0$ for all $1 \leq i \leq n-1$, the chain rule gives $\partial \rho / \partial t_i = 0$ for all $1 \leq i \leq n-1$. Therefore $\rho = \rho(s)$ and, denoting $U_i^2(s) = \lambda_i^2(\rho(s)) + h_i^2$, we conclude that

$$X(s, t_1, \dots, t_{n-1}) = X(\rho(s), \phi_1(s, t_1, \dots, t_{n-1}), \dots, \phi_{n-1}(s, t_1, \dots, t_{n-1}))$$

is a natural parametrization of M^n .

2) We look for functions λ_i and ϕ_i of s, t_1, \ldots, t_{n-1} satisfying

$$ds^{2} = \sum_{i=1}^{n-1} d\lambda_{i}^{2} + \frac{1}{1 + \sum_{j=1}^{n-1} \frac{h_{j}^{2}}{\lambda_{j}^{2}}} d\lambda_{n}^{2},$$
(5)

$$U_i dt_i = \sqrt{\lambda_i^2 + h_i^2} (d\phi_i - f_i d\lambda_n), \quad 1 \le i \le n - 1,$$
(6)

and

$$dt_i dt_j = (d\phi_i - f_i d\lambda_n)(d\phi_j - f_j d\lambda_n), \tag{7}$$

where f_i is given by (3). Equation (5) implies that $\lambda_i = \lambda_i(s)$ for all $1 \le i \le n$ and that

$$(\lambda'_n)^2 = \left(1 - \sum_{i=1}^{n-1} (\lambda'_i)^2\right) \left(1 + \sum_{i=1}^{n-1} \frac{h_i^2}{\lambda_i^2}\right).$$
(8)

Equations (6) and (7) yield

$$U_i = \sqrt{\lambda_i^2 + h_i^2}, \quad \frac{\partial \phi_i}{\partial t_j} = \delta_{ij}, \quad 1 \le i, j \le n - 1,$$

for $n \ge 4$ and

$$U_1 = m\sqrt{\lambda_1^2 + h_1^2}, \quad U_2 = \frac{1}{m}\sqrt{\lambda_2^2 + h_2^2},$$
$$\frac{\partial\phi_1}{\partial t_2} = \frac{\partial\phi_2}{\partial t_1} = 0, \quad \frac{\partial\phi_1}{\partial t_1} = m, \quad \frac{\partial\phi_2}{\partial t_2} = \frac{1}{m}$$

for some $m \neq 0$ if n = 3. In both cases,

$$\frac{\partial \phi_i}{\partial s} = -\frac{h_i}{\lambda_i^2} \sqrt{\frac{1 - \sum_{j=1}^{n-1} (\lambda_j')^2}{1 + \sum_{j=1}^{n-1} \frac{h_j^2}{\lambda_j^2}}},$$

and the proof follows.

Remarks 4. 1) It follows from Lemma 3 that the orbits of a multi-helicoidal submanifold M^n of cohomogeneity one in \mathbb{R}^{2n-1} provide a foliation of M^n by flat geodesically parallel hypersurfaces. Moreover, any such hypersurface is foliated itself by curves with constant Frenet curvatures in the ambient space, namely, the orbits of the 1-parameter subgroups generated by F. These are the properties that were shown in [2] to be satisfied by n-dimensional submanifolds in \mathbb{R}^{2n-1} which are associated to solutions of the GSGE and GEShGE that are invariant by an (n-1)-dimensional translation subgroup of their symmetry groups. They follow immediately from Theorem 7 below, according to which such submanifolds are precisely the multi-helicoidal submanifolds of nonzero constant sectional curvature and cohomogeneity one in \mathbb{R}^{2n-1} .

2) Suppose that G is an (n-1)-parameter subgroup of isometries of \mathbb{R}^{2n-1} that contains a pure translation, say, G(sa)(x) = x + sv for some vectors $a \in \mathbb{R}^{n-1}, v \in \mathbb{R}^{2n-1}$ and all $x \in \mathbb{R}^{2n-1}$, $s \in \mathbb{R}$. Then, it is easily seen that any submanifold M^n that is invariant under the action of G is isometric to an open subset of a Riemannian product $M^{n-1} \times \mathbb{R}$, the onedimensional leaves of the product foliation correspondent to the \mathbb{R} -factor being immersed as straight lines in \mathbb{R}^{2n-1} parallel to v.

4. Multi-helicoidal submanifolds of constant curvature

Our aim in this section is to classify *n*-dimensional multi-helicoidal submanifolds of cohomogeneity one and nonzero constant sectional curvature in \mathbb{R}^{2n-1} . This follows by putting together Lemma 3 and the following result.

Lemma 5. Assume that the metric

$$d\sigma^{2} = ds^{2} + \sum_{i=1}^{n-1} U_{i}(s)^{2} dt_{i}^{2} + \sum_{i \neq j} h_{i} h_{j} dt_{i} dt_{j}$$
(9)

has constant sectional curvature $c \neq 0$.

1) If $n \ge 4$, then c < 0, at most one of the h_i is nonzero and, up to a coordinate change $s \to \pm s + s_0$, $U_i(s) = \mu_i e^{\sqrt{-cs}}$, where $\mu_i \in \mathbb{R}$, $1 \le i \le n-1$, satisfy $\sum_{i=1}^{n-1} \mu_i^2 = 1$.

2) If n = 3, then, up to a coordinate change $s \to \pm s + s_0$, one of the following possibilities holds:

a) c < 0, $h_1h_2 = 0$ and $U_i(s) = \mu_i e^{\sqrt{-cs}}$, where $\mu_1, \mu_2 \in \mathbb{R}$ satisfy $\mu_1^2 + \mu_2^2 = 1$. b) $h_1h_2 = 0$ and $U_1(s) = \mu_1 \phi(ks)$, $U_2(s) = \mu_2 \phi'(ks)$, where $\mu_1, \mu_2 \in \mathbb{R}$, $k = \sqrt{|c|}$, $\phi(s) = \cosh s \text{ or sinh } s \text{ if } c < 0$ and $\phi(s) = \cos s \text{ or sin } s \text{ if } c > 0$. c) $h_1h_2 \neq 0$ and

$$U_1^2 = B\phi(2ks) + D, \quad U_2^2 = a(B\phi(2ks) - D),$$

where $B^2 > D^2$, $a = h_1^2 h_2^2 / (B^2 - D^2)$, $\phi(s) = \cosh s$ if c < 0 and $\phi(s) = \cos s$ or $\sin s$ if c > 0.

Proof. Set $g_{ij} = \langle \partial / \partial t_i, \partial / \partial t_j \rangle$, $1 \leq i, j \leq n-1$, where inner products are taken in the metric $d\sigma^2$. Thus, $g_{ii} = U_i^2$ and $g_{ij} = h_i h_j$ for $i \neq j$. We first show that $d\sigma^2$ having constant sectional curvature c is equivalent to the system of equations

i)
$$2g_{jj}'' - (g_{jj}')^2 g^{jj} + 4cg_{jj} = 0, \ 1 \le j \le n-1,$$

ii) $g_{ii}'g_{jj}' + 4c(g_{ii}g_{jj} - h_i^2h_j^2) = 0, \ 1 \le i \ne j \le n-1,$

$$\left.\right\}$$
(10)

where (g^{ij}) denotes the inverse matrix of (g_{ij}) .

The sectional curvature $K(\frac{\partial}{\partial s}, \frac{\partial}{\partial t_j})$ along the plane spanned by $\frac{\partial}{\partial s}, \frac{\partial}{\partial t_j}$ is given by

$$K\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}\right)g_{jj} = \left\langle \nabla_{\frac{\partial}{\partial t_{j}}}\nabla_{\frac{\partial}{\partial s}}\frac{\partial}{\partial s} - \nabla_{\frac{\partial}{\partial s}}\nabla_{\frac{\partial}{\partial t_{j}}}\frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}\right\rangle$$
$$= \left\|\nabla_{\frac{\partial}{\partial t_{j}}}\frac{\partial}{\partial s}\right\|^{2} - \frac{1}{2}\frac{\partial^{2}}{\partial s^{2}}\left\langle\frac{\partial}{\partial t_{j}}, \frac{\partial}{\partial t_{j}}\right\rangle.$$
(11)

One can easily check that

$$\nabla_{\frac{\partial}{\partial t_j}} \frac{\partial}{\partial s} = \frac{1}{2} g'_{jj} \sum_{k=1}^{n-1} g^{kj} \frac{\partial}{\partial t_k},\tag{12}$$

hence the first term on the right-hand-side of (11) equals

$$\frac{(g'_{jj})^2}{4} \left[\sum_{k=1}^{n-1} (g^{kj})^2 g_{kk} + \sum_{i \neq k}^{n-1} g^{kj} g^{ij} g_{ki} \right].$$

The expression between brackets is easily seen to be equal to g^{jj} , hence $K(\frac{\partial}{\partial s}, \frac{\partial}{\partial t_j}) = c$ if and only if equation (10) i) holds.

A similar computation shows that the sectional curvature $K(\frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j})$ along the plane spanned by $\frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j}$ is given by

$$K\left(\frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j}\right)(g_{ii}g_{jj} - g_{ij}^2) = -\frac{1}{4}g'_{ii}g'_{jj},$$

hence $K(\frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j}) = c$ is equivalent to (10) ii).

Assume first that $n \ge 4$. Since M^n has constant sectional curvature $c \ne 0$ and the coordinate hypersurfaces $s = s_0 \in \mathbb{R}$ are flat, they must be umbilic in M^n and c < 0. Hence

$$\langle \nabla_{\frac{\partial}{\partial t_i}} \frac{\partial}{\partial t_i}, \frac{\partial}{\partial s} \rangle = \sqrt{-c} g_{ii}, \quad 1 \le i \le n-1,$$
(13)

up to a sign. By (12), the left-hand-side of (13) is equal to $-(1/2)g'_{ii}$, thus

$$g'_{ii} = -2\sqrt{-c} g_{ii}, \quad 1 \le i \le n-1.$$

Replacing into (10) ii) yields $h_i h_j = 0$ for all $1 \le i \ne j \le n-1$, and part 1) follows easily. Assume now that n = 3. Then equations (10) reduce to

i)
$$2g_{11}'' - \frac{(g_{11}')^2 g_{22}}{g_{11}g_{22} - h_1^2 h_2^2} + 4cg_{11} = 0,$$

ii)
$$2g_{22}'' - \frac{(g_{22}')^2 g_{11}}{g_{11}g_{22} - h_1^2 h_2^2} + 4cg_{22} = 0,$$

iii)
$$g_{11}'g_{22}' + 4c(g_{11}g_{22} - h_1^2 h_2^2) = 0.$$
(14)

Notice that the last equation implies that g'_{11} and g'_{22} are nowhere vanishing. Plugging it into the others yields

$$g_{22}'g_{11}'' = -2c(g_{11}g_{22})' = g_{22}''g_{11}', (15)$$

which implies $(g'_{11}/g'_{22})' = 0$. Thus, there exist $a, b \in \mathbb{R}, a \neq 0$, such that

$$g_{22} = ag_{11} + b. (16)$$

From (16) and (15) we get

$$g_{11}'' + 4cg_{11} + \frac{2cb}{a} = 0.$$

Set D = -b/2a. Then $g_{11}(s) = B\psi(2ks) + D$, $B \neq 0$, $k = \sqrt{|c|}$, and $g_{22}(s) = a(B\psi(2ks) - D)$, where, after a coordinate change $s \to \pm s + s_0$, we may assume that $\psi(s) = \cos s$ or $\sin s$ if c > 0 and $\phi(s) = \cosh s$, $\sinh s$ or e^s if c < 0. Replacing into (14) iii) gives

$$\psi^2(2ks) + \epsilon(\psi'^2(2ks))^2 = \frac{1}{B^2} \left(D^2 + \frac{h_1^2 h_2^2}{a} \right), \tag{17}$$

where $\epsilon = c/|c|$. Then one of the following possibilities holds:

i) $D = h_1 h_2 = 0$; then c < 0, $\psi(s) = e^s$ and a) holds. ii) $h_1 h_2 = 0 \neq D$; then $B^2 = D^2$ and $\psi(s) = \cosh s$ if c < 0, which gives rise to case b). iii) $h_1 h_2 \neq 0$; then the right-hand-side of (17) equals 1, which implies that $B^2 > D^2$, $a = h_1^2 h_2^2/(B^2 - D^2)$ and $\phi(s) = \cosh s$ if c < 0. Hence c) holds.

Therefore, any *n*-dimensional multi-helicoidal submanifold $M^n(c)$ of cohomogeneity one and nonzero constant sectional curvature c in \mathbb{R}^{2n-1} can be parametrized in terms of cylindrical coordinates in \mathbb{R}^{2n-1} by (2), where λ_i, ϕ_i are given by Lemma 3 in terms of parameters h_i and functions U_i as in Lemma 5. For instance, if $n \geq 4$ then $M^n(c)$ has a natural parametrization

$$X(s, t_1, \dots, t_{n-1}) = (\lambda_1(s), \phi_1(t_1, s), \lambda_2(s), t_2, \dots, \lambda_{n-1}(s), t_{n-1}, \lambda_n(s) + h\phi_1),$$

where $\lambda_1(s) = \sqrt{\mu_1^2 e^{2ks} - h^2}$, $\lambda_i(s) = \mu_i e^{ks}$, $2 \le i \le n - 1$, $k = \sqrt{-c}$, $\sum_{i=1}^{n-1} \mu_i^2 = 1$, $\phi_1 = t_1 - \frac{h}{\mu_1} \int_0^s e^{-k\tau} G(\tau) d\tau$, $\lambda_n(s) = \mu_1 \int_0^s e^{k\tau} G(\tau) d\tau$ and

$$G(s) = \frac{\sqrt{c\mu_1^2 e^{4ks} + [(1+ch^2)\mu_1^2 - ch^2]e^{2ks} - h^2}}{\mu_1^2 e^{2ks} - h^2}$$

For h = 0, it reduces to the classical Schur's *n*-dimensional pseudo-sphere of constant sectional curvature *c*.

The submanifold $M^n(c)$ is isometric to an open subset of hyperbolic space $\mathbb{H}^n(c)$ bounded by two concentric horospheres. More precisely, Euclidean space \mathbb{R}^n endowed with the metric $d\sigma^2 = ds^2 + \sum_{i=1}^{n-1} \mu_i^2 e^{2ks} dt_i^2$, $k = \sqrt{-c}$, $\sum_{i=1}^{n-1} \mu_i^2 = 1$, is a model of $\mathbb{H}^n(c)$ in which the coordinate hypersurfaces $s = s_0 \in \mathbb{R}$ are horospheres with common center Ω , the *s*-coordinate curves being the orthogonal unit-speed geodesics through Ω . The translations $T(\phi)$, $\phi \in \mathbb{R}^{n-1}$, that leave the horospheres $s = s_0$ invariant form an (n-1)-parameter subgroup of isometries of $(\mathbb{R}^n, d\sigma^2)$ such that $F(\phi) \circ X = X \circ T(\phi)$. Hence, X sends each horosphere $s = s_0, s_0$ ranging on a certain open interval, onto an orbit of F.

Similarly, it is not difficult to check that the three-dimensional multi-helicoidal submanifolds of constant sectional curvature c < 0 (respectively, c > 0) for which the functions U_1, U_2 are given as in part 2b) or 2c) of Lemma 5 are isometric to open subsets of hyperbolic space $\mathbb{H}^3(c)$ (respectively, Euclidean sphere $\mathbb{S}^3(c)$) bounded by two tubes over a common geodesic γ . Each intermediate tube over γ is represented by a coordinate surface $s = s_0$, which is sent by X onto an orbit of F. The s-coordinate curves are the unit-speed geodesics orthogonal to the family of geodesically parallel tubes. In particular, this clarifies all the assertions in Theorem 3.1 of [2].

5. The GSGE and GEShGE

We denote by $\mathbb{O}^{2n}(c)$ either the hyperbolic space $\mathbb{H}^{2n}(c)$ or the Lorentzian space form $\mathbb{L}^{2n}(c)$ of constant sectional curvature c, according to c < 0 or c > 0, respectively. Recall that the *index of relative nullity* of a submanifold at a point x is the dimension of the kernel of its second fundamental form α at x, whereas its *first normal space* at x is the subspace of the normal space at x spanned by the image of α . The following result was proved in [7]. **Theorem 6.** Let $M^n(c) \subset \mathbb{O}^{2n}(c)$ be a simply connected submanifold with flat normal bundle, vanishing index of relative nullity and nondegenerate first normal bundle. Then $M^n(c)$ admits a global principal parametrization $X: U \subset \mathbb{R}^n \to \mathbb{O}^{2n}(c)$ with induced metric

$$ds^{2} = \sum_{i} v_{i}^{2} du_{i}^{2}, \ v_{i} > 0,$$
(18)

and a smooth orthonormal normal frame ξ_1, \ldots, ξ_n such that its second fundamental form and normal connection satisfy

$$\alpha(\frac{\partial}{\partial u_i}, \frac{\partial}{\partial u_j}) = v_i \delta_{ij} \xi_i, \quad \nabla^{\perp}_{\frac{\partial}{\partial u_i}} \xi_j = h_{ij} \xi_i, \tag{19}$$

where $h_{ij} = (1/v_i)\partial v_j/\partial u_i$. Moreover, the pair (v, h), where $v = (v_1, \ldots, v_n)$ and $h = (h_{ij})$, satisfies the completely integrable system of PDEs

(I)
$$\begin{cases} i) & \frac{\partial v_i}{\partial u_j} h_{ji} v_j, \\ iii) & \frac{\partial h_{ij}}{\partial u_i} + \frac{\partial h_{ji}}{\partial u_j} + \sum_k h_{ki} h_{kj} + c v_i v_j = 0, \\ iii) & \frac{\partial h_{ik}}{\partial u_j} = h_{ij} h_{jk}, \\ iv) & \epsilon_i \frac{\partial h_{ij}}{\partial u_j} + \epsilon_j \frac{\partial h_{ji}}{\partial u_i} + \epsilon_k \sum_k h_{ik} h_{jk} = 0, \end{cases}$$

where $\epsilon_k = \langle \xi_k, \xi_k \rangle$ and $1 \leq i \neq j \neq k \neq i \leq n$. Conversely, let (v, h) be a solution of (I) on an open simply connected subset $U \subset \mathbb{R}^n$ such that $v_i > 0$ everywhere, $\epsilon_1 = -1$ and $\epsilon_i = 1$ for $2 \leq i \leq n$ (respectively, $\epsilon_i = 1$ for $1 \leq i \leq n$). Then there exists an immersion $f: U \to \mathbb{O}^{2n}(c)$ with flat normal bundle, vanishing index of relative nullity and induced metric $ds^2 = \sum_i v_i^2 du_i^2$ of constant sectional curvature c > 0 (respectively, c < 0).

By embedding Euclidean space \mathbb{R}^{2n-1} as a totally umbilical hypersurface of $\mathbb{O}^{2n}(c)$, the above result was used in [7] to show that simply connected submanifolds $M^n(c)$ of \mathbb{R}^{2n-1} , free of weak-umbilics when c > 0, are in correspondence with solutions of the system

(II)
$$\begin{cases} i) & \frac{\partial v_i}{\partial u_j} h_{ji} v_j, \quad ii) & \frac{\partial h_{ij}}{\partial u_i} + \frac{\partial h_{ji}}{\partial u_j} + \sum_k h_{ki} h_{kj} + c v_i v_j = 0, \\ iii) & \frac{\partial h_{ik}}{\partial u_j} = h_{ij} h_{jk}, \quad \sum_{i=1}^n \epsilon_i v_i^2 = -1/c, \end{cases}$$

which is either the GSGE or the GEShGE, according to c < 0 or c > 0, respectively. Recall from [11] that a point $x \in M^n(c)$ is said to be *weak-umbilic* if there is a unit normal vector ζ at x such that $A_{\zeta} = \sqrt{c} I$, where A_{ζ} denotes the shape operator in the direction of ζ .

It was shown in [14] and [8], [9] that all solutions of the GSGE or the GEShGE, respectively, that are invariant by an (n-1)-dimensional translation subgroup of their symmetry groups have the form

$$v_i = v_i(\xi), \ h_{ij} = h_{ij}(\xi), \ \xi = \sum_{i=1}^n a_i u_i.$$
 (20)

We now prove that the submanifolds that are associated to such solutions are precisely the multi-helicoidal submanifolds of cohomogeneity one. **Theorem 7.** A solution of either the GSGE or the GEShGE (system (II)) is invariant under an (n-1)-dimensional translation subgroup of its symmetry group if and only if it is associated to a multi-helicoidal submanifold of cohomogeneity one with constant sectional curvature c and no weak-umbilics when c > 0.

Proof. Assume first that $M^n(c) \subset \mathbb{R}^{2n-1}$ is a multi-helicoidal submanifold of cohomogeneity one, constant sectional curvature c and free of weak-umbilics when c > 0. We may consider $M^n(c)$ isometrically immersed into $\mathbb{O}^{2n}(c)$ by embedding \mathbb{R}^{2n-1} as a totally umbilical hypersurface of $\mathbb{O}^{2n}(c)$. It is easily seen that $M^n(c)$ having no weak-umbilics as a submanifold of \mathbb{R}^{2n-1} is equivalent to the first normal spaces of $M^n(c)$ being everywhere nondegenerate as a submanifold of $\mathbb{O}^{2n}(c)$.

Let $X: U \subset \mathbb{R}^n \to \mathbb{O}^{2n}(c)$ be a principal parametrization of $M^n(c)$ given by Theorem 6. Since every isometry of \mathbb{R}^{2n-1} , regarded as an umbilical hypersurface of $\mathbb{O}^{2n}(c)$, is the restriction of an isometry of $\mathbb{O}^{2n}(c)$, we have that $M^n(c) \subset \mathbb{O}^{2n}(c)$ is invariant by an (n-1)-parameter subgroup of isometries of $\mathbb{O}^{2n}(c)$, which we still denote by F. Endow Uwith the metric $ds^2 = \sum_i v_i^2 du_i^2$ induced by X. We will show that the solution (v, h) of system (II), $v = (v_1, \ldots, v_n)$, $h = (h_{ij})$, associated to $M^n(c)$ has the form (20). Let T be the (n-1)-parameter subgroup of isometries of (U, ds^2) induced by F, that is,

$$X \circ T(\phi) = F(\phi) \circ X$$

for all $\phi \in \mathbb{R}^{n-1}$. Then, the second fundamental forms of X and $X \circ T(\phi)$ satisfy

$$\alpha_X(T(\phi)(u))(T(\phi)_*X, T(\phi)_*Y) = \alpha_{X \circ T(\phi)}(u)(X, Y) = F(\phi)_*\alpha_X(u)(X, Y)$$

for all $u \in U$ and $X, Y \in T_u U$. Set $\frac{\partial}{\partial u_i} = v_i X_i$, $1 \leq i \leq n$. Then, from

$$\alpha_X(T(\phi)(u))(T(\phi)_*X_i, T(\phi)_*X_j) = F(\phi)_*\alpha_X(u))(X_i, X_j) = 0, \ i \neq j,$$

it follows easily that $X_i \circ T(\phi) = T(\phi)_* X_i$. We obtain from the first equation in (19) that

$$v_{i}(T(\phi)(u))\xi_{i}(T(\phi)(u)) = \alpha_{X}(T(\phi)(u))(X_{i}(T(\phi)(u)), X_{i}(T(\phi)(u)))$$

= $F(\phi)_{*}\alpha_{X}(u)(X_{i}(u), X_{i}(u))$
= $v_{i}(u)F(\phi)_{*}\xi_{i}(u),$

which shows that $\xi_i \circ T(\phi) = F(\phi)_* \xi_i$ and $v_i \circ T(\phi) = v_i$. Moreover, from

$$\nabla^{\perp}_{T(\phi)_*X} F(\phi)_* \xi = F(\phi)_* \nabla^{\perp}_X \xi,$$

we get using the second equation in (19) that

$$h_{ij}(T(\phi)(u)) = \langle \nabla^{\perp}_{\frac{\partial}{\partial u_i}(T(\phi)(u))} \xi_j(T(\phi)(u)), \xi_i(T(\phi)(u)) \rangle$$

$$= \langle \nabla^{\perp}_{T(\phi)_*\frac{\partial}{\partial u_i}(u)} F(\phi)_* \xi_j(u), F(\phi)_* \xi_i(u) \rangle$$

$$= \langle F(\phi)_* \nabla^{\perp}_{\frac{\partial}{\partial u_i}(u)} \xi_j(u), F(\phi)_* \xi_i(u) \rangle = h_{ij}(u).$$

Therefore, the $v'_i s$ and $h'_{ij} s$ are constant along the orbits of T. Hence, there exist smooth functions $\theta: U \to \mathbb{R}$ and $\bar{v}_i, \bar{h}_{ij}: \mathbb{R} \to \mathbb{R}$ such that

$$v_i = \bar{v}_i \circ \theta, \quad h_{ij} = h_{ij} \circ \theta, \quad 1 \le i \ne j \le n,$$

Since

$$\bar{h}_{ij} \circ \theta = h_{ij} = \frac{1}{v_i} \frac{\partial v_j}{\partial u_i} = \frac{\bar{v}'_j \circ \theta}{\bar{v}_i \circ \theta} \theta_{u_i}$$

there exist smooth functions $f_i: \mathbb{R} \to \mathbb{R}, 1 \leq i \leq n$, such that

$$\theta_{u_i} = f_i \circ \theta.$$

The integrability conditions of the above equations yield

$$f'_i f_j = f_i f'_j, \quad 1 \le i \ne j \le n$$

We can assume $f_1 \neq 0$. Then, there exist constants $\lambda_2, \ldots, \lambda_n$ such that $f_i = \lambda_i f_1, 2 \leq i \leq n$. Thus,

$$\left(\frac{\partial}{\partial u_i} - \lambda_i \frac{\partial}{\partial u_1}\right)\theta = 0, \ 2 \le i \le n.$$

Setting $\xi = u_1 + \sum_{i=2}^n \lambda_i u_i$, we conclude that $v_i = v_i(\xi)$, $h_{ij} = h_{ij}(\xi)$.

Conversely, assume that $M^n(c) \subset \mathbb{R}^{2n-1}$ is associated to a solution of system (II) of the form (20). As before, consider $M^n(c)$ as a submanifold of $\mathbb{O}^{2n}(c)$ and let $X: U \to \mathbb{O}^{2n}(c)$ be a principal parametrization of $M^n(c)$ as in Theorem 6 with induced metric given by (18), where we may assume

$$U = \{ u \in \mathbb{R}^n \mid b_1 < \xi < b_2 \}, \ b_1, b_2 \in \mathbb{R}.$$

Define the (n-1)-parameter group of translations T on U by

$$T(\phi)(u) = u + \sum_{i=1}^{n-1} \phi_i Y_i,$$

where $\phi = (\phi_1, \ldots, \phi_{n-1})$ and Y_1, \ldots, Y_{n-1} is an arbitrary basis of the hyperplane $\xi = 0$. Since $T(\phi)_* \frac{\partial}{\partial u_i}(u) = \frac{\partial}{\partial u_i}(T(\phi)(u))$ and the $v'_i s$ are constant along the orbits $\xi = \xi_0 \in (b_1, b_2)$ of T, each $T(\phi)$ is an isometry of (U, ds^2) . We claim that there exist isometries $G(\phi)$ of $\mathbb{O}^{2n}(c)$ such that

$$X \circ T(\phi) = G(\phi) \circ X. \tag{21}$$

Define a vector bundle isometry $\mathcal{T}(\phi)$ between the normal bundles of X and $X \circ T(\phi)$ by setting $\mathcal{T}(\phi)(\xi_i) = \xi_i \circ T(\phi)$, $1 \leq i \leq n$, where ξ_1, \ldots, ξ_n is the orthonormal normal frame given by Theorem 6. Then, we have that

$$\alpha_{X \circ T(\phi)}(X_i, X_j) = \alpha_X(T(\phi)_* X_i, T(\phi)_* X_j) = \alpha_X(X_i \circ T(\phi), X_j \circ T(\phi))$$

= $v_i \circ T(\phi) \delta_{ij} \xi_i \circ T(\phi) = \mathcal{T}(\phi) \alpha_X(X_i, X_j).$

Moreover,

$$\langle \nabla^{\perp}_{X_i \circ T(\phi)} \mathcal{T}(\phi)(\xi_j), \mathcal{T}(\phi)(\xi_i) \rangle = h_{ij} \circ T(\phi) = h_{ij} = \langle \nabla^{\perp}_{X_i} \xi_j, \xi_i \rangle = \langle \mathcal{T}(\phi)(\nabla^{\perp}_{X_i} \xi_j), \mathcal{T}(\phi)(\xi_i) \rangle,$$

$$(22)$$

hence $\nabla_{X_i \circ T(\phi)}^{\perp} \mathcal{T}(\phi)(\xi_j) = \mathcal{T}(\phi)(\nabla_{X_i}^{\perp}\xi_j)$ for all $1 \leq i \neq j \leq n$. Thus, the vector bundle isometry $\mathcal{T}(\phi)$ preserves the second fundamental forms and normal connections of X and $X \circ T(\phi)$. The claim now follows from the fundamental theorem of submanifolds.

Let $\bar{G}(\phi)$ denote the restriction of $G(\phi)$ to \mathbb{R}^{2n-1} and let \bar{X} be the parametrization of $M^n(c)$ as a submanifold of \mathbb{R}^{2n-1} induced by X. Then $\bar{G}(\phi) \circ \bar{X} = \bar{X} \circ T(\phi)$, which implies that

$$\bar{G}(\phi_1 + \phi_2) \circ \bar{X} = \bar{G}(\phi_1) \circ \bar{X} + \bar{G}(\phi_2) \circ \bar{X} \quad \text{for any } \phi_1, \phi_2 \in \mathbb{R}^{n-1}.$$
(23)

Now observe that X(U) cannot be contained in any totally geodesic hypersurface of $\mathbb{O}^{2n}(c)$, since the first normal bundle of X coincides with its normal bundle by the first equation in (19). Hence $\bar{X}(U)$ cannot be contained in any hyperplane of \mathbb{R}^{2n-1} . It follows from (23) that \bar{G} is an (n-1)-parameter subgroup of $\mathbb{ISO}(\mathbb{R}^{2n-1})$ that leaves $M^n(c)$ invariant. By Remark 4-2), \bar{G} contains no pure translations, since a Riemannian manifold with nonzero constant sectional curvature is irreducible. We conclude that $M^n(c)$ is a multi-helicoidal submanifold of cohomogeneity one.

References

- [1] Aminov, Y.: On the immersion of domains of n-dimensional Lobachevsky space in (2n-1)-dimensional Euclidean space. Sov. Math. Dokl. **18** (1977), 1210–1213.
- [2] Barbosa, J. L.; Ferreira, W.; Tenenblat, K.: Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds. Ann. Global Anal. Geom. 14 (1996), 381–401.
- [3] Bour, E.: Mémoire sur la deformation des surfaces. J. Ec. Polyt. **39** (1862), 1–148.
- [4] Campos, P. T.: Submanifolds of constant non negative curvature. Mat. Contemp. 4 (1993), 55–73.
- [5] do Carmo, M.; Dajczer, M.: Helicoidal surfaces with constant mean curvature. Tôhoku Math. J. 34 (1982), 425–435.
- [6] Darboux, G.: Leçons sur la théorie des surfaces. Vol. I. Chelsea Pub. Co. 1972.
- [7] Dajczer, M.; Tojeiro, R.: Isometric immersions and the generalized Laplace and elliptic sinh-Gordon equations. J. Reine Angew. Math. 467 (1995), 109–147.
- [8] Ferreira, W.: PhD. Thesis, Universidade de Brasília 1994.
- [9] Ferreira, W.: On metrics of constant sectional curvature. Mat. Contemp. 9 (1995), 91– 110.
- [10] Humphreys, J. E.: Introduction to Lie algebras and representation theory. Springer-Verlag 1972.
- [11] Moore, J. D.: Submanifolds of constant positive curvature I. Duke Math. J. 44 (1977), 449–484.

- [12] Rabelo, M. L.; Tenenblat, K.: Submanifolds of Constant Nonpositive Curvature. Mat. Contemp. 1 (1991), 71–81.
- [13] Tenenblat, K.; Terng, C. L.: Backlund's theorem for n-dimensional submanifolds of \mathbb{R}^{2n-1} . Ann. of Math. **111** (1980), 477–490.
- [14] Tenenblat, K.; Winternitz, P.: On the symmetry groups of the intrinsic generalized wave and sine-Gordon equations. J. Math. Phys. 34 (1993), 3527–3542.

Received November 4, 1999