Hereditariness, Strongness and Relationship between Brown-McCoy and Behrens Radicals

S. Tumurbat H. Zand

Department of Algebra, University of Mongolia P.O. Box 75, Ulaan Baatar 20, Mongolia e-mail: tumur@www.com

> Open University, Milton Keynes MK7 6AA, England e-mail: h.zand@open.ac.uk

Abstract. In this paper we explore the properties of being hereditary and being strong among the radicals of associative rings, and prove certain results such as a relationship between Brown-McCoy and Behrens radicals. MSC 2000: 16N80

I.

In this paper rings are all associative, but not necessarily with a unit element. As usual, $I \triangleleft A$ and $L \triangleleft_l A$ $(R \triangleleft_r A)$ denote that I is an ideal and L is a left ideal (R is a right ideal) in A, respectively. A° will stand for the ring on the additive group (A, +) with multiplication xy = 0, for all $x, y \in A$.

Let us recall that a (Kurosh-Amitsur) radical γ is a class of rings which is closed under homomorphisms, extensions (I and A/I in γ imply A in γ), and has the inductive property (if $I_1 \subseteq \cdots \subseteq I_\lambda \subseteq \ldots$ is a chain of ideals, $A = \bigcup I_\lambda$, and each I_λ is in γ , then A is in γ).

0138-4821/93 \$ 2.50 © 2001 Heldermann Verlag

The first author carried out research within the framework of the Hungarian-Mongolian cultural exchange program at the A. Rényi Institute of Mathematics HAS, Budapest. He gratefully acknowledges the kind hospitality and also the support of OTKA Grant # T29525.

The unique largest γ -ideal $\gamma(A)$ of A is then the γ -radical of A. A hereditary radical containing all nilpotent rings is called a supernilpotent radical. Let \mathcal{M} be a class of rings. Put

$$\overline{\mathcal{M}} = \{A \mid \text{every ideal of } A \text{ is in } \mathcal{M} \}.$$

A radical γ is said to be *principally left (right) hereditary* if $a \in A \in \gamma$ implies $Aa \in \gamma$ ($aA \in \gamma$, respectively). A radical γ is said to be *left (right) strong* if $L \triangleleft_l A$ ($R \triangleleft_r A$) and $L \in \gamma$ ($R \in \gamma$) imply $L \subseteq \gamma(A)$ ($R \subseteq \gamma(A)$, respectively). A radical γ is *normal* if γ is left strong and principally left hereditary. We shall make use of the following condition a left ideal L of a ring A may satisfy with respect to a class \mathcal{M} of rings:

(*) $L \triangleleft_l A$ and $Lz \in \mathcal{M}$ for all $z \in L \cup \{1\}$.

A radical γ is said to be *principally left strong* if $L \subseteq \gamma(A)$ whenever the left ideal L of a ring A satisfies condition (*) with respect to the class $\gamma(=\mathcal{M})$. Principally right strongness is defined analogously.

We will focus on two conditions that a class \mathcal{M} can satisfy.

(H) If $A^{\circ} \in \mathcal{M}$ then $S \in \mathcal{M}$ for every subring $S \subseteq A^{\circ}$.

(Z) If $A \in \mathcal{M}$ then $A^{o} \in \mathcal{M}$.

A class \mathcal{M} of rings is said to be *regular* if every nonzero ideal of a ring in \mathcal{M} has a nonzero homomorphic image in \mathcal{M} . Starting from a regular (in particular, hereditary) class \mathcal{M} of rings the *upper radical operator* \mathcal{U} yields a radical class

 $\mathcal{UM} = \{A \mid A \text{ has no nonzero homomorphic image in } \mathcal{M}\}.$

Recall that the *Baer radical* β is the upper radical determined by all prime rings, the *Brown-McCoy radical* \mathcal{G} is the upper radical determined by all simple rings with unity element, and the Behrens radical \mathcal{B} is the upper radical of all subdirectly irreducible rings having a nonzero idempotent in their hearts.

The lower principally left strong radical construction $\mathcal{L}_{ps}(\mathcal{M})$ is similar to the lower (left) strong radical construction $\mathcal{L}_{s}(\mathcal{M})$ (see [1]).

We shall construct the lower principally left strong radical (see also [7]) in the following way. Let \mathcal{M} be a homomorphically closed class of rings and define $\mathcal{M} = \mathcal{M}_1$,

$$\mathcal{M}_{\alpha+1} = \left\{ A \mid \begin{array}{l} \text{every nonzero homomorphic image of } A \text{ has a} \\ \text{nonzero left ideal with } (*) \text{ in } \mathcal{M}_{\alpha} \text{ or a nonzero} \\ \text{ideal } I \in \mathcal{M}_{\alpha} \end{array} \right\}$$

for ordinals $\alpha \geq 1$ and $\mathcal{M}_{\lambda} = \bigcup_{\alpha < \lambda} \mathcal{M}_{\alpha}$ for limit ordinals λ . In particular,

$$\mathcal{M}_2 = \left\{ A \mid \begin{array}{c} \text{every nonzero homomorphic image of } A \text{ has a} \\ \text{nonzero left ideal with } (*) \text{ in } \mathcal{M} \text{ or a nonzero ideal} \\ I \in \mathcal{M} \end{array} \right\}.$$

The class $\mathcal{L}_{ps}(\mathcal{M}) = \bigcup_{\alpha} \mathcal{M}_{\alpha}$ is called the lower principally left strong radical class. As shown in [6] $\mathcal{L}_{ps}(\mathcal{M})$ is the smallest principally left strong radical containing \mathcal{M} and

$$\mathcal{M} \subseteq \mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}_{ps}(\mathcal{M}) \subseteq \mathcal{L}_s(\mathcal{M}).$$

For any class \mathcal{M} let us define $\mathcal{M}^{\circ} = \{A \mid A^{\circ} \in \mathcal{M}\}$. It is easy to see that if \mathcal{M} is a radical then so is \mathcal{M}° . Let

$$\gamma_l = \{ A \in \gamma \mid \text{every left ideal of } A \text{ is in } \gamma \}$$

and

 $\gamma_r = \{ A \in \gamma \mid \text{every right ideal of } A \text{ is in } \gamma \}.$

Next, we recall some results which will be used later on.

Proposition 1. [2, Lemma 1] Let γ be a radical. If S is a subring of a ring A such that $S^{\circ} \in \gamma$, then also $(S^*)^{\circ} \in \gamma$ where S^* denotes the ideal of A generated by S.

Proposition 2. [5, Lemma 2.4] Let γ be a radical. If $(\beta(A))^{\circ} \in \gamma$, then $\beta(A) \in \gamma$.

Proposition 3. [2, Corollary 1] If $\mathcal{M} \subseteq \mathcal{M}^{\circ}$ then $\mathcal{L}(\mathcal{M}) \subseteq (\mathcal{L}(\mathcal{M}))^{\circ}$ and $\mathcal{L}_{s}(\mathcal{M}) \subseteq (\mathcal{L}_{s}(\mathcal{M}))^{\circ}$.

Proposition 4. [4, Theorem 4] If a radical γ is left strong and principally left hereditary, then γ is normal.

Proposition 5. [2, Lemma 2] For any element a of a ring A, I = r(a)a, where $r(a) = \{x \in A \mid ax = 0\}$ is an ideal of Aa and $I^2 = 0$. In addition Aa/I is a homomorphic image of aA.

Proposition 6. [5, Corollary 4.2] A radical γ is hereditary and normal if and only if γ is principally left strong, principally left hereditary and satisfies condition (H).

Proposition 7. [7, Theorem 6] A radical γ is normal if and only if γ is principally left or right hereditary and principally left or right strong.

Proposition 8. [6, Theorem 3.3] Let \mathcal{M} be a homomorphically closed class of rings satisfying:

- 1) \mathcal{M} contains all zero rings;
- 2) \mathcal{M} is hereditary;
- 3) if $I \triangleleft A$, $I^2 = 0$ and $A/I \in \mathcal{M}$ then $A \in \mathcal{M}$.
- Then $\mathcal{L}_{ps}(\mathcal{M}) = \mathcal{M}_2.$

Proposition 9. [5, Theorem 5.1] The Behrens radical class \mathcal{B} is the largest principally left hereditary subclass of the Brown-McCoy radical class \mathcal{G} , in fact

$$\mathcal{B}=\mathcal{MG},$$

where

$$\mathcal{MG} = \{A \mid Aa \in \mathcal{G} \text{ for all } a \in A\}.$$

A ring A is said to be *(right) strongly prime* if every non-zero ideal I of A contains a finite subset F such that $r_A(F) = 0$, where $r_A(F) = \{x \in A \mid Fx = 0\}$.

The (right) strongly prime radical S is defined as the upper radical determined by the class of all strongly prime rings, i.e. for any ring A,

$$S(A) = \cap \{ I \triangleleft A \mid A/I \text{ is strongly prime} \}.$$

It is known that the radical S is special: so, in particular, S is hereditary and contains the prime radical β .

Proposition 10. [3, Corollary 1] The (right) strongly prime radical S is right strong.

II.

278

Proposition 11. Let γ be a principally left strong radical satisfying the conditions (H) and (Z). Then the largest hereditary subclass $\overline{\gamma}$ of γ will be principally left strong.

Proof. Let $L \triangleleft_l A$ be such that $L \in \overline{\gamma}$ and $Lz \in \overline{\gamma}$ for every $z \in L$. Let L^* be the ideal in A generated by $L, L^* = L + LA$ and suppose $I \triangleleft L^*$. Then $IL \triangleleft L, IL \triangleleft_l I$ and $ILz \triangleleft Lz \in \overline{\gamma}$ for all $z \in L$. Since γ satisfies condition (H), $\overline{\gamma}$ is hereditary, and so $ILz \in \overline{\gamma}$ for all $z \in IL$. Since γ is principally left strong $IL \subseteq \gamma(I)$. We have

$$I(L^*)^2 = I(L + LA)L^* = (IL + ILA)L^* \subseteq ILL^* \subseteq \gamma(I)L^* \subseteq \gamma(I).$$

So $I^3 \subseteq I(L^*)^2 \subseteq \gamma(I)$ and therefore $I/\gamma(I)$ is nilpotent, implying $I/\gamma(I) \in \beta$. We claim that $I^o \in \gamma$. Since $L \in \overline{\gamma} \subseteq \gamma$, by (Z) we conclude that $L^o \in \gamma$. Now Proposition 1 implies that $(L^*)^o \in \gamma$ and so by (H) it follows $I^o \in \gamma$. Hence $(I/\gamma(I))^o \in \gamma \cap \beta$ and applying Proposition 2 and taking into consideration that $I/\gamma(I)$ is nilpotent, we get

$$I/\beta(I) = \beta(I/\gamma(A)) \in \gamma.$$

Thus $I \in \gamma$ and so $\overline{\gamma}$ is principally left strong.

Corollary 12. If a class \mathcal{M} is hereditary and satisfies (Z) then $\mathcal{L}_{ps}(\mathcal{M})$ is hereditary.

Proof. By Proposition 3, we have $\mathcal{L}_{ps}(\mathcal{M}) \subseteq \mathcal{L}_s(\mathcal{M}) \subseteq (\mathcal{L}_s(\mathcal{M}))^{\circ}$. Let $A \in \mathcal{L}_{ps}(\mathcal{M})$ then we get $A^{\circ} \in \mathcal{L}_s(\mathcal{M})$ and so $A^{\circ} \in \mathcal{L}(\mathcal{M})$. Since $\mathcal{L}(\mathcal{M})$ is hereditary, we conclude that $A^{\circ} \in \overline{\mathcal{L}(\mathcal{M})}$ and so $A^{\circ} \in \overline{\mathcal{L}_{ps}(\mathcal{M})}$. This means that $\mathcal{L}_{ps}(\mathcal{M})$ satisfies the conditions (Z) and (H). By Proposition 11, $\overline{\mathcal{L}_{ps}(\mathcal{M})}$ is principally left strong and $\mathcal{M} \subseteq \overline{\mathcal{L}_{ps}(\mathcal{M})} \subseteq \mathcal{L}_{ps}(\mathcal{M})$ and this implies $\overline{\mathcal{L}_{ps}(\mathcal{M})} = \mathcal{L}_{ps}(\mathcal{M})$.

Proposition 13. Let γ be a principally left strong radical satisfying the conditions (H) and (Z). Then γ_r is left strong.

Proof. Let $L \triangleleft_l A$ and $L \in \gamma_r$ and let K be a left ideal of $L^* = L + LA$. Since $L \in \gamma_r$, $kL \in \gamma$ for every $k \in K$. Let $R \triangleleft_r kL$. Then it is easy to see that $RkL \in \gamma$, and by conditions (Z) and (H), $R/RkL \in \gamma$ and so $R \in \gamma$. Hence $kL \in \gamma_r$ for every $k \in K$. An argument similar to the proof of Proposition 5 will show that (Lk + r(k)k)/r(k)k is a homomorphic image of kL, where $r(k) = \{x \in L^*/kx = 0\}$. Hence $(Lk + r(k)k)/r(k)k \in \gamma$. By (H) and (Z) we have $r(k)k \in \gamma$ and so $Lk \in \gamma$ for every $k \in K$. Therefore $Lk \subseteq \gamma(K)$ and $LK \subseteq \gamma(K)$. Clearly

$$K^{3} \subseteq (L^{*}K)K \subseteq (LA^{1}K)K \subseteq LL^{*}K \subseteq LK \subseteq \gamma(K)$$

hence $K \in \gamma$ by Proposition 2.

The next result is a generalization of [2, Corollary 4].

Corollary 14. If \mathcal{M} is a right hereditary class with (Z), then $\mathcal{L}_{ps}(\mathcal{M})$ is one-sided hereditary and $\mathcal{L}_{ps}(\mathcal{M}) = \mathcal{L}_{s}(\mathcal{M})$ (i.e. $\mathcal{L}_{ps}(\mathcal{M})$ is left and right hereditary).

Proof. By Corollary 12, $\mathcal{L}_{ps}(\mathcal{M})$ satisfies condition (H). Let $A \in \mathcal{L}_{ps}(\mathcal{M})$. Then it is easy to see that $A^{\circ} \in \mathcal{L}_{ps}(\mathcal{M})$. Hence $\mathcal{L}_{ps}(\mathcal{M})$ satisfies condition (Z). Hence $\mathcal{L}_{ps}(\mathcal{M})_r$ is a radical. By Proposition 13, $\mathcal{L}_{ps}(\mathcal{M})_r$ is left strong. Since $\mathcal{M} \subseteq \mathcal{L}_{ps}(\mathcal{M})_r$ we get $\mathcal{M} \subseteq \mathcal{L}_{ps}(\mathcal{M})_r \subseteq$ $\mathcal{L}_{ps}(\mathcal{M}) \subseteq \mathcal{L}_s(\mathcal{M})$ and $\mathcal{L}_{ps}(\mathcal{M})_r = \mathcal{L}_s(\mathcal{M})$. Hence $\mathcal{L}_{ps}(\mathcal{M}) = \mathcal{L}_s(\mathcal{M})$. Since $\mathcal{L}_{ps}(\mathcal{M})_r$ is right hereditary and left strong, we have that $\mathcal{L}_{ps}(\mathcal{M})$ is one-sided hereditary. \Box

Theorem 15. Let $\gamma \neq 0$ be a principally left strong radical with (Z) and (H). Then γ_r is contained in γ as a largest nonzero hereditary and normal subradical. Furthermore, $\overline{\gamma}$ is contained in γ as a largest non-zero hereditary principally left strong subradical.

Proof. Let $0 \neq A \in \gamma$. By (Z), $A^{\circ} \in \gamma$ and by (H), $A^{\circ} \in \gamma_r$. All zero-rings of γ are in γ_r and so $\gamma_r \neq 0$. Hence γ_r satisfies conditions (Z) and (H). By Propositions 13, 6 and 4, γ is normal and hereditary.

The second part of the theorem follows from Proposition 11.

Corollary 16. The largest left hereditary subclass S_l of strongly prime radical S is the largest normal radical contained in S.

Theorem 17. The following statements are equivalent for a radical γ .

- 1) γ is hereditary and normal.
- 2) γ is left or right principally hereditary, principally left or right strong and satisfies condition (H).
- 3) There exists a principally left (right, respectively) strong radical δ such that $\delta_r = \gamma$ ($\delta_l = \gamma$, respectively) and satisfies conditions (Z) and (H).
- 4) There exists a right (left, respectively) hereditary class \mathcal{M} of rings satisfying (Z) such that $\gamma = \mathcal{L}_{ps}(\mathcal{M})$ ($\gamma = \mathcal{L}'_{ps}(\mathcal{M})$, respectively), where $\mathcal{L}'_{ps}(\mathcal{M})$ is principally right strong radical generated by \mathcal{M} .

Proof. 2) \implies 1): By Proposition 7, γ is normal and by Proposition 6, γ is hereditary.

1) \Longrightarrow 3): We claim that γ is one-sided hereditary. So let $L \triangleleft_l A \in \gamma$. Since γ is normal, γ is principally left hereditary, so $Aa \in \gamma$, for all $a \in L$. Therefore $Aa \cdot z \in \gamma$ for every $z \in Aa$. Hence $Aa \subseteq \gamma(L)$ for all $a \in L$, and this gives $L^2 \subseteq \gamma(L)$. Again, since γ is normal and satisfies condition (Z), $A^{\circ} \in \gamma$ and by hereditariness $L^{\circ} \in \gamma$. Therefore $L \in \gamma$. Right hereditariness is proved analogously. Now we choose δ to be γ , $\delta = \gamma$ and we have $\gamma = \delta = \delta_l = \delta_r$.

3) \Longrightarrow 4): We choose $\mathcal{M} = \delta_r$ ($\mathcal{M} = \delta_l$, respectively). Then $\delta_r = \mathcal{L}_{ps}(\delta_r) = \mathcal{L}_{ps}(\mathcal{M})$ ($\delta_l = \mathcal{L}'_{ps}(\delta_l) = \mathcal{L}'_{ps}(\mathcal{M})$, respectively) by Proposition 13 and clearly δ_r satisfies (Z).

4) \Longrightarrow 2): By Corollary 14, $\gamma = \mathcal{L}_{ps}(\mathcal{M})$ ($\gamma = \mathcal{L}'_{ps}(\mathcal{M})$) is one-sided hereditary and left strong. Hence by Proposition 4 it is normal. It is easy to see that γ satisfies 2).

Proposition 18. Let γ be a supernilpotent radical and let us assume that $\gamma_l = \gamma_r$ is the largest principally left hereditary subclass of γ which we will denote by δ . Then

$$\mathcal{L}_{ps}(\gamma) = \mathcal{L}_{ps}(\delta) \lor \gamma$$

where \lor denotes the union in the lattice of all radicals (i.e. the lower radical determined by the union of the components).

Proof. Clearly $\mathcal{L}_{ps}(\delta) \lor \gamma \subseteq \mathcal{L}_{ps}(\gamma)$. Conversely, let $A \in \mathcal{L}_{ps}(\gamma)$. Under our hypothesis, we can apply Proposition 8 and so $\mathcal{L}_{ps}(\gamma) = \gamma_2$. Thus any non-zero homomorphic image A' of A has a non-zero γ -ideal or a nonzero left ideal L such that $La \in \gamma$ for all $a \in L \cup \{1\}$. Using our hypothesis again, we conclude that $L \in \delta$ and therefore the $\mathcal{L}_{ps}(\delta)$ -radical of A' is nonzero. Hence A' has a nonzero ideal in $\mathcal{L}_{ps}(\delta) \cup \gamma$ and so $A \in \mathcal{L}_{ps}(\delta) \lor \gamma$. \Box

Corollary 19. $\mathcal{L}_{ps}(\mathcal{G}) = \mathcal{L}_{ps}(\mathcal{B}) \vee \mathcal{G}$ and $\mathcal{G}_2 = \mathcal{B}_2 \vee \mathcal{G}$.

Proof. By Proposition 9, the Brown-McCoy radical satisfies the assumption of Proposition 18, in fact, $\mathcal{MG} = \mathcal{G}_l = \mathcal{G}_r = \mathcal{B}$.

Remark. This corollary can also be obtained as an application of Proposition 8 to the radicals \mathcal{G} and \mathcal{B} .

Acknowledgement. The authors wish to express their indebtedness and gratitude to Prof. R. Wiegandt for his invaluable advice.

References

- Divinsky, N.; Krempa, J.; Suliński, A.: Strong radical properties of alternative and associative rings. J. Algebra 17 (1971), 369–388.
- [2] Puczyłowski, E. R.: Hereditariness of strong and stable radicals. Glasgow Math. J. 23 (1982), 85–90.
- [3] Puczyłowski, E. R.: On Sands' questions concerning strong and hereditary radicals. Glasgow Math. J. 28 (1986), 1–3.
- [4] Sands, A. D.: On normal radicals. J. London Math. Soc. (2) 11 (1975), 361–365.
- [5] Tumurbat, S.; Wiegandt, R.: Principally left hereditary and principally left strong radicals. Algebra Colloquium, to appear.
- [6] Tumurbat, S.: On principally left strong radicals. Acta Math. Hungar., submitted.
- [7] Tumurbat, S.: A note on normal radicals and principally left and right strong radicals. Preprint 2000.

Received May 11, 2000