Multi-helicoidal Euclidean Submanifolds of Constant Sectional Curvature

Jaime Ripoll Ruy Tojeiro
Instituto de Matemática, Universidade Federal do R. G. do Sul (UFRGS)
Av. Bento Gonçalves 950, 91540-000 Porto Alegre-RS, Brasil
e-mail: ripoll@mat.ufrgs.br
Departamento de Matemática, Universidade Federal de São Carlos (UFSCar)
Rod. Washington Luiz km 235 CP 676, 13565-905 São Carlos-SP, Brasil
e-mail: tojeiro@dm.ufscar.br

Abstract

We classify n-dimensional multi-helicoidal submanifolds of nonzero constant sectional curvature and cohomogeneity one in the Euclidean space $\mathbb{R}^{2 n-1}$, that is, n-dimensional submanifolds of nonzero constant sectional curvature in $\mathbb{R}^{2 n-1}$ that are invariant under the action of an $(n-1)$-parameter subgroup of isometries of $\mathbb{R}^{2 n-1}$ with no pure translations. This is accomplished by first giving a complete description of all these subgroups and then deriving a multidimensional version of a lemma due to Bour. We also prove that such submanifolds are precisely the ones that correspond to solutions of the generalized sine-Gordon and elliptic sinh-Gordon equations that are invariant by an ($n-1$)-dimensional subgroup of translations of the symmetry group of these equations.

MSC 2000: 53B25, 53C42, 35Q53
Keywords: multi-helicoidal submanifolds, constant sectional curvature, generalized sine-Gordon and elliptic sinh-Gordon equations

1. Introduction

The classical correspondence between solutions of the sine-Gordon and elliptic sinh-Gordon equations and surfaces in Euclidean three-space with constant negative and positive gaussian curvature, respectively, was extended to higher dimensions in [1], [13] and [11], [7], respectively, where similar correspondences were obtained between n-dimensional submanifolds

0138-4821/93 \$ 2.50 © 2001 Heldermann Verlag
$M^{n}(c)$ with constant negative or positive sectional curvature in $(2 n-1)$-dimensional Euclidean space $\mathbb{R}^{2 n-1}$ and solutions of certain nonlinear systems of partial differential equations called the generalized sine-Gordon and elliptic sinh-Gordon equations, respectively (cf. $\S 5$ below). These systems will be referred to hereafter as GSGE and GEShGE.

The symmetry groups of local Lie-point transformations of the n-dimensional GSGE and GEShGE were determined in [14] and [8], [9], respectively, for $n \geq 3$. It was shown that they are finite-dimensional and consist only of translations. Moreover, the class \mathcal{L} of all solutions invariant by an $(n-1)$-dimensional translation subgroup was explicitly described.

As pointed out in [2], it is in general a nontrivial problem to determine the submanifolds associated to a particular class of solutions. For the special subclass of \mathcal{L} consisting of solutions that depend on a single variable, this was done in [12] and [4] (see also [7] for more general results), where the submanifolds were shown to be multi-rotational submanifolds with curves as profiles. The general class of submanifolds associated to elements of \mathcal{L} was studied in [2]. It was shown, among other things, that the submanifolds carry a foliation by flat hypersurfaces, which are foliated themselves by curves with constant Frenet curvatures in the ambient space. However, a classification has not been achieved.

In this paper we prove that these submanifolds are precisely the multi-helicoidal n dimensional submanifolds of nonzero constant sectional curvature and cohomogeneity one in $\mathbb{R}^{2 n-1}$, that is, n-dimensional submanifolds of nonzero constant sectional curvature that are invariant under the action of an $(n-1)$-parameter subgroup of isometries of $\mathbb{R}^{2 n-1}$ with no pure translations (see $\S 2$ for the precise definitions). Moreover, after providing a complete description of these subgroups, we are able to give explicit parametrizations of all such submanifolds. Our main tool is a multi-dimensional version of a lemma due to Bour ([3]; cf. also [6], pp. 129-130 and [5]), which is of independent interest and should have other applications.

We point out that the aforementioned results in [2] were actually derived for submanifolds of constant sectional curvature in arbitrary pseudo-Riemannian space forms. On the other hand, our proof that solutions in \mathcal{L} correspond to multi-helicoidal submanifolds of cohomogeneity one (cf. Theorem 7 below) extends to this more general setting with minor changes. However, classifying all $(n-1)$-parameter subgroups of arbitrary pseudo-Riemannian space forms and deriving the corresponding Bour's-type lemmas would require a lengthy case-bycase study which we do not undertake here.

2. ($n-1$)-parameter subgroups of $\mathbb{I S O}\left(\mathbb{R}^{2 n-1}\right)$

A k-parameter subgroup of isometries of \mathbb{R}^{m} is a continuous homomorphism $G:\left(\mathbb{R}^{k},+\right) \rightarrow$ $\mathbb{I S O}\left(\mathbb{R}^{m}\right)$ into the isometry group of \mathbb{R}^{m}. A 1-parameter subgroup of isometries R is said to be generated by G if there is $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$ such that $R(s)=G(s a)$ for any $s \in \mathbb{R}$. We say that G has no pure translations if no one-parameter subgroup R generated by G is a pure translation, that is, given by $R(s)(x)=x+s v$ for some $v \in \mathbb{R}^{m}$ and all $x \in \mathbb{R}^{m}, s \in \mathbb{R}$.

Let $\mathbb{R}^{2 n-1}$ be identified with the affine hyperplane

$$
\mathbb{R}^{2 n-1}=\left\{\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n} ; x_{2 n}=1\right\}
$$

Denote

$$
R(\theta, k)=\left(\begin{array}{cc}
\cos k \theta & \sin k \theta \\
-\sin k \theta & \cos k \theta
\end{array}\right), \quad L(\phi, h)=\left(\begin{array}{cc}
1 & h \phi \\
0 & 1
\end{array}\right)
$$

and consider the $(n-1)$-parameter subgroup F of $\mathbb{S O}\left(\mathbb{R}^{2 n-1}\right)$ given by

$$
F(\phi)=F_{1}\left(\phi_{1}\right) \circ \ldots \circ F_{n-1}\left(\phi_{n-1}\right),
$$

where $\phi=\left(\phi_{1}, \ldots, \phi_{n-1}\right) \in \mathbb{R}^{n-1}$ and $F_{i}\left(\phi_{i}\right) \in \mathbb{S} \mathbb{O}\left(\mathbb{R}^{2 n-1}\right), 1 \leq i \leq n-1$, is represented by the $2 n \times 2 n$ matrix $\left(R_{i}^{1}, \ldots, R_{i}^{n-1}, L_{i}\right)$ with 2×2 diagonal blocks

$$
R_{i}^{j}=\left\{\begin{array}{l}
R\left(\phi_{i}, k_{i}\right), \quad j=i, \\
0, \quad j \neq i
\end{array}, \quad L_{i}=L\left(\phi_{i}, h_{i}\right), \quad k_{i}, h_{i} \in \mathbb{R}, \quad k_{i} \neq 0\right.
$$

The action of F has a simple description in terms of cylindrical coordinates $r_{1}, \theta_{1}, \ldots, r_{n-1}$, θ_{n-1}, z in $\mathbb{R}^{2 n-1}$, which are related to cartesian coordinates by

$$
\left(x_{1}, x_{2}, \ldots, x_{2 n-3}, x_{2 n-2}, x_{2 n-1}\right)=\left(r_{1} \exp i \theta_{1}, \ldots, r_{n-1} \exp i \theta_{n-1}, z\right)
$$

In fact, the orbit of a point $P=\left(r_{1}, \theta_{1}, \ldots, r_{n-1}, \theta_{n-1}, z\right)$ under F is the $(n-1)$-dimensional submanifold of $\mathbb{R}^{2 n-1}$ parametrized by

$$
F(\phi)(P)=\left(r_{1}, \theta_{1}+k_{1} \phi_{1}, \ldots, r_{n-1}, \theta_{n-1}+k_{n-1} \phi_{n-1}, z+\sum_{i=1}^{n-1} h_{i} \phi_{i}\right)
$$

with flat induced metric

$$
d s^{2}=\sum_{i=1}^{n-1}\left(k_{i} r_{i}^{2}+h_{i}^{2}\right) d \phi_{i}^{2}+\sum_{i \neq j} h_{i} h_{j} d \phi_{i} d \phi_{j} .
$$

Our first result shows that F is essentially the only $(n-1)$-parameter subgroup of $\mathbb{I S O}\left(\mathbb{R}^{2 n-1}\right)$ with no pure translations.

Theorem 1. Let G be an $(n-1)$-parameter subgroup of isometries of $\mathbb{R}^{2 n-1}$ with no pure translations. Then, there is $H \in \mathbb{O}(2 n-1)$ and $B \in \mathbb{G L}\left(\mathbb{R}^{n-1}\right)$ such that $G(\phi)=H^{-1} \circ$ $F(B \phi) \circ H$ for any $\phi \in \mathbb{R}^{n-1}$.

Proof. Denote by \mathbb{I} the component of the identity of $\mathbb{I S O}\left(\mathbb{R}^{2 n-1}\right)$ and by \mathcal{I} the Lie algebra of II. Identify \mathcal{I} with the Lie algebra of the $2 n \times 2 n$-matrices

$$
\left\{\left(\begin{array}{cc}
& u_{1} \\
A & \vdots \\
& u_{2 n-1} \\
0 & 0
\end{array}\right), A^{t}=-A, \quad u_{1}, \ldots, u_{2 n-1} \in \mathbb{R}\right\}
$$

acting (as Killing fields) in $\mathbb{R}^{2 n-1}$ by

$$
((0, x), X) \mapsto X(0, x)^{t}
$$

for $x \in \mathbb{R}^{2 n-1}$ and $X \in \mathcal{I}$. Then, for $X, Y \in \mathcal{I}$ the Lie bracket [,] of \mathcal{I} is given by $[X, Y]=X Y-Y X$. It is easy to prove that $X \in \mathcal{I}$ is induced by a pure translation if and only if X is nilpotent, that is, the endomorphism $a d_{X}(Z)=[X, Z], Z \in \mathcal{I}$, is nilpotent.

Let G_{i} be the 1-parameter subgroup generated by G given by $G_{i}(s):=G\left(s e_{i}\right)$, where e_{1}, \ldots, e_{n-1} is the canonical basis of \mathbb{R}^{n-1}. Then $G_{i}(s)=\exp s X_{i}$ for some $X_{i} \in \mathcal{I}$, where $\exp : \mathcal{I} \rightarrow \mathbb{I}$ is the exponential map. Since $G_{i}(s) \circ G_{j}(t)=G_{j}(t) \circ G_{i}(s)$ for all $s, t \in \mathbb{R}$, it follows that $\left[X_{i}, X_{j}\right]=0$ for $1 \leq i, j \leq n-1$. Let Λ be the commutative Lie subalgebra of \mathcal{I} spanned by X_{1}, \ldots, X_{n-1}. By the Jordan-Chevalley decomposition theorem (Proposition of [10], $\S 4.2$), we may write $X_{i}=S_{i}+N_{i}$, where N_{i} is nilpotent and S_{i} is semisimple, that is, the operator $a d_{S_{i}}$ is diagonalizable over \mathbb{C}. We observe that S_{1}, \ldots, S_{n-1} are linearly independent vectors, otherwise G would contain a pure translation, contrary to the hypothesis. Since any endomorphism commuting with X_{i} commutes with S_{i} and N_{i}, it follows that the Lie algebra \mathcal{K} spanned by S_{1}, \ldots, S_{n-1} is commutative. Moreover, \mathcal{K} is a Cartan subalgebra of \mathcal{I}, because $\operatorname{dim} \mathcal{K}=n-1$.

Denote by $E_{i}, i=1, \ldots, n-1$, the skew-symmetric matrix of \mathcal{I} having 1 at the $(2 i-1,2 i)$ entry, -1 at the $(2 i, 2 i-1)$ entry and 0 at the other entries. We observe that each E_{i} is semisimple. Let \mathcal{H} be the commutative $(n-1)$-dimensional Lie subalgebra of \mathcal{I} spanned by E_{1}, \ldots, E_{n-1}. Since \mathcal{I} is a semisimple Lie algebra of rank $n-1$ which has only one Cartan subalgebra up to conjugation, there is $H \in \mathbb{I}$ such that $H \mathcal{K} H^{-1}=\mathcal{H}$. For any given i, it follows that $H N_{i} H^{-1}$ commutes with all E_{j}. Some matrix computations then show that $H N_{i} H^{-1}=a_{i} E$ for some a_{i}, where $E \in \mathcal{I}$ has 1 at the $(n-1, n)$ entry and 0 at the other ones. Thus

$$
H \Lambda H^{-1} \subset \operatorname{span}\left\{E_{1}, \ldots, E_{n-1}, E\right\}
$$

One may find a basis R_{1}, \ldots, R_{n-1} of $H \Lambda H^{-1}$ such that

$$
R_{i}=k_{i} E_{i}+h_{i} E
$$

for some $k_{i}, h_{i} \in \mathbb{R}, 1 \leq i \leq n-1$. Let $A=\left(a_{i j}\right) \in \mathbb{G L}\left(\mathbb{R}^{n-1}\right)$ be given by

$$
\sum_{j=1}^{n-1} a_{i j} H X_{j} H^{-1}=R_{i} .
$$

Set $\mu_{j}=\sum_{i} a_{i j} \phi_{i}$ for $\phi=\left(\phi_{1}, \ldots, \phi_{n-1}\right) \in \mathbb{R}^{n-1}$. Then,

$$
\begin{aligned}
G(A \phi) & =G\left(\mu_{1}, \ldots, \mu_{n-1}\right)=G_{1}\left(\mu_{1}\right) \circ \ldots \circ G_{n-1}\left(\mu_{n-1}\right) \\
& =\exp \left(\mu_{1} X_{1}\right) \circ \ldots \circ \exp \left(\mu_{n-1} X_{n-1}\right)=\exp \left(\sum_{j} \mu_{j} X_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
H \circ G(A \phi) \circ H^{-1} & =\exp \left(\sum_{j} \mu_{j} H X_{j} H^{-1}\right)=\exp \left(\sum_{j}\left(\sum_{i} a_{i j} \phi_{i}\right) H X_{j} H^{-1}\right) \\
& =\exp \left(\sum_{i} \phi_{i}\left(\sum_{j} a_{i j} H X_{j} H^{-1}\right)\right)=\exp \left(\sum_{i} \phi_{i} R_{i}\right) \\
& =F_{1}\left(\phi_{1}\right) \circ \ldots \circ F_{n-1}\left(\phi_{n-1}\right)=F(\phi),
\end{aligned}
$$

and the conclusion follows by setting $A=B^{-1}$.
We say that an isometric immersion $f: M^{n} \rightarrow \mathbb{R}^{2 n-1}$ is a multi-helicoidal submanifold of cohomogeneity one if it is invariant under the action of an $(n-1)$-parameter subgroup G of $\mathbb{I S O}\left(\mathbb{R}^{2 n-1}\right)$, that is, there exists an $(n-1)$-parameter subgroup T of $\mathbb{I S O}\left(\mathbb{M}^{n}\right)$ such that

$$
G(\phi) \circ f=f \circ T(\phi), \text { for any } \phi \in \mathbb{R}^{n-1} .
$$

An isometric immersion $g: M^{n} \rightarrow \mathbb{R}^{2 n-1}$ is said to be congruent to f if there exists $H \in$ $\mathbb{I S O}\left(\mathbb{R}^{2 n-1}\right)$ such that $g=H \circ f$.

Corollary 2. Any multi-helicoidal submanifold $f: M^{n} \rightarrow \mathbb{R}^{2 n-1}$ of cohomogeneity one is congruent to a submanifold that is invariant under the action of F.

Proof. Let G and T be ($n-1$)-parameter subgroups of $\mathbb{I S O}\left(\mathbb{R}^{2 n-1}\right)$ and $\mathbb{I S O}\left(\mathbb{M}^{n}\right)$, respectively, such that $G(\phi) \circ f=f \circ T(\phi)$ for any $\phi \in \mathbb{R}^{n-1}$. By Theorem 1 , there is $H \in \mathbb{O}(2 n-1)$ and $A \in \mathbb{G L}\left(\mathbb{R}^{n-1}\right)$ such that $G(A \phi)=H^{-1} \circ F(\phi) \circ H$ for any $\phi \in \mathbb{R}^{n-1}$. Hence,

$$
F(\phi) \circ(H \circ f)=(H \circ f) \circ(T \circ A)(\phi),
$$

thus $H \circ f$ is invariant under F.

3. A Bour's-type lemma

A parametrization $X\left(s, t_{1}, \ldots, t_{n-1}\right)$ of a multi-helicoidal submanifold of cohomogeneity one is said to be natural if the coordinate hypersurfaces $s=s_{0} \in \mathbb{R}$ are orbits of F and the induced metric has the form

$$
\begin{equation*}
d \sigma^{2}=d s^{2}+\sum_{i=1}^{n-1} U_{i}(s)^{2} d t_{i}^{2}+\sum_{i \neq j} h_{i} h_{j} d t_{i} d t_{j} . \tag{1}
\end{equation*}
$$

We now prove the extension of Bour's lemma referred to in the introduction.
Lemma 3. 1) Every multi-helicoidal submanifold M^{n} of cohomogeneity one in $\mathbb{R}^{2 n-1}$ has locally a natural parametrization.
2) Suppose that $U_{1}(s), \ldots, U_{n-1}(s)$ and $h_{1}, \ldots, h_{n-1} \in \mathbb{R}$ satisfy $U_{i}^{2}>h_{i}^{2}, 1 \leq i \leq n-1$, and let $\lambda_{i}=\lambda_{i}(s)$ be defined by

$$
\lambda_{i}=\sqrt{U_{i}^{2}-h_{i}^{2}}
$$

if $n \geq 4$, and by

$$
\lambda_{1}=m \sqrt{U_{1}^{2}-h_{1}^{2}}, \quad \lambda_{2}=\frac{1}{m} \sqrt{U_{2}^{2}-h_{2}^{2}}, \quad m \neq 0,
$$

if $n=3$. Suppose further that $\sum_{i=1}^{n-1}\left(\lambda_{i}^{\prime}\right)^{2} \leq 1$ everywhere and define

$$
\lambda_{n}(s)=\int_{0}^{s} \psi(\tau) \xi(\tau) d \tau
$$

where

$$
\psi(s)=\sqrt{1-\sum_{i=1}^{n-1}\left(\lambda_{i}^{\prime}\right)^{2}} \quad \text { and } \xi(s)=\sqrt{1+\sum_{i=1}^{n-1} \frac{h_{i}^{2}}{\lambda_{i}^{2}}}
$$

Finally, define $\phi_{i}=\phi_{i}\left(s, t_{i}\right), 1 \leq i \leq n-1$, by

$$
\phi_{i}=t_{i}-h_{i} \int_{0}^{s} \frac{\psi(\tau)}{\lambda_{i}^{2}(\tau) \xi(\tau)} d \tau
$$

if $n \geq 4$ and

$$
\phi_{1}=m t_{1}-h_{1} \int_{0}^{s} \frac{\psi(\tau)}{\lambda_{1}^{2}(\tau) \xi(\tau)} d \tau, \quad \phi_{2}=\frac{1}{m} t_{2}-h_{2} \int_{0}^{s} \frac{\psi(\tau)}{\lambda_{2}^{2}(\tau) \xi(\tau)} d \tau
$$

if $n=3$. Then

$$
\begin{equation*}
X\left(s, t_{1}, \ldots, t_{n-1}\right)=\left(\lambda_{1}, \phi_{1}, \ldots, \lambda_{n-1}, \phi_{n-1}, \lambda_{n}+\sum_{i=1}^{n-1} h_{i} \phi_{i}\right) \tag{2}
\end{equation*}
$$

is a natural parametrization of a multi-helicoidal submanifold of cohomogeneity one in $\mathbb{R}^{2 n-1}$ with induced metric given by (1).

Proof. 1) Let the intersection of M^{n} with the subspace

$$
\mathbb{R}^{n}=\left\{\left(r_{1}, \theta_{1}, \ldots, r_{n-1}, \theta_{n-1}, z\right) ; \theta_{1}=\cdots=\theta_{n-1}=0\right\}
$$

be locally parametrized by the curve $\lambda:(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{n}, \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, with $\lambda_{i}(\rho)>0$ for all $\rho \in(-\epsilon, \epsilon), 1 \leq i \leq n$. Then, a local parametrization of M^{n} is

$$
X\left(\rho, \phi_{1}, \ldots, \phi_{n-1}\right)=\left(\lambda_{1}(\rho), \phi_{1}, \ldots, \lambda_{n-1}(\rho), \phi_{n-1}, \lambda_{n}(\rho)+\sum_{i=1}^{n-1} h_{i} \phi_{i}\right),
$$

where we assumed $k_{i}=1$ for all $1 \leq i \leq n-1$ after a change of coordinates. The metric induced by X is

$$
d \sigma^{2}=\sum_{i=1}^{n}\left(\lambda_{i}^{\prime}\right)^{2} d \rho^{2}+\sum_{i=1}^{n-1}\left(\lambda_{i}^{2}+h_{i}^{2}\right) d \phi_{i}^{2}+2 \lambda_{n}^{\prime} \sum_{i=1}^{n-1} h_{i} d \rho d \phi_{i}+\sum_{i \neq j} h_{i} h_{j} d \phi_{i} d \phi_{j},
$$

where the prime denotes derivative with respect to ρ. Let t_{1}, \ldots, t_{n-1} be locally defined by

$$
d t_{i}=d \phi_{i}-\lambda_{n}^{\prime} f_{i} d \rho,
$$

where the functions $f_{i}=f_{i}(\rho)$ are to be determined. Then

$$
\begin{aligned}
& d \sigma^{2}=\left(\sum_{i=1}^{n}\left(\lambda_{i}^{\prime}\right)^{2}+\left(\lambda_{n}^{\prime}\right)^{2} \sum_{i=1}^{n-1} f_{i}\left(h_{i}+g_{i}\right)\right) d \rho^{2}+\sum_{i=1}^{n-1}\left(\lambda_{i}^{2}+h_{i}^{2}\right) d t_{i}^{2} \\
& +2 \lambda_{n}^{\prime} \sum_{i=1}^{n-1} g_{i} d \rho d t_{i}+\sum_{i \neq j} h_{i} h_{j} d t_{i} d t_{j}
\end{aligned}
$$

where

$$
g_{i}=f_{i}\left(\lambda_{i}^{2}+h_{i}^{2}\right)+h_{i}+\sum_{j \neq i} h_{i} h_{j} f_{j} .
$$

Let $A=A(\rho)$ be the $(n-1) \times(n-1)$-matrix with entries

$$
\left\{\begin{array}{l}
A_{i i}=\left(\lambda_{i}^{2}+h_{i}^{2}\right) \\
A_{i j}=h_{i} h_{j}, i \neq j .
\end{array}\right.
$$

Since

$$
\operatorname{det} A=\Pi_{i=1}^{n-1} \lambda_{i}^{2}+\sum_{i=1}^{n-1} h_{i}^{2} \Pi_{j \neq i}^{n-1} \lambda_{j}^{2}>0,
$$

the linear system $A f=-h$, where $h=\left(h_{1}, \ldots, h_{n-1}\right)^{t}$, has a solution $f=\left(f_{1}, \ldots, f_{n-1}\right)^{t}$. Therefore, the $f_{i}^{\prime} s$ can be chosen so that $g_{i}=0$ for all $1 \leq i \leq n-1$. Explicitly, an easy computation shows that

$$
\begin{equation*}
f_{i}=\frac{-h_{i}}{\operatorname{det} A} \Pi_{j \neq i}^{n-1} \lambda_{j}^{2}=-\frac{h_{i}}{\lambda_{i}^{2}\left(1+\sum_{j=1}^{n-1} \frac{h_{j}^{2}}{\lambda_{j}^{2}}\right)} . \tag{3}
\end{equation*}
$$

Now observe that

$$
\sum_{i=1}^{n}\left(\lambda_{i}^{\prime}\right)^{2}+\left(\lambda_{n}^{\prime}\right)^{2} \sum_{i=1}^{n-1} h_{i} f_{i}=\sum_{i=1}^{n-1}\left(\lambda_{i}^{\prime}\right)^{2}+\frac{\left(\lambda_{n}^{\prime}\right)^{2}}{\operatorname{det} A} \Pi_{i=1}^{n-1} \lambda_{i}^{2}>0
$$

hence a function $s=s(\rho)$ is locally well-defined by

$$
\begin{equation*}
d s^{2}=\left(\sum_{i=1}^{n}\left(\lambda_{i}^{\prime}\right)^{2}+\left(\lambda_{n}^{\prime}\right)^{2} \sum_{i=1}^{n-1} h_{i} f_{i}\right) d \rho^{2}=\sum_{i=1}^{n-1} d \lambda_{i}^{2}+\frac{\prod_{i=1}^{n-1} \lambda_{i}^{2}}{\operatorname{det} A} d \lambda_{n}^{2} . \tag{4}
\end{equation*}
$$

From

$$
\frac{\partial\left(s, t_{1}, \ldots, t_{n-1}\right)}{\partial\left(\rho, \phi_{1}, \ldots, \phi_{n-1}\right)}=\sqrt{\sum_{i=1}^{n}\left(\lambda_{i}^{\prime}\right)^{2}+\left(\lambda_{n}^{\prime}\right)^{2} \sum_{i=1}^{n-1} h_{i} f_{i}}
$$

we have that $s, t_{1}, \ldots, t_{n-1}$ define locally a system of coordinates. Let

$$
\rho=\rho\left(s, t_{1}, \ldots, t_{n-1}\right), \quad \phi_{i}=\phi_{i}\left(s, t_{1}, \ldots, t_{n-1}\right)
$$

be the coordinate change. Since $\partial s / \partial \phi_{i}=0$ for all $1 \leq i \leq n-1$, the chain rule gives $\partial \rho / \partial t_{i}=0$ for all $1 \leq i \leq n-1$. Therefore $\rho=\rho(s)$ and, denoting $U_{i}^{2}(s)=\lambda_{i}^{2}(\rho(s))+h_{i}^{2}$, we conclude that

$$
X\left(s, t_{1}, \ldots, t_{n-1}\right)=X\left(\rho(s), \phi_{1}\left(s, t_{1}, \ldots, t_{n-1}\right), \ldots, \phi_{n-1}\left(s, t_{1}, \ldots, t_{n-1}\right)\right)
$$

is a natural parametrization of M^{n}.
2) We look for functions λ_{i} and ϕ_{i} of $s, t_{1}, \ldots, t_{n-1}$ satisfying

$$
\begin{gather*}
d s^{2}=\sum_{i=1}^{n-1} d \lambda_{i}^{2}+\frac{1}{1+\sum_{j=1}^{n-1} \frac{h_{j}^{2}}{\lambda_{j}^{2}} d \lambda_{n}^{2}} \tag{5}\\
U_{i} d t_{i}=\sqrt{\lambda_{i}^{2}+h_{i}^{2}}\left(d \phi_{i}-f_{i} d \lambda_{n}\right), \quad 1 \leq i \leq n-1, \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
d t_{i} d t_{j}=\left(d \phi_{i}-f_{i} d \lambda_{n}\right)\left(d \phi_{j}-f_{j} d \lambda_{n}\right), \tag{7}
\end{equation*}
$$

where f_{i} is given by (3). Equation (5) implies that $\lambda_{i}=\lambda_{i}(s)$ for all $1 \leq i \leq n$ and that

$$
\begin{equation*}
\left(\lambda_{n}^{\prime}\right)^{2}=\left(1-\sum_{i=1}^{n-1}\left(\lambda_{i}^{\prime}\right)^{2}\right)\left(1+\sum_{i=1}^{n-1} \frac{h_{i}^{2}}{\lambda_{i}^{2}}\right) \tag{8}
\end{equation*}
$$

Equations (6) and (7) yield

$$
U_{i}=\sqrt{\lambda_{i}^{2}+h_{i}^{2}}, \quad \frac{\partial \phi_{i}}{\partial t_{j}}=\delta_{i j}, \quad 1 \leq i, j \leq n-1
$$

for $n \geq 4$ and

$$
\begin{gathered}
U_{1}=m \sqrt{\lambda_{1}^{2}+h_{1}^{2}}, \quad U_{2}=\frac{1}{m} \sqrt{\lambda_{2}^{2}+h_{2}^{2}}, \\
\frac{\partial \phi_{1}}{\partial t_{2}}=\frac{\partial \phi_{2}}{\partial t_{1}}=0, \quad \frac{\partial \phi_{1}}{\partial t_{1}}=m, \quad \frac{\partial \phi_{2}}{\partial t_{2}}=\frac{1}{m}
\end{gathered}
$$

for some $m \neq 0$ if $n=3$. In both cases,

$$
\frac{\partial \phi_{i}}{\partial s}=-\frac{h_{i}}{\lambda_{i}^{2}} \sqrt{\frac{1-\sum_{j=1}^{n-1}\left(\lambda_{j}^{\prime}\right)^{2}}{1+\sum_{j=1}^{n-1} \frac{h_{j}^{2}}{\lambda_{j}^{2}}}}
$$

and the proof follows.

Remarks 4. 1) It follows from Lemma 3 that the orbits of a multi-helicoidal submanifold M^{n} of cohomogeneity one in $\mathbb{R}^{2 n-1}$ provide a foliation of M^{n} by flat geodesically parallel hypersurfaces. Moreover, any such hypersurface is foliated itself by curves with constant Frenet curvatures in the ambient space, namely, the orbits of the 1-parameter subgroups generated by F. These are the properties that were shown in [2] to be satisfied by n-dimensional submanifolds in $\mathbb{R}^{2 n-1}$ which are associated to solutions of the GSGE and GEShGE that are invariant by an $(n-1)$-dimensional translation subgroup of their symmetry groups. They follow immediately from Theorem 7 below, according to which such submanifolds are precisely the multi-helicoidal submanifolds of nonzero constant sectional curvature and cohomogeneity one in $\mathbb{R}^{2 n-1}$.
2) Suppose that G is an $(n-1)$-parameter subgroup of isometries of $\mathbb{R}^{2 n-1}$ that contains a pure translation, say, $G(s a)(x)=x+s v$ for some vectors $a \in \mathbb{R}^{n-1}, v \in \mathbb{R}^{2 n-1}$ and all $x \in \mathbb{R}^{2 n-1}, s \in \mathbb{R}$. Then, it is easily seen that any submanifold M^{n} that is invariant under the action of G is isometric to an open subset of a Riemannian product $M^{n-1} \times \mathbb{R}$, the onedimensional leaves of the product foliation correspondent to the \mathbb{R}-factor being immersed as straight lines in $\mathbb{R}^{2 n-1}$ parallel to v.

4. Multi-helicoidal submanifolds of constant curvature

Our aim in this section is to classify n-dimensional multi-helicoidal submanifolds of cohomogeneity one and nonzero constant sectional curvature in $\mathbb{R}^{2 n-1}$. This follows by putting together Lemma 3 and the following result.

Lemma 5. Assume that the metric

$$
\begin{equation*}
d \sigma^{2}=d s^{2}+\sum_{i=1}^{n-1} U_{i}(s)^{2} d t_{i}^{2}+\sum_{i \neq j} h_{i} h_{j} d t_{i} d t_{j} \tag{9}
\end{equation*}
$$

has constant sectional curvature $c \neq 0$.

1) If $n \geq 4$, then $c<0$, at most one of the h_{i} is nonzero and, up to a coordinate change $s \rightarrow \pm s+s_{0}, U_{i}(s)=\mu_{i} e^{\sqrt{-c s}}$, where $\mu_{i} \in \mathbb{R}, 1 \leq i \leq n-1$, satisfy $\sum_{i=1}^{n-1} \mu_{i}^{2}=1$.
2) If $n=3$, then, up to a coordinate change $s \rightarrow \pm s+s_{0}$, one of the following possibilities holds:
a) $c<0, h_{1} h_{2}=0$ and $U_{i}(s)=\mu_{i} e^{\sqrt{-c s}}$, where $\mu_{1}, \mu_{2} \in \mathbb{R}$ satisfy $\mu_{1}^{2}+\mu_{2}^{2}=1$.
b) $h_{1} h_{2}=0$ and $U_{1}(s)=\mu_{1} \phi(k s), U_{2}(s)=\mu_{2} \phi^{\prime}(k s)$, where $\mu_{1}, \mu_{2} \in \mathbb{R}, k=\sqrt{|c|}, \phi(s)=$ $\cosh s$ or $\sinh s$ if $c<0$ and $\phi(s)=\cos s$ or $\sin s$ if $c>0$.
c) $h_{1} h_{2} \neq 0$ and

$$
U_{1}^{2}=B \phi(2 k s)+D, \quad U_{2}^{2}=a(B \phi(2 k s)-D),
$$

where $B^{2}>D^{2}, a=h_{1}^{2} h_{2}^{2} /\left(B^{2}-D^{2}\right), \phi(s)=\cosh s$ if $c<0$ and $\phi(s)=\cos s$ or $\sin s$ if $c>0$.

Proof. Set $g_{i j}=\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle, \quad 1 \leq i, j \leq n-1$, where inner products are taken in the metric $d \sigma^{2}$. Thus, $g_{i i}=U_{i}^{2}$ and $g_{i j}=h_{i} h_{j}$ for $i \neq j$. We first show that $d \sigma^{2}$ having constant sectional curvature c is equivalent to the system of equations

$$
\left.\begin{array}{l}
\text { i) } \quad 2 g_{j j}^{\prime \prime}-\left(g_{j j}^{\prime}\right)^{2} g^{j j}+4 c g_{j j}=0,1 \leq j \leq n-1, \tag{10}\\
\text { ii) } g_{i i}^{\prime} g_{j j}^{\prime}+4 c\left(g_{i i} g_{j j}-h_{i}^{2} h_{j}^{2}\right)=0,1 \leq i \neq j \leq n-1,
\end{array}\right\}
$$

where $\left(g^{i j}\right)$ denotes the inverse matrix of $\left(g_{i j}\right)$.
The sectional curvature $K\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}\right)$ along the plane spanned by $\frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}$ is given by

$$
\begin{align*}
K\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}\right) g_{j j} & =\left\langle\nabla_{\frac{\partial}{\partial t_{j}}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}-\nabla_{\frac{\partial}{\partial s}} \nabla_{\frac{\partial}{\partial t_{j}}} \frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}\right\rangle \\
& =\left\|\nabla_{\frac{\partial}{\partial t_{j}}} \frac{\partial}{\partial s}\right\|^{2}-\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}}\left\langle\frac{\partial}{\partial t_{j}}, \frac{\partial}{\partial t_{j}}\right\rangle . \tag{11}
\end{align*}
$$

One can easily check that

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial t_{j}}} \frac{\partial}{\partial s}=\frac{1}{2} g_{j j}^{\prime} \sum_{k=1}^{n-1} g^{k j} \frac{\partial}{\partial t_{k}}, \tag{12}
\end{equation*}
$$

hence the first term on the right-hand-side of (11) equals

$$
\frac{\left(g_{j j}^{\prime}\right)^{2}}{4}\left[\sum_{k=1}^{n-1}\left(g^{k j}\right)^{2} g_{k k}+\sum_{i \neq k}^{n-1} g^{k j} g^{i j} g_{k i}\right] .
$$

The expression between brackets is easily seen to be equal to $g^{j j}$, hence $K\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t_{j}}\right)=c$ if and only if equation (10) i) holds.

A similar computation shows that the sectional curvature $K\left(\frac{\partial}{\partial t_{i}}, \frac{\partial}{\partial t_{j}}\right)$ along the plane spanned by $\frac{\partial}{\partial t_{i}}, \frac{\partial}{\partial t_{j}}$ is given by

$$
K\left(\frac{\partial}{\partial t_{i}}, \frac{\partial}{\partial t_{j}}\right)\left(g_{i i} g_{j j}-g_{i j}^{2}\right)=-\frac{1}{4} g_{i i}^{\prime} g_{j j}^{\prime}
$$

hence $K\left(\frac{\partial}{\partial t_{i}}, \frac{\partial}{\partial t_{j}}\right)=c$ is equivalent to (10) ii).
Assume first that $n \geq 4$. Since M^{n} has constant sectional curvature $c \neq 0$ and the coordinate hypersurfaces $s=s_{0} \in \mathbb{R}$ are flat, they must be umbilic in M^{n} and $c<0$. Hence

$$
\begin{equation*}
\left\langle\nabla_{\frac{\partial}{\partial t_{i}}} \frac{\partial}{\partial t_{i}}, \frac{\partial}{\partial s}\right\rangle=\sqrt{-c} g_{i i}, \quad 1 \leq i \leq n-1 \tag{13}
\end{equation*}
$$

up to a sign. By (12), the left-hand-side of (13) is equal to $-(1 / 2) g_{i i}^{\prime}$, thus

$$
g_{i i}^{\prime}=-2 \sqrt{-c} g_{i i}, \quad 1 \leq i \leq n-1
$$

Replacing into (10) ii) yields $h_{i} h_{j}=0$ for all $1 \leq i \neq j \leq n-1$, and part 1) follows easily.
Assume now that $n=3$. Then equations (10) reduce to
$\left.\begin{array}{ll}\text { i) } & 2 g_{11}^{\prime \prime}-\frac{\left(g_{11}^{\prime}\right)^{2} g_{22}}{g_{11} g_{22}-h_{1}^{2} h_{2}^{2}}+4 c g_{11}=0, \\ \text { ii) } & 2 g_{22}^{\prime \prime}-\frac{\left(g_{22}^{\prime}\right)^{2} g_{11}}{g_{11} g_{22}-h_{1}^{2} h_{2}^{2}}+4 c g_{22}=0, \\ \text { iii) } & g_{11}^{\prime} g_{22}^{\prime}+4 c\left(g_{11} g_{22}-h_{1}^{2} h_{2}^{2}\right)=0 .\end{array}\right\}$
Notice that the last equation implies that g_{11}^{\prime} and g_{22}^{\prime} are nowhere vanishing. Plugging it into the others yields

$$
\begin{equation*}
g_{22}^{\prime} g_{11}^{\prime \prime}=-2 c\left(g_{11} g_{22}\right)^{\prime}=g_{22}^{\prime \prime} g_{11}^{\prime} \tag{15}
\end{equation*}
$$

which implies $\left(g_{11}^{\prime} / g_{22}^{\prime}\right)^{\prime}=0$. Thus, there exist $a, b \in \mathbb{R}, a \neq 0$, such that

$$
\begin{equation*}
g_{22}=a g_{11}+b \tag{16}
\end{equation*}
$$

From (16) and (15) we get

$$
g_{11}^{\prime \prime}+4 c g_{11}+\frac{2 c b}{a}=0
$$

Set $D=-b / 2 a$. Then $g_{11}(s)=B \psi(2 k s)+D, B \neq 0, k=\sqrt{|c|}$, and $g_{22}(s)=a(B \psi(2 k s)-D)$, where, after a coordinate change $s \rightarrow \pm s+s_{0}$, we may assume that $\psi(s)=\cos s$ or $\sin s$ if $c>0$ and $\phi(s)=\cosh s, \sinh s$ or e^{s} if $c<0$. Replacing into (14) iii) gives

$$
\begin{equation*}
\psi^{2}(2 k s)+\epsilon\left(\psi^{\prime 2}(2 k s)\right)^{2}=\frac{1}{B^{2}}\left(D^{2}+\frac{h_{1}^{2} h_{2}^{2}}{a}\right) \tag{17}
\end{equation*}
$$

where $\epsilon=c /|c|$. Then one of the following possibilities holds:
i) $D=h_{1} h_{2}=0$; then $c<0, \psi(s)=e^{s}$ and a) holds.
ii) $h_{1} h_{2}=0 \neq D$; then $B^{2}=D^{2}$ and $\psi(s)=\cosh s$ if $c<0$, which gives rise to case b).
iii) $h_{1} h_{2} \neq 0$; then the right-hand-side of (17) equals 1 , which implies that $B^{2}>D^{2}, a=$ $h_{1}^{2} h_{2}^{2} /\left(B^{2}-D^{2}\right)$ and $\phi(s)=\cosh s$ if $c<0$. Hence c) holds.
Therefore, any n-dimensional multi-helicoidal submanifold $M^{n}(c)$ of cohomogeneity one and nonzero constant sectional curvature c in $\mathbb{R}^{2 n-1}$ can be parametrized in terms of cylindrical coordinates in $\mathbb{R}^{2 n-1}$ by (2), where λ_{i}, ϕ_{i} are given by Lemma 3 in terms of parameters h_{i} and functions U_{i} as in Lemma 5. For instance, if $n \geq 4$ then $M^{n}(c)$ has a natural parametrization

$$
X\left(s, t_{1}, \ldots, t_{n-1}\right)=\left(\lambda_{1}(s), \phi_{1}\left(t_{1}, s\right), \lambda_{2}(s), t_{2}, \ldots, \lambda_{n-1}(s), t_{n-1}, \lambda_{n}(s)+h \phi_{1}\right),
$$

where $\lambda_{1}(s)=\sqrt{\mu_{1}^{2} e^{2 k s}-h^{2}}, \lambda_{i}(s)=\mu_{i} e^{k s}, 2 \leq i \leq n-1, k=\sqrt{-c}, \sum_{i=1}^{n-1} \mu_{i}^{2}=1$, $\phi_{1}=t_{1}-\frac{h}{\mu_{1}} \int_{0}^{s} e^{-k \tau} G(\tau) d \tau, \lambda_{n}(s)=\mu_{1} \int_{0}^{s} e^{k \tau} G(\tau) d \tau$ and

$$
G(s)=\frac{\sqrt{c \mu_{1}^{2} e^{4 k s}+\left[\left(1+c h^{2}\right) \mu_{1}^{2}-c h^{2}\right] e^{2 k s}-h^{2}}}{\mu_{1}^{2} e^{2 k s}-h^{2}}
$$

For $h=0$, it reduces to the classical Schur's n-dimensional pseudo-sphere of constant sectional curvature c.

The submanifold $M^{n}(c)$ is isometric to an open subset of hyperbolic space $\mathbb{H}^{n}(c)$ bounded by two concentric horospheres. More precisely, Euclidean space \mathbb{R}^{n} endowed with the metric $d \sigma^{2}=d s^{2}+\sum_{i=1}^{n-1} \mu_{i}^{2} e^{2 k s} d t_{i}^{2}, k=\sqrt{-c}, \sum_{i=1}^{n-1} \mu_{i}^{2}=1$, is a model of $\mathbb{H}^{n}(c)$ in which the coordinate hypersurfaces $s=s_{0} \in \mathbb{R}$ are horospheres with common center Ω, the s-coordinate curves being the orthogonal unit-speed geodesics through Ω. The translations $T(\phi), \phi \in$ \mathbb{R}^{n-1}, that leave the horospheres $s=s_{0}$ invariant form an $(n-1)$-parameter subgroup of isometries of $\left(\mathbb{R}^{n}, d \sigma^{2}\right)$ such that $F(\phi) \circ X=X \circ T(\phi)$. Hence, X sends each horosphere $s=s_{0}, s_{0}$ ranging on a certain open interval, onto an orbit of F.

Similarly, it is not difficult to check that the three-dimensional multi-helicoidal submanifolds of constant sectional curvature $c<0$ (respectively, $c>0$) for which the functions U_{1}, U_{2} are given as in part 2 b) or 2 c) of Lemma 5 are isometric to open subsets of hyperbolic space $\mathbb{H}^{3}(c)$ (respectively, Euclidean sphere $\mathbb{S}^{3}(c)$) bounded by two tubes over a common geodesic γ. Each intermediate tube over γ is represented by a coordinate surface $s=s_{0}$, which is sent by X onto an orbit of F. The s-coordinate curves are the unit-speed geodesics orthogonal to the family of geodesically parallel tubes. In particular, this clarifies all the assertions in Theorem 3.1 of [2].

5. The GSGE and GEShGE

We denote by $\mathbb{O}^{2 n}(c)$ either the hyperbolic space $\mathbb{H}^{2 n}(c)$ or the Lorentzian space form $\mathbb{L}^{2 n}(c)$ of constant sectional curvature c, according to $c<0$ or $c>0$, respectively. Recall that the index of relative nullity of a submanifold at a point x is the dimension of the kernel of its second fundamental form α at x, whereas its first normal space at x is the subspace of the normal space at x spanned by the image of α. The following result was proved in [7].

Theorem 6. Let $M^{n}(c) \subset \mathbb{O}^{2 n}(c)$ be a simply connected submanifold with flat normal bundle, vanishing index of relative nullity and nondegenerate first normal bundle. Then $M^{n}(c)$ admits a global principal parametrization $X: U \subset \mathbb{R}^{n} \rightarrow \mathbb{O}^{2 n}(c)$ with induced metric

$$
\begin{equation*}
d s^{2}=\sum_{i} v_{i}^{2} d u_{i}^{2}, v_{i}>0 \tag{18}
\end{equation*}
$$

and a smooth orthonormal normal frame ξ_{1}, \ldots, ξ_{n} such that its second fundamental form and normal connection satisfy

$$
\begin{equation*}
\alpha\left(\frac{\partial}{\partial u_{i}}, \frac{\partial}{\partial u_{j}}\right)=v_{i} \delta_{i j} \xi_{i}, \quad \nabla_{\frac{\partial}{\partial u_{i}}}^{\perp} \xi_{j}=h_{i j} \xi_{i}, \tag{19}
\end{equation*}
$$

where $h_{i j}=\left(1 / v_{i}\right) \partial v_{j} / \partial u_{i}$. Moreover, the pair (v, h), where $v=\left(v_{1}, \ldots, v_{n}\right)$ and $h=\left(h_{i j}\right)$, satisfies the completely integrable system of PDEs
(I)

$$
\begin{cases}\text { i) } \frac{\partial v_{i}}{\partial u_{j}} h_{j i} v_{j}, & \text { ii) } \quad \frac{\partial h_{i j}}{\partial u_{i}}+\frac{\partial h_{j i}}{\partial u_{j}}+\sum_{k} h_{k i} h_{k j}+c v_{i} v_{j}=0 \\ \text { iii) } \frac{\partial h_{i k}}{\partial u_{j}}=h_{i j} h_{j k}, & \text { iv) } \quad \epsilon_{i} \frac{\partial h_{i j}}{\partial u_{j}}+\epsilon_{j} \frac{\partial h_{j i}}{\partial u_{i}}+\epsilon_{k} \sum_{k} h_{i k} h_{j k}=0\end{cases}
$$

where $\epsilon_{k}=\left\langle\xi_{k}, \xi_{k}\right\rangle$ and $1 \leq i \neq j \neq k \neq i \leq n$. Conversely, let (v, h) be a solution of (I) on an open simply connected subset $U \subset \mathbb{R}^{n}$ such that $v_{i}>0$ everywhere, $\epsilon_{1}=-1$ and $\epsilon_{i}=1$ for $2 \leq i \leq n$ (respectively, $\epsilon_{i}=1$ for $1 \leq i \leq n$). Then there exists an immersion $f: U \rightarrow \mathbb{O}^{2 n}(c)$ with flat normal bundle, vanishing index of relative nullity and induced metric $d s^{2}=\sum_{i} v_{i}^{2} d u_{i}^{2}$ of constant sectional curvature $c>0$ (respectively, $c<0$).
By embedding Euclidean space $\mathbb{R}^{2 n-1}$ as a totally umbilical hypersurface of $\mathbb{O}^{2 n}(c)$, the above result was used in [7] to show that simply connected submanifolds $M^{n}(c)$ of $\mathbb{R}^{2 n-1}$, free of weak-umbilics when $c>0$, are in correspondence with solutions of the system
which is either the GSGE or the GEShGE, according to $c<0$ or $c>0$, respectively. Recall from [11] that a point $x \in M^{n}(c)$ is said to be weak-umbilic if there is a unit normal vector ζ at x such that $A_{\zeta}=\sqrt{c} I$, where A_{ζ} denotes the shape operator in the direction of ζ.

It was shown in [14] and [8], [9] that all solutions of the GSGE or the GEShGE, respectively, that are invariant by an $(n-1)$-dimensional translation subgroup of their symmetry groups have the form

$$
\begin{equation*}
v_{i}=v_{i}(\xi), \quad h_{i j}=h_{i j}(\xi), \quad \xi=\sum_{i=1}^{n} a_{i} u_{i} . \tag{20}
\end{equation*}
$$

We now prove that the submanifolds that are associated to such solutions are precisely the multi-helicoidal submanifolds of cohomogeneity one.

Theorem 7. A solution of either the GSGE or the GEShGE (system (II)) is invariant under an ($n-1$)-dimensional translation subgroup of its symmetry group if and only if it is associated to a multi-helicoidal submanifold of cohomogeneity one with constant sectional curvature c and no weak-umbilics when $c>0$.

Proof. Assume first that $M^{n}(c) \subset \mathbb{R}^{2 n-1}$ is a multi-helicoidal submanifold of cohomogeneity one, constant sectional curvature c and free of weak-umbilics when $c>0$. We may consider $M^{n}(c)$ isometrically immersed into $\mathbb{O}^{2 n}(c)$ by embedding $\mathbb{R}^{2 n-1}$ as a totally umbilical hypersurface of $\mathbb{O}^{2 n}(c)$. It is easily seen that $M^{n}(c)$ having no weak-umbilics as a submanifold of $\mathbb{R}^{2 n-1}$ is equivalent to the first normal spaces of $M^{n}(c)$ being everywhere nondegenerate as a submanifold of $\mathbb{O}^{2 n}(c)$.

Let $X: U \subset \mathbb{R}^{n} \rightarrow \mathbb{O}^{2 n}(c)$ be a principal parametrization of $M^{n}(c)$ given by Theorem 6 . Since every isometry of $\mathbb{R}^{2 n-1}$, regarded as an umbilical hypersurface of $\mathbb{O}^{2 n}(c)$, is the restriction of an isometry of $\mathbb{O}^{2 n}(c)$, we have that $M^{n}(c) \subset \mathbb{O}^{2 n}(c)$ is invariant by an $(n-1)$-parameter subgroup of isometries of $\mathbb{O}^{2 n}(c)$, which we still denote by F. Endow U with the metric $d s^{2}=\sum_{i} v_{i}^{2} d u_{i}^{2}$ induced by X. We will show that the solution (v, h) of system (II), $v=\left(v_{1}, \ldots, v_{n}\right), h=\left(h_{i j}\right)$, associated to $M^{n}(c)$ has the form (20). Let T be the ($n-1$)-parameter subgroup of isometries of $\left(U, d s^{2}\right)$ induced by F, that is,

$$
X \circ T(\phi)=F(\phi) \circ X
$$

for all $\phi \in \mathbb{R}^{n-1}$. Then, the second fundamental forms of X and $X \circ T(\phi)$ satisfy

$$
\alpha_{X}(T(\phi)(u))\left(T(\phi)_{*} X, T(\phi)_{*} Y\right)=\alpha_{X \circ T(\phi)}(u)(X, Y)=F(\phi)_{*} \alpha_{X}(u)(X, Y)
$$

for all $u \in U$ and $X, Y \in T_{u} U$. Set $\frac{\partial}{\partial u_{i}}=v_{i} X_{i}, 1 \leq i \leq n$. Then, from

$$
\left.\alpha_{X}(T(\phi)(u))\left(T(\phi)_{*} X_{i}, T(\phi)_{*} X_{j}\right)=F(\phi)_{*} \alpha_{X}(u)\right)\left(X_{i}, X_{j}\right)=0, \quad i \neq j
$$

it follows easily that $X_{i} \circ T(\phi)=T(\phi)_{*} X_{i}$. We obtain from the first equation in (19) that

$$
\begin{aligned}
v_{i}(T(\phi)(u)) \xi_{i}(T(\phi)(u)) & =\alpha_{X}(T(\phi)(u))\left(X_{i}(T(\phi)(u)), X_{i}(T(\phi)(u))\right) \\
& =F(\phi)_{*} \alpha_{X}(u)\left(X_{i}(u), X_{i}(u)\right) \\
& =v_{i}(u) F(\phi)_{*} \xi_{i}(u),
\end{aligned}
$$

which shows that $\xi_{i} \circ T(\phi)=F(\phi)_{*} \xi_{i}$ and $v_{i} \circ T(\phi)=v_{i}$. Moreover, from

$$
\nabla_{\bar{T}(\phi)_{*} X}^{\perp} F(\phi)_{*} \xi=F(\phi)_{*} \nabla_{X}^{\perp} \xi
$$

we get using the second equation in (19) that

$$
\begin{aligned}
h_{i j}(T(\phi)(u)) & =\left\langle\nabla_{\frac{\partial}{\partial u_{i}}(T(\phi)(u))}^{\perp} \xi_{j}(T(\phi)(u)), \xi_{i}(T(\phi)(u))\right\rangle \\
& =\left\langle\nabla_{T(\phi)_{*}}^{\perp \frac{\partial}{\partial u_{i}}(u)} F(\phi)_{*} \xi_{j}(u), F(\phi)_{*} \xi_{i}(u)\right\rangle \\
& =\left\langle F(\phi)_{*} \nabla_{\frac{\partial}{\partial u_{i}}}^{\perp}(u) \xi_{j}(u), F(\phi)_{*} \xi_{i}(u)\right\rangle=h_{i j}(u) .
\end{aligned}
$$

Therefore, the $v_{i}^{\prime} s$ and $h_{i j}^{\prime} s$ are constant along the orbits of T. Hence, there exist smooth functions $\theta: U \rightarrow \mathbb{R}$ and $\bar{v}_{i}, \bar{h}_{i j}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
v_{i}=\bar{v}_{i} \circ \theta, \quad h_{i j}=\bar{h}_{i j} \circ \theta, \quad 1 \leq i \neq j \leq n .
$$

Since

$$
\bar{h}_{i j} \circ \theta=h_{i j}=\frac{1}{v_{i}} \frac{\partial v_{j}}{\partial u_{i}}=\frac{\bar{v}_{j}^{\prime} \circ \theta}{\bar{v}_{i} \circ \theta} \theta_{u_{i}},
$$

there exist smooth functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}, 1 \leq i \leq n$, such that

$$
\theta_{u_{i}}=f_{i} \circ \theta .
$$

The integrability conditions of the above equations yield

$$
f_{i}^{\prime} f_{j}=f_{i} f_{j}^{\prime}, \quad 1 \leq i \neq j \leq n
$$

We can assume $f_{1} \neq 0$. Then, there exist constants $\lambda_{2}, \ldots, \lambda_{n}$ such that $f_{i}=\lambda_{i} f_{1}, 2 \leq i \leq n$. Thus,

$$
\left(\frac{\partial}{\partial u_{i}}-\lambda_{i} \frac{\partial}{\partial u_{1}}\right) \theta=0, \quad 2 \leq i \leq n .
$$

Setting $\xi=u_{1}+\sum_{i=2}^{n} \lambda_{i} u_{i}$, we conclude that $v_{i}=v_{i}(\xi), \quad h_{i j}=h_{i j}(\xi)$.
Conversely, assume that $M^{n}(c) \subset \mathbb{R}^{2 n-1}$ is associated to a solution of system (II) of the form (20). As before, consider $M^{n}(c)$ as a submanifold of $\mathbb{O}^{2 n}(c)$ and let $X: U \rightarrow \mathbb{O}^{2 n}(c)$ be a principal parametrization of $M^{n}(c)$ as in Theorem 6 with induced metric given by (18), where we may assume

$$
U=\left\{u \in \mathbb{R}^{n} \mid b_{1}<\xi<b_{2}\right\}, \quad b_{1}, b_{2} \in \mathbb{R}
$$

Define the $(n-1)$-parameter group of translations T on U by

$$
T(\phi)(u)=u+\sum_{i=1}^{n-1} \phi_{i} Y_{i}
$$

where $\phi=\left(\phi_{1}, \ldots, \phi_{n-1}\right)$ and Y_{1}, \ldots, Y_{n-1} is an arbitrary basis of the hyperplane $\xi=0$. Since $T(\phi)_{*} \frac{\partial}{\partial u_{i}}(u)=\frac{\partial}{\partial u_{i}}(T(\phi)(u))$ and the $v_{i}^{\prime} s$ are constant along the orbits $\xi=\xi_{0} \in\left(b_{1}, b_{2}\right)$ of T, each $T(\phi)$ is an isometry of $\left(U, d s^{2}\right)$. We claim that there exist isometries $G(\phi)$ of $\mathbb{O}^{2 n}(c)$ such that

$$
\begin{equation*}
X \circ T(\phi)=G(\phi) \circ X \tag{21}
\end{equation*}
$$

Define a vector bundle isometry $\mathcal{T}(\phi)$ between the normal bundles of X and $X \circ T(\phi)$ by setting $\mathcal{T}(\phi)\left(\xi_{i}\right)=\xi_{i} \circ T(\phi), 1 \leq i \leq n$, where ξ_{1}, \ldots, ξ_{n} is the orthonormal normal frame given by Theorem 6. Then, we have that

$$
\begin{aligned}
\alpha_{X \circ T(\phi)}\left(X_{i}, X_{j}\right) & =\alpha_{X}\left(T(\phi)_{*} X_{i}, T(\phi)_{*} X_{j}\right)=\alpha_{X}\left(X_{i} \circ T(\phi), X_{j} \circ T(\phi)\right) \\
& =v_{i} \circ T(\phi) \delta_{i j} \xi_{i} \circ T(\phi)=\mathcal{T}(\phi) \alpha_{X}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{gather*}
\left\langle\nabla_{X_{i} \circ T(\phi)}^{\perp} \mathcal{T}(\phi)\left(\xi_{j}\right), \mathcal{T}(\phi)\left(\xi_{i}\right)\right\rangle=h_{i j} \circ T(\phi)=h_{i j}=\left\langle\nabla \stackrel{X}{X}_{i} \xi_{j}, \xi_{i}\right\rangle= \tag{22}\\
\left\langle\mathcal{T}(\phi)\left(\nabla_{X_{i}}^{\perp} \xi_{j}\right), \mathcal{T}(\phi)\left(\xi_{i}\right)\right\rangle,
\end{gather*}
$$

hence $\nabla_{X_{i} \circ T(\phi)}^{\perp} \mathcal{T}(\phi)\left(\xi_{j}\right)=\mathcal{T}(\phi)\left(\nabla_{X_{i}}^{\perp} \xi_{j}\right)$ for all $1 \leq i \neq j \leq n$. Thus, the vector bundle isometry $\mathcal{T}(\phi)$ preserves the second fundamental forms and normal connections of X and $X \circ T(\phi)$. The claim now follows from the fundamental theorem of submanifolds.

Let $\bar{G}(\phi)$ denote the restriction of $G(\phi)$ to $\mathbb{R}^{2 n-1}$ and let \bar{X} be the parametrization of $M^{n}(c)$ as a submanifold of $\mathbb{R}^{2 n-1}$ induced by X. Then $\bar{G}(\phi) \circ \bar{X}=\bar{X} \circ T(\phi)$, which implies that

$$
\begin{equation*}
\bar{G}\left(\phi_{1}+\phi_{2}\right) \circ \bar{X}=\bar{G}\left(\phi_{1}\right) \circ \bar{X}+\bar{G}\left(\phi_{2}\right) \circ \bar{X} \quad \text { for any } \phi_{1}, \phi_{2} \in \mathbb{R}^{n-1} \tag{23}
\end{equation*}
$$

Now observe that $X(U)$ cannot be contained in any totally geodesic hypersurface of $\mathbb{O}^{2 n}(c)$, since the first normal bundle of X coincides with its normal bundle by the first equation in (19). Hence $\bar{X}(U)$ cannot be contained in any hyperplane of $\mathbb{R}^{2 n-1}$. It follows from (23) that \bar{G} is an $(n-1)$-parameter subgroup of $\mathbb{I S} \mathbb{O}\left(\mathbb{R}^{2 n-1}\right)$ that leaves $M^{n}(c)$ invariant. By Remark $4-2), \bar{G}$ contains no pure translations, since a Riemannian manifold with nonzero constant sectional curvature is irreducible. We conclude that $M^{n}(c)$ is a multi-helicoidal submanifold of cohomogeneity one.

References

[1] Aminov, Y.: On the immersion of domains of n-dimensional Lobachevsky space in ($2 n-1$)-dimensional Euclidean space. Sov. Math. Dokl. 18 (1977), 1210-1213.
[2] Barbosa, J. L.; Ferreira, W.; Tenenblat, K.: Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds. Ann. Global Anal. Geom. 14 (1996), 381-401.
[3] Bour, E.: Mémoire sur la deformation des surfaces. J. Éc. Polyt. 39 (1862), 1-148.
[4] Campos, P. T.: Submanifolds of constant non negative curvature. Mat. Contemp. 4 (1993), 55-73.
[5] do Carmo, M.; Dajczer, M.: Helicoidal surfaces with constant mean curvature. Tôhoku Math. J. 34 (1982), 425-435.
[6] Darboux, G.: Leçons sur la théorie des surfaces. Vol. I. Chelsea Pub. Co. 1972.
[7] Dajczer, M.; Tojeiro, R.: Isometric immersions and the generalized Laplace and elliptic sinh-Gordon equations. J. Reine Angew. Math. 467 (1995), 109-147.
[8] Ferreira, W.: PhD. Thesis, Universidade de Brasília 1994.
[9] Ferreira, W.: On metrics of constant sectional curvature. Mat. Contemp. 9 (1995), 91110.
[10] Humphreys, J. E.: Introduction to Lie algebras and representation theory. SpringerVerlag 1972.
[11] Moore, J. D.: Submanifolds of constant positive curvature I. Duke Math. J. 44 (1977), 449-484.
[12] Rabelo, M. L.; Tenenblat, K.: Submanifolds of Constant Nonpositive Curvature. Mat. Contemp. 1 (1991), 71-81.
[13] Tenenblat, K.; Terng, C. L.: Backlund's theorem for n-dimensional submanifolds of $\mathbb{R}^{2 n-1}$. Ann. of Math. 111 (1980), 477-490.
[14] Tenenblat, K.; Winternitz, P.: On the symmetry groups of the intrinsic generalized wave and sine-Gordon equations. J. Math. Phys. 34 (1993), 3527-3542.

Received November 4, 1999

