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Abstract. We classify n-dimensional multi-helicoidal submanifolds of nonzero con-
stant sectional curvature and cohomogeneity one in the Euclidean space R2n−1, that
is, n-dimensional submanifolds of nonzero constant sectional curvature in R2n−1
that are invariant under the action of an (n − 1)-parameter subgroup of isome-
tries of R2n−1 with no pure translations. This is accomplished by first giving a
complete description of all these subgroups and then deriving a multidimensional
version of a lemma due to Bour. We also prove that such submanifolds are precisely
the ones that correspond to solutions of the generalized sine-Gordon and elliptic
sinh-Gordon equations that are invariant by an (n − 1)-dimensional subgroup of
translations of the symmetry group of these equations.
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1. Introduction

The classical correspondence between solutions of the sine-Gordon and elliptic sinh-Gordon
equations and surfaces in Euclidean three-space with constant negative and positive gaussian
curvature, respectively, was extended to higher dimensions in [1], [13] and [11], [7], respec-
tively, where similar correspondences were obtained between n-dimensional submanifolds
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Mn(c) with constant negative or positive sectional curvature in (2n − 1)-dimensional Eu-
clidean space R2n−1 and solutions of certain nonlinear systems of partial differential equations
called the generalized sine-Gordon and elliptic sinh-Gordon equations, respectively (cf. §5
below). These systems will be referred to hereafter as GSGE and GEShGE.
The symmetry groups of local Lie-point transformations of the n-dimensional GSGE and

GEShGE were determined in [14] and [8], [9], respectively, for n ≥ 3. It was shown that they
are finite-dimensional and consist only of translations. Moreover, the class L of all solutions
invariant by an (n− 1)-dimensional translation subgroup was explicitly described.
As pointed out in [2], it is in general a nontrivial problem to determine the submanifolds

associated to a particular class of solutions. For the special subclass of L consisting of
solutions that depend on a single variable, this was done in [12] and [4] (see also [7] for more
general results), where the submanifolds were shown to be multi-rotational submanifolds with
curves as profiles. The general class of submanifolds associated to elements of L was studied
in [2]. It was shown, among other things, that the submanifolds carry a foliation by flat
hypersurfaces, which are foliated themselves by curves with constant Frenet curvatures in
the ambient space. However, a classification has not been achieved.
In this paper we prove that these submanifolds are precisely the multi-helicoidal n-

dimensional submanifolds of nonzero constant sectional curvature and cohomogeneity one
in R2n−1, that is, n-dimensional submanifolds of nonzero constant sectional curvature that
are invariant under the action of an (n− 1)-parameter subgroup of isometries of R2n−1 with
no pure translations (see §2 for the precise definitions). Moreover, after providing a com-
plete description of these subgroups, we are able to give explicit parametrizations of all such
submanifolds. Our main tool is a multi-dimensional version of a lemma due to Bour ([3];
cf. also [6], pp. 129–130 and [5]), which is of independent interest and should have other
applications.
We point out that the aforementioned results in [2] were actually derived for submanifolds

of constant sectional curvature in arbitrary pseudo-Riemannian space forms. On the other
hand, our proof that solutions in L correspond to multi-helicoidal submanifolds of cohomo-
geneity one (cf. Theorem 7 below) extends to this more general setting with minor changes.
However, classifying all (n− 1)-parameter subgroups of arbitrary pseudo-Riemannian space
forms and deriving the corresponding Bour’s-type lemmas would require a lengthy case-by-
case study which we do not undertake here.

2. (n− 1)-parameter subgroups of ISO(R2n−1)
A k-parameter subgroup of isometries of Rm is a continuous homomorphism G : (Rk,+)→
ISO(Rm) into the isometry group of Rm. A 1-parameter subgroup of isometries R is said to
be generated by G if there is a = (a1, . . . , ak) ∈ Rk such that R(s) = G(sa) for any s ∈ R.
We say that G has no pure translations if no one-parameter subgroup R generated by G is a
pure translation, that is, given by R(s)(x) = x+ sv for some v ∈ Rm and all x ∈ Rm, s ∈ R.
Let R2n−1 be identified with the affine hyperplane

R2n−1 = {(x1, . . . , x2n) ∈ R2n;x2n = 1}.

Denote

R(θ, k) =
(
cos kθ sin kθ
− sin kθ cos kθ

)
, L(φ, h) =

(
1 hφ
0 1

)
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and consider the (n− 1)-parameter subgroup F of ISO(R2n−1) given by

F (φ) = F1(φ1) ◦ . . . ◦ Fn−1(φn−1),

where φ = (φ1, . . . , φn−1) ∈ Rn−1 and Fi(φi) ∈ ISO(R2n−1), 1 ≤ i ≤ n− 1, is represented by
the 2n× 2n matrix (R1i , . . . , R

n−1
i , Li) with 2× 2 diagonal blocks

Rji =





R(φi, ki), j = i,

0, j 6= i
, Li = L(φi, hi), ki, hi ∈ R, ki 6= 0.

The action of F has a simple description in terms of cylindrical coordinates r1, θ1, . . . , rn−1,
θn−1, z in R2n−1, which are related to cartesian coordinates by

(x1, x2, . . . , x2n−3, x2n−2, x2n−1) = (r1 exp iθ1, . . . , rn−1 exp iθn−1, z).

In fact, the orbit of a point P = (r1, θ1, . . . , rn−1, θn−1, z) under F is the (n− 1)-dimensional
submanifold of R2n−1 parametrized by

F (φ)(P ) = (r1, θ1 + k1φ1, . . . , rn−1, θn−1 + kn−1φn−1, z +
n−1∑

i=1

hiφi)

with flat induced metric

ds2 =
n−1∑

i=1

(kir
2
i + h

2
i )dφ

2
i +

∑

i6=j

hihjdφidφj.

Our first result shows that F is essentially the only (n−1)-parameter subgroup of ISO(R2n−1)
with no pure translations.

Theorem 1. Let G be an (n − 1)-parameter subgroup of isometries of R2n−1 with no pure
translations. Then, there is H ∈ O(2n − 1) and B ∈ GL(Rn−1) such that G(φ) = H−1 ◦
F (Bφ) ◦H for any φ ∈ Rn−1.

Proof. Denote by I the component of the identity of ISO(R2n−1) and by I the Lie algebra of
I. Identify I with the Lie algebra of the 2n× 2n-matrices










u1

A
...

u2n−1
0 0




, At = −A, u1, ..., u2n−1 ∈ R






acting (as Killing fields) in R2n−1 by

((0, x), X) 7→ X(0, x)t

for x ∈ R2n−1 and X ∈ I. Then, for X, Y ∈ I the Lie bracket [ , ] of I is given by
[X, Y ] = XY − Y X. It is easy to prove that X ∈ I is induced by a pure translation if and
only if X is nilpotent, that is, the endomorphism adX(Z) = [X,Z], Z ∈ I, is nilpotent.
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Let Gi be the 1-parameter subgroup generated by G given by Gi(s) := G(sei), where
e1, . . . , en−1 is the canonical basis of Rn−1. Then Gi(s) = exp sXi for some Xi ∈ I, where
exp: I → I is the exponential map. Since Gi(s) ◦ Gj(t) = Gj(t) ◦ Gi(s) for all s, t ∈ R, it
follows that [Xi, Xj] = 0 for 1 ≤ i, j ≤ n− 1. Let Λ be the commutative Lie subalgebra of I
spanned by X1, . . . , Xn−1. By the Jordan-Chevalley decomposition theorem (Proposition of
[10], §4.2), we may write Xi = Si+Ni, where Ni is nilpotent and Si is semisimple, that is, the
operator adSi is diagonalizable over C. We observe that S1, . . . , Sn−1 are linearly independent
vectors, otherwise G would contain a pure translation, contrary to the hypothesis. Since any
endomorphism commuting with Xi commutes with Si and Ni, it follows that the Lie algebra
K spanned by S1, . . . , Sn−1 is commutative. Moreover, K is a Cartan subalgebra of I, because
dimK = n− 1.
Denote by Ei, i = 1, . . . , n−1, the skew-symmetric matrix of I having 1 at the (2i− 1, 2i)

entry, -1 at the (2i, 2i − 1) entry and 0 at the other entries. We observe that each Ei is
semisimple. Let H be the commutative (n− 1)-dimensional Lie subalgebra of I spanned by
E1, . . . , En−1. Since I is a semisimple Lie algebra of rank n − 1 which has only one Cartan
subalgebra up to conjugation, there is H ∈ I such that HKH−1 = H. For any given i,
it follows that HNiH

−1 commutes with all Ej. Some matrix computations then show that
HNiH

−1 = aiE for some ai, where E ∈ I has 1 at the (n − 1, n) entry and 0 at the other
ones. Thus

HΛH−1 ⊂ span{E1, . . . , En−1, E}.

One may find a basis R1, . . . , Rn−1 of HΛH
−1 such that

Ri = kiEi + hiE

for some ki, hi ∈ R, 1 ≤ i ≤ n− 1. Let A = (aij) ∈ GL(Rn−1) be given by
n−1∑

j=1

aijHXjH
−1 = Ri.

Set µj =
∑
i aijφi for φ = (φ1, . . . , φn−1) ∈ Rn−1. Then,

G(Aφ) = G(µ1, . . . , µn−1) = G1(µ1) ◦ . . . ◦Gn−1(µn−1)

= exp(µ1X1) ◦ . . . ◦ exp(µn−1Xn−1) = exp(
∑

j

µjXj),
hence

H ◦G(Aφ) ◦H−1 = exp(
∑

j

µjHXjH
−1) = exp(

∑

j

(
∑

i

aijφi)HXjH
−1)

= exp(
∑

i

φi(
∑

j

aijHXjH
−1)) = exp(

∑

i

φiRi)

= F1(φ1) ◦ . . . ◦ Fn−1(φn−1) = F (φ),

and the conclusion follows by setting A = B−1. �

We say that an isometric immersion f : Mn → R2n−1 is a multi-helicoidal submanifold of
cohomogeneity one if it is invariant under the action of an (n− 1)-parameter subgroup G of
ISO(R2n−1), that is, there exists an (n− 1)-parameter subgroup T of ISO(Mn) such that

G(φ) ◦ f = f ◦ T (φ), for any φ ∈ Rn−1.
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An isometric immersion g: Mn → R2n−1 is said to be congruent to f if there exists H ∈
ISO(R2n−1) such that g = H ◦ f .

Corollary 2. Any multi-helicoidal submanifold f : Mn → R2n−1 of cohomogeneity one is
congruent to a submanifold that is invariant under the action of F .

Proof. LetG and T be (n−1)-parameter subgroups of ISO(R2n−1) and ISO(Mn), respectively,
such that G(φ) ◦ f = f ◦ T (φ) for any φ ∈ Rn−1. By Theorem 1, there is H ∈ O(2n− 1) and
A ∈ GL(Rn−1) such that G(Aφ) = H−1 ◦ F (φ) ◦H for any φ ∈ Rn−1. Hence,

F (φ) ◦ (H ◦ f) = (H ◦ f) ◦ (T ◦ A)(φ),

thus H ◦ f is invariant under F . �

3. A Bour’s-type lemma

A parametrization X(s, t1, . . . , tn−1) of a multi-helicoidal submanifold of cohomogeneity one
is said to be natural if the coordinate hypersurfaces s = s0 ∈ R are orbits of F and the
induced metric has the form

dσ2 = ds2 +
n−1∑

i=1

Ui(s)
2dt2i +

∑

i6=j

hihjdtidtj. (1)

We now prove the extension of Bour’s lemma referred to in the introduction.

Lemma 3. 1) Every multi-helicoidal submanifold Mn of cohomogeneity one in R2n−1 has
locally a natural parametrization.
2) Suppose that U1(s), . . . , Un−1(s) and h1, . . . , hn−1 ∈ R satisfy U2i > h2i , 1 ≤ i ≤ n− 1, and
let λi = λi(s) be defined by

λi =
√
U2i − h

2
i

if n ≥ 4, and by

λ1 = m
√
U21 − h

2
1, λ2 =

1

m

√
U22 − h

2
2, m 6= 0,

if n = 3. Suppose further that
∑n−1
i=1 (λ

′
i)
2 ≤ 1 everywhere and define

λn(s) =
∫ s

0
ψ(τ)ξ(τ) dτ,

where

ψ(s) =

√√√√1−
n−1∑

i=1

(λ′i)
2 and ξ(s) =

√√√√1 +
n−1∑

i=1

h2i
λ2i
.

Finally, define φi = φi(s, ti), 1 ≤ i ≤ n− 1, by

φi = ti − hi

∫ s

0

ψ(τ)

λ2i (τ)ξ(τ)
dτ
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if n ≥ 4 and

φ1 = mt1 − h1

∫ s

0

ψ(τ)

λ21(τ)ξ(τ)
dτ, φ2 =

1

m
t2 − h2

∫ s

0

ψ(τ)

λ22(τ)ξ(τ)
dτ

if n = 3. Then

X(s, t1, . . . , tn−1) = (λ1, φ1, . . . , λn−1, φn−1, λn +
n−1∑

i=1

hiφi) (2)

is a natural parametrization of a multi-helicoidal submanifold of cohomogeneity one in R2n−1
with induced metric given by (1).

Proof. 1) Let the intersection of Mn with the subspace

Rn = {(r1, θ1, . . . , rn−1, θn−1, z); θ1 = · · · = θn−1 = 0}

be locally parametrized by the curve λ: (−ε, ε)→ Rn, λ = (λ1, . . . , λn), with λi(ρ) > 0 for all
ρ ∈ (−ε, ε), 1 ≤ i ≤ n. Then, a local parametrization of Mn is

X(ρ, φ1, . . . , φn−1) = (λ1(ρ), φ1, . . . , λn−1(ρ), φn−1, λn(ρ) +
n−1∑

i=1

hiφi),

where we assumed ki = 1 for all 1 ≤ i ≤ n − 1 after a change of coordinates. The metric
induced by X is

dσ2 =
n∑

i=1

(λ′i)
2dρ2 +

n−1∑

i=1

(λ2i + h
2
i )dφ

2
i + 2λ

′
n

n−1∑

i=1

hidρdφi +
∑

i6=j

hihjdφidφj,

where the prime denotes derivative with respect to ρ. Let t1, . . . , tn−1 be locally defined by

dti = dφi − λ
′
nfidρ,

where the functions fi = fi(ρ) are to be determined. Then

dσ2 =
(∑n

i=1(λ
′
i)
2 + (λ′n)

2∑n−1
i=1 fi(hi + gi)

)
dρ2 +

∑n−1
i=1 (λ

2
i + h

2
i )dt

2
i

+2λ′n
∑n−1
i=1 gidρdti +

∑
i6=j hihjdtidtj,

where
gi = fi(λ

2
i + h

2
i ) + hi +

∑

j 6=i

hihjfj.

Let A = A(ρ) be the (n− 1)× (n− 1)-matrix with entries





Aii = (λ

2
i + h

2
i )

Aij = hihj, i 6= j.
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Since

detA = Πn−1i=1 λ
2
i +

n−1∑

i=1

h2iΠ
n−1
j 6=i λ

2
j > 0,

the linear system Af = −h, where h = (h1, . . . , hn−1)t, has a solution f = (f1, . . . , fn−1)t.
Therefore, the f ′is can be chosen so that gi = 0 for all 1 ≤ i ≤ n − 1. Explicitly, an easy
computation shows that

fi =
−hi
detA

Πn−1j 6=i λ
2
j = −

hi

λ2i

(
1 +

∑n−1
j=1

h2j
λ2j

) . (3)

Now observe that

n∑

i=1

(λ′i)
2 + (λ′n)

2
n−1∑

i=1

hifi =
n−1∑

i=1

(λ′i)
2 +
(λ′n)

2

detA
Πn−1i=1 λ

2
i > 0,

hence a function s = s(ρ) is locally well-defined by

ds2 =

(
n∑

i=1

(λ′i)
2 + (λ′n)

2
n−1∑

i=1

hifi

)

dρ2 =
n−1∑

i=1

dλ2i +
Πn−1i=1 λ

2
i

detA
dλ2n. (4)

From

∂(s, t1, . . . , tn−1)

∂(ρ, φ1, . . . , φn−1)
=

√√√√
n∑

i=1

(λ′i)
2 + (λ′n)

2
n−1∑

i=1

hifi,

we have that s, t1, . . . , tn−1 define locally a system of coordinates. Let

ρ = ρ(s, t1, . . . , tn−1), φi = φi(s, t1, . . . , tn−1)

be the coordinate change. Since ∂s/∂φi = 0 for all 1 ≤ i ≤ n − 1, the chain rule gives
∂ρ/∂ti = 0 for all 1 ≤ i ≤ n − 1. Therefore ρ = ρ(s) and, denoting U2i (s) = λ2i (ρ(s)) + h

2
i ,

we conclude that

X(s, t1, . . . , tn−1) = X(ρ(s), φ1(s, t1, . . . , tn−1), . . . , φn−1(s, t1, . . . , tn−1))

is a natural parametrization of Mn.

2) We look for functions λi and φi of s, t1, . . . , tn−1 satisfying

ds2 =
n−1∑

i=1

dλ2i +
1

1 +
∑n−1
j=1

h2j
λ2j

dλ2n, (5)

Uidti =
√
λ2i + h

2
i (dφi − fidλn), 1 ≤ i ≤ n− 1, (6)

and
dtidtj = (dφi − fidλn)(dφj − fjdλn), (7)



156 J. Ripoll; R. Tojeiro: Multi-helicoidal Euclidean Submanifolds. . .

where fi is given by (3). Equation (5) implies that λi = λi(s) for all 1 ≤ i ≤ n and that

(λ′n)
2 =

(

1−
n−1∑

i=1

(λ′i)
2

)(

1 +
n−1∑

i=1

h2i
λ2i

)

. (8)

Equations (6) and (7) yield

Ui =
√
λ2i + h

2
i ,

∂φi

∂tj
= δij, 1 ≤ i, j ≤ n− 1,

for n ≥ 4 and

U1 = m
√
λ21 + h

2
1, U2 =

1

m

√
λ22 + h

2
2,

∂φ1

∂t2
=
∂φ2

∂t1
= 0,

∂φ1

∂t1
= m,

∂φ2

∂t2
=
1

m

for some m 6= 0 if n = 3. In both cases,

∂φi

∂s
= −

hi

λ2i

√√√√√
1−

∑n−1
j=1 (λ

′
j)
2

1 +
∑n−1
j=1

h2j
λ2j

,

and the proof follows. �

Remarks 4. 1) It follows from Lemma 3 that the orbits of a multi-helicoidal submanifold
Mn of cohomogeneity one in R2n−1 provide a foliation of Mn by flat geodesically parallel hy-
persurfaces. Moreover, any such hypersurface is foliated itself by curves with constant Frenet
curvatures in the ambient space, namely, the orbits of the 1-parameter subgroups generated
by F . These are the properties that were shown in [2] to be satisfied by n-dimensional sub-
manifolds in R2n−1 which are associated to solutions of the GSGE and GEShGE that are
invariant by an (n−1)-dimensional translation subgroup of their symmetry groups. They fol-
low immediately from Theorem 7 below, according to which such submanifolds are precisely
the multi-helicoidal submanifolds of nonzero constant sectional curvature and cohomogeneity
one in R2n−1.
2) Suppose that G is an (n − 1)-parameter subgroup of isometries of R2n−1 that contains
a pure translation, say, G(sa)(x) = x + sv for some vectors a ∈ Rn−1, v ∈ R2n−1 and all
x ∈ R2n−1, s ∈ R. Then, it is easily seen that any submanifold Mn that is invariant under
the action of G is isometric to an open subset of a Riemannian product Mn−1 ×R, the one-
dimensional leaves of the product foliation correspondent to the R-factor being immersed as
straight lines in R2n−1 parallel to v.

4. Multi-helicoidal submanifolds of constant curvature

Our aim in this section is to classify n-dimensional multi-helicoidal submanifolds of coho-
mogeneity one and nonzero constant sectional curvature in R2n−1. This follows by putting
together Lemma 3 and the following result.
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Lemma 5. Assume that the metric

dσ2 = ds2 +
n−1∑

i=1

Ui(s)
2dt2i +

∑

i6=j

hihjdtidtj (9)

has constant sectional curvature c 6= 0.

1) If n ≥ 4, then c < 0, at most one of the hi is nonzero and, up to a coordinate change
s→ ±s+ s0, Ui(s) = µie

√
−cs, where µi ∈ R, 1 ≤ i ≤ n− 1, satisfy

∑n−1
i=1 µ

2
i = 1.

2) If n = 3, then, up to a coordinate change s → ±s + s0, one of the following possibilities
holds:

a) c < 0, h1h2 = 0 and Ui(s) = µie
√
−cs, where µ1, µ2 ∈ R satisfy µ21 + µ22 = 1.

b) h1h2 = 0 and U1(s) = µ1φ(ks), U2(s) = µ2φ
′(ks), where µ1, µ2 ∈ R, k =

√
|c|, φ(s) =

cosh s or sinh s if c < 0 and φ(s) = cos s or sin s if c > 0.
c) h1h2 6= 0 and

U21 = Bφ(2ks) +D, U22 = a(Bφ(2ks)−D),

where B2 > D2, a = h21h
2
2/(B

2 − D2), φ(s) = cosh s if c < 0 and φ(s) = cos s or sin s if
c > 0.

Proof. Set gij = 〈∂/∂ti, ∂/∂tj〉, 1 ≤ i, j ≤ n − 1, where inner products are taken in the
metric dσ2. Thus, gii = U

2
i and gij = hihj for i 6= j. We first show that dσ

2 having constant
sectional curvature c is equivalent to the system of equations

i) 2g′′jj − (g
′
jj)
2gjj + 4cgjj = 0, 1 ≤ j ≤ n− 1,

ii) g′iig
′
jj + 4c(giigjj − h

2
ih
2
j) = 0, 1 ≤ i 6= j ≤ n− 1,

}

(10)

where (gij) denotes the inverse matrix of (gij).
The sectional curvature K( ∂

∂s
, ∂
∂tj
) along the plane spanned by ∂

∂s
, ∂
∂tj
is given by

K

(
∂

∂s
,
∂

∂tj

)

gjj =
〈
∇ ∂
∂tj

∇ ∂
∂s

∂

∂s
−∇ ∂

∂s
∇ ∂
∂tj

∂

∂s
,
∂

∂tj

〉

= ‖∇ ∂
∂tj

∂

∂s
‖2 −

1

2

∂2

∂s2

〈 ∂

∂tj
,
∂

∂tj

〉
. (11)

One can easily check that

∇ ∂
∂tj

∂

∂s
=
1

2
g′jj

n−1∑

k=1

gkj
∂

∂tk
, (12)

hence the first term on the right-hand-side of (11) equals

(g′jj)
2

4




n−1∑

k=1

(gkj)2gkk +
n−1∑

i6=k

gkjgijgki



 .

The expression between brackets is easily seen to be equal to gjj, hence K( ∂
∂s
, ∂
∂tj
) = c if and

only if equation (10) i) holds.
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A similar computation shows that the sectional curvature K( ∂
∂ti
, ∂
∂tj
) along the plane

spanned by ∂
∂ti
, ∂
∂tj
is given by

K

(
∂

∂ti
,
∂

∂tj

)

(giigjj − g
2
ij) = −

1

4
g′iig

′
jj,

hence K( ∂
∂ti
, ∂
∂tj
) = c is equivalent to (10) ii).

Assume first that n ≥ 4. Since Mn has constant sectional curvature c 6= 0 and the
coordinate hypersurfaces s = s0 ∈ R are flat, they must be umbilic in Mn and c < 0. Hence

〈∇ ∂
∂ti

∂

∂ti
,
∂

∂s
〉 =
√
−c gii, 1 ≤ i ≤ n− 1, (13)

up to a sign. By (12), the left-hand-side of (13) is equal to −(1/2)g′ii, thus

g′ii = −2
√
−c gii, 1 ≤ i ≤ n− 1.

Replacing into (10) ii) yields hihj = 0 for all 1 ≤ i 6= j ≤ n− 1, and part 1) follows easily.
Assume now that n = 3. Then equations (10) reduce to

i) 2g′′11 −
(g′11)

2g22

g11g22 − h21h
2
2

+ 4cg11 = 0,

ii) 2g′′22 −
(g′22)

2g11

g11g22 − h21h
2
2

+ 4cg22 = 0,

iii) g′11g
′
22 + 4c(g11g22 − h

2
1h
2
2) = 0.






(14)

Notice that the last equation implies that g′11 and g
′
22 are nowhere vanishing. Plugging it into

the others yields
g′22g

′′
11 = −2c(g11g22)

′ = g′′22g
′
11, (15)

which implies (g′11/g
′
22)
′ = 0. Thus, there exist a, b ∈ R, a 6= 0, such that

g22 = ag11 + b. (16)

From (16) and (15) we get

g′′11 + 4cg11 +
2cb

a
= 0.

Set D = −b/2a. Then g11(s) = Bψ(2ks)+D, B 6= 0, k =
√
|c|, and g22(s) = a(Bψ(2ks)−D),

where, after a coordinate change s → ±s + s0, we may assume that ψ(s) = cos s or sin s if
c > 0 and φ(s) = cosh s, sinh s or es if c < 0. Replacing into (14) iii) gives

ψ2(2ks) + ε(ψ′2(2ks))2 =
1

B2

(

D2 +
h21h

2
2

a

)

, (17)

where ε = c/|c|. Then one of the following possibilities holds:
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i) D = h1h2 = 0; then c < 0, ψ(s) = e
s and a) holds.

ii) h1h2 = 0 6= D; then B2 = D2 and ψ(s) = cosh s if c < 0, which gives rise to case b).

iii) h1h2 6= 0; then the right-hand-side of (17) equals 1, which implies that B2 > D2, a =
h21h

2
2/(B

2 −D2) and φ(s) = cosh s if c < 0. Hence c) holds. �

Therefore, any n-dimensional multi-helicoidal submanifold Mn(c) of cohomogeneity one and
nonzero constant sectional curvature c in R2n−1 can be parametrized in terms of cylindrical
coordinates in R2n−1 by (2), where λi, φi are given by Lemma 3 in terms of parameters hi and
functions Ui as in Lemma 5. For instance, if n ≥ 4 thenMn(c) has a natural parametrization

X(s, t1, . . . , tn−1) = (λ1(s), φ1(t1, s), λ2(s), t2, . . . , λn−1(s), tn−1, λn(s) + hφ1),

where λ1(s) =
√
µ21e

2ks − h2, λi(s) = µie
ks, 2 ≤ i ≤ n − 1, k =

√
−c,

∑n−1
i=1 µ

2
i = 1,

φ1 = t1 −
h
µ1

∫ s
0 e
−kτG(τ)dτ , λn(s) = µ1

∫ s
0 e
kτG(τ)dτ and

G(s) =

√
cµ21e

4ks + [(1 + ch2)µ21 − ch2]e2ks − h2

µ21e
2ks − h2

.

For h = 0, it reduces to the classical Schur’s n-dimensional pseudo-sphere of constant sectional
curvature c.
The submanifoldMn(c) is isometric to an open subset of hyperbolic space Hn(c) bounded

by two concentric horospheres. More precisely, Euclidean space Rn endowed with the metric
dσ2 = ds2 +

∑n−1
i=1 µ

2
i e
2ksdt2i , k =

√
−c,

∑n−1
i=1 µ

2
i = 1, is a model of Hn(c) in which the

coordinate hypersurfaces s = s0 ∈ R are horospheres with common center Ω, the s-coordinate
curves being the orthogonal unit-speed geodesics through Ω. The translations T (φ), φ ∈
Rn−1, that leave the horospheres s = s0 invariant form an (n − 1)-parameter subgroup of
isometries of (Rn, dσ2) such that F (φ) ◦ X = X ◦ T (φ). Hence, X sends each horosphere
s = s0, s0 ranging on a certain open interval, onto an orbit of F .
Similarly, it is not difficult to check that the three-dimensional multi-helicoidal submani-

folds of constant sectional curvature c < 0 (respectively, c > 0) for which the functions U1, U2
are given as in part 2b) or 2c) of Lemma 5 are isometric to open subsets of hyperbolic space
H3(c) (respectively, Euclidean sphere S3(c)) bounded by two tubes over a common geodesic
γ. Each intermediate tube over γ is represented by a coordinate surface s = s0, which is sent
by X onto an orbit of F . The s-coordinate curves are the unit-speed geodesics orthogonal
to the family of geodesically parallel tubes. In particular, this clarifies all the assertions in
Theorem 3.1 of [2].

5. The GSGE and GEShGE

We denote by O2n(c) either the hyperbolic space H2n(c) or the Lorentzian space form L2n(c)
of constant sectional curvature c, according to c < 0 or c > 0, respectively. Recall that the
index of relative nullity of a submanifold at a point x is the dimension of the kernel of its
second fundamental form α at x, whereas its first normal space at x is the subspace of the
normal space at x spanned by the image of α. The following result was proved in [7].
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Theorem 6. LetMn(c) ⊂ O2n(c) be a simply connected submanifold with flat normal bundle,
vanishing index of relative nullity and nondegenerate first normal bundle. ThenMn(c) admits
a global principal parametrization X:U ⊂ Rn → O2n(c) with induced metric

ds2 =
∑

i

v2i du
2
i , vi > 0, (18)

and a smooth orthonormal normal frame ξ1, . . . , ξn such that its second fundamental form
and normal connection satisfy

α(
∂

∂ui
,
∂

∂uj
) = viδijξi, ∇

⊥
∂
∂ui

ξj = hijξi, (19)

where hij = (1/vi)∂vj/∂ui. Moreover, the pair (v, h), where v = (v1, . . . , vn) and h = (hij),
satisfies the completely integrable system of PDEs

(I)






i)
∂vi

∂uj
hjivj, ii)

∂hij

∂ui
+
∂hji

∂uj
+
∑

k

hkihkj + cvivj = 0,

iii)
∂hik

∂uj
= hijhjk, iv) εi

∂hij

∂uj
+ εj

∂hji

∂ui
+ εk

∑

k

hikhjk = 0,

where εk = 〈ξk, ξk〉 and 1 ≤ i 6= j 6= k 6= i ≤ n. Conversely, let (v, h) be a solution of
(I) on an open simply connected subset U ⊂ Rn such that vi > 0 everywhere, ε1 = −1 and
εi = 1 for 2 ≤ i ≤ n (respectively, εi = 1 for 1 ≤ i ≤ n). Then there exists an immersion
f : U → O2n(c) with flat normal bundle, vanishing index of relative nullity and induced metric
ds2 =

∑
i v
2
i du

2
i of constant sectional curvature c > 0 (respectively, c < 0).

By embedding Euclidean space R2n−1 as a totally umbilical hypersurface of O2n(c), the above
result was used in [7] to show that simply connected submanifolds Mn(c) of R2n−1, free of
weak-umbilics when c > 0, are in correspondence with solutions of the system

(II)






i)
∂vi

∂uj
hjivj, ii)

∂hij

∂ui
+
∂hji

∂uj
+
∑

k

hkihkj + cvivj = 0,

iii)
∂hik

∂uj
= hijhjk,

∑n
i=1 εiv

2
i = −1/c,

which is either the GSGE or the GEShGE, according to c < 0 or c > 0, respectively. Recall
from [11] that a point x ∈ Mn(c) is said to be weak-umbilic if there is a unit normal vector
ζ at x such that Aζ =

√
c I, where Aζ denotes the shape operator in the direction of ζ.

It was shown in [14] and [8], [9] that all solutions of the GSGE or the GEShGE, respec-
tively, that are invariant by an (n − 1)-dimensional translation subgroup of their symmetry
groups have the form

vi = vi(ξ), hij = hij(ξ), ξ =
n∑

i=1

aiui. (20)

We now prove that the submanifolds that are associated to such solutions are precisely
the multi-helicoidal submanifolds of cohomogeneity one.
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Theorem 7. A solution of either the GSGE or the GEShGE (system (II)) is invariant under
an (n−1)-dimensional translation subgroup of its symmetry group if and only if it is associated
to a multi-helicoidal submanifold of cohomogeneity one with constant sectional curvature c
and no weak-umbilics when c > 0.

Proof. Assume first that Mn(c) ⊂ R2n−1 is a multi-helicoidal submanifold of cohomogeneity
one, constant sectional curvature c and free of weak-umbilics when c > 0. We may consider
Mn(c) isometrically immersed into O2n(c) by embedding R2n−1 as a totally umbilical hyper-
surface of O2n(c). It is easily seen that Mn(c) having no weak-umbilics as a submanifold of
R2n−1 is equivalent to the first normal spaces of Mn(c) being everywhere nondegenerate as a
submanifold of O2n(c).
Let X:U ⊂ Rn → O2n(c) be a principal parametrization of Mn(c) given by Theo-

rem 6. Since every isometry of R2n−1, regarded as an umbilical hypersurface of O2n(c), is
the restriction of an isometry of O2n(c), we have that Mn(c) ⊂ O2n(c) is invariant by an
(n − 1)-parameter subgroup of isometries of O2n(c), which we still denote by F . Endow U
with the metric ds2 =

∑
i v
2
i du

2
i induced by X. We will show that the solution (v, h) of

system (II), v = (v1, . . . , vn), h = (hij), associated to M
n(c) has the form (20). Let T be the

(n− 1)-parameter subgroup of isometries of (U, ds2) induced by F , that is,

X ◦ T (φ) = F (φ) ◦X

for all φ ∈ Rn−1. Then, the second fundamental forms of X and X ◦ T (φ) satisfy

αX(T (φ)(u))(T (φ)∗X,T (φ)∗Y ) = αX◦T (φ)(u)(X, Y ) = F (φ)∗αX(u)(X, Y )

for all u ∈ U and X,Y ∈ TuU. Set
∂
∂ui
= viXi, 1 ≤ i ≤ n. Then, from

αX(T (φ)(u))(T (φ)∗Xi, T (φ)∗Xj) = F (φ)∗αX(u))(Xi, Xj) = 0, i 6= j,

it follows easily that Xi ◦ T (φ) = T (φ)∗Xi. We obtain from the first equation in (19) that

vi(T (φ)(u))ξi(T (φ)(u)) = αX(T (φ)(u))(Xi(T (φ)(u)), Xi(T (φ)(u)))

= F (φ)∗αX(u)(Xi(u), Xi(u))

= vi(u)F (φ)∗ξi(u),

which shows that ξi ◦ T (φ) = F (φ)∗ξi and vi ◦ T (φ) = vi. Moreover, from

∇⊥T (φ)∗XF (φ)∗ξ = F (φ)∗∇
⊥
Xξ,

we get using the second equation in (19) that

hij(T (φ)(u)) = 〈∇⊥∂
∂ui
(T (φ)(u))

ξj(T (φ)(u)), ξi(T (φ)(u))〉

= 〈∇⊥
T (φ)∗

∂
∂ui
(u)
F (φ)∗ξj(u), F (φ)∗ξi(u)〉

= 〈F (φ)∗∇
⊥
∂
∂ui
(u)
ξj(u), F (φ)∗ξi(u)〉 = hij(u).
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Therefore, the v′is and h
′
ijs are constant along the orbits of T . Hence, there exist smooth

functions θ: U → R and v̄i, h̄ij: R→ R such that

vi = v̄i ◦ θ, hij = h̄ij ◦ θ, 1 ≤ i 6= j ≤ n.

Since

h̄ij ◦ θ = hij =
1

vi

∂vj

∂ui
=
v̄′j ◦ θ

v̄i ◦ θ
θui ,

there exist smooth functions fi: R→ R, 1 ≤ i ≤ n, such that

θui = fi ◦ θ.

The integrability conditions of the above equations yield

f ′ifj = fif
′
j, 1 ≤ i 6= j ≤ n.

We can assume f1 6= 0. Then, there exist constants λ2, . . . , λn such that fi = λif1, 2 ≤ i ≤ n.
Thus, (

∂

∂ui
− λi

∂

∂u1

)

θ = 0, 2 ≤ i ≤ n.

Setting ξ = u1 +
∑n
i=2 λiui, we conclude that vi = vi(ξ), hij = hij(ξ).

Conversely, assume that Mn(c) ⊂ R2n−1 is associated to a solution of system (II) of the
form (20). As before, consider Mn(c) as a submanifold of O2n(c) and let X:U → O2n(c)
be a principal parametrization of Mn(c) as in Theorem 6 with induced metric given by (18),
where we may assume

U = {u ∈ Rn | b1 < ξ < b2}, b1, b2 ∈ R.

Define the (n− 1)-parameter group of translations T on U by

T (φ)(u) = u+
n−1∑

i=1

φiYi,

where φ = (φ1, . . . , φn−1) and Y1, . . . , Yn−1 is an arbitrary basis of the hyperplane ξ = 0. Since
T (φ)∗

∂
∂ui
(u) = ∂

∂ui
(T (φ)(u)) and the v′is are constant along the orbits ξ = ξ0 ∈ (b1, b2) of T ,

each T (φ) is an isometry of (U, ds2). We claim that there exist isometries G(φ) of O2n(c)
such that

X ◦ T (φ) = G(φ) ◦X. (21)

Define a vector bundle isometry T (φ) between the normal bundles of X and X ◦ T (φ) by
setting T (φ)(ξi) = ξi ◦ T (φ) , 1 ≤ i ≤ n, where ξ1, . . . , ξn is the orthonormal normal frame
given by Theorem 6. Then, we have that

αX◦T (φ)(Xi, Xj) = αX(T (φ)∗Xi, T (φ)∗Xj) = αX(Xi ◦ T (φ), Xj ◦ T (φ))

= vi ◦ T (φ)δijξi ◦ T (φ) = T (φ)αX(Xi, Xj).
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Moreover,

〈∇⊥Xi◦T (φ)T (φ)(ξj), T (φ)(ξi)〉 = hij ◦ T (φ) = hij = 〈∇
⊥
Xi
ξj, ξi〉 =

〈T (φ)(∇⊥Xiξj), T (φ)(ξi)〉,
(22)

hence ∇⊥Xi◦T (φ)T (φ)(ξj) = T (φ)(∇
⊥
Xi
ξj) for all 1 ≤ i 6= j ≤ n. Thus, the vector bundle

isometry T (φ) preserves the second fundamental forms and normal connections of X and
X ◦ T (φ). The claim now follows from the fundamental theorem of submanifolds.
Let Ḡ(φ) denote the restriction of G(φ) to R2n−1 and let X̄ be the parametrization of

Mn(c) as a submanifold of R2n−1 induced by X. Then Ḡ(φ) ◦ X̄ = X̄ ◦ T (φ), which implies
that

Ḡ(φ1 + φ2) ◦ X̄ = Ḡ(φ1) ◦ X̄ + Ḡ(φ2) ◦ X̄ for any φ1, φ2 ∈ Rn−1. (23)

Now observe that X(U) cannot be contained in any totally geodesic hypersurface of O2n(c),
since the first normal bundle of X coincides with its normal bundle by the first equation in
(19). Hence X̄(U) cannot be contained in any hyperplane of R2n−1. It follows from (23) that
Ḡ is an (n− 1)-parameter subgroup of ISO(R2n−1) that leaves Mn(c) invariant. By Remark
4-2), Ḡ contains no pure translations, since a Riemannian manifold with nonzero constant
sectional curvature is irreducible. We conclude that Mn(c) is a multi-helicoidal submanifold
of cohomogeneity one. �
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