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Abstract. B.Y. Chen initiated the study of the tensor product immersion of two
immersions of a given Riemannian manifold (see [3]). Inspired by Chen’s definition,
F. Decruyenaere, F. Dillen, L. Verstraelen and L. Vrancken (in [4]) studied the
tensor product of two immersions of, in general, different manifolds; under certain
conditions, this realizes an immersion of the product manifold. In [6] tensor product
surfaces of Euclidean plane curves were investigated.
In the present paper, we deal with tensor product surfaces of a Euclidean space
curve and a Euclidean plane curve. We classify the minimal, totally real and slant
such surfaces, respectively.
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1. Tensor product immersions

Recall definitions and results of [3]. Let M and N be two differentiable manifolds and

f :M → Em,
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h : N → En,

two immersions. The direct sum and tensor product maps

f ⊕ h : M ×N → Em+n,
f ⊗ h : M ×N → Emn

are defined by

(f ⊕ h)(p, q) = (f(p), h(q)),

(f ⊗ h)(p, q) = f(p)⊗ h(q).

Necessary and sufficient conditions for f ⊗ h to be an immersion were obtained in [4] . It
is also proved there that the pairing (⊕,⊗) determines a structure of a semiring on the
set of classes of differentiable manifolds transversally immersed in Euclidean spaces, modulo
orthogonal transformations. Some subsemirings were studied in [5] by F. Decruyenaere, F.
Dillen, L. Verstraelen and one of the present authors.
For many immersions f, h which are not transversal, the tensor product f ⊗ h is still

worthwhile to be investigated and in many cases still produces an immersion. As such, in
the following sections, we will consider the tensor product immersions, actually surfaces in
E6, which are obtained from a Euclidean space curve and a Euclidean plane curve.

2. Minimal tensor product surfaces

Let c1 : R→ E3 and c2 : R→ E2 be two Euclidean curves. Put c1(t) = (α(t), β(t), γ(t)) and
c2(s) = (a(s), b(s)). Then their tensor product is given by

f = c1 ⊗ c2 : R2 → E6

f(t, s) = (α(t)a(s), α(t)b(s), β(t)a(s), β(t)b(s), γ(t)a(s), γ(t)b(s)).

We have

∂f

∂t
= (

.
α(t)a(s),

.
α(t)b(s),

.

β(t)a(s),
.

β(t)b(s),
.
γ(t)a(s),

.
γ(t)b(s)),

∂f

∂s
= (α(t)

.
a(s), α(t)

.

b(s), β(t)
.
a(s), β(t)

.

b(s), γ(t)
.
a(s), γ(t)

.

b(s)),

where
.
a means the derivative of a.

The coefficients of the Riemannian metric g induced on Imf by the Euclidean metric of
E6 are

g11 = ‖ċ1‖2‖c2‖2,

g12 = <c1, ċ1><c2, ċ2>,

g22 = ‖c1‖2‖ċ2‖2.

An orthonormal basis on Imc1 ⊗ c2 is given by

e1 =
1

‖ċ1‖‖c2‖

∂f

∂t
,
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e2 =
1

‖ċ1‖‖c2‖
√
‖ċ1‖2‖c1‖2‖ċ2‖2‖c2‖2 −<c1, ċ1>2<c2, ċ2>2

×

[‖ċ1‖
2‖c2‖

2∂f

∂s
−<c1, ċ1><c2, ċ2>

∂f

∂t
].

The normal space is spanned by

n1 = (−β(t)b(s), β(t)a(s), α(t)b(s),−α(t)a(s), 0, 0),

n2 = (0, 0− γ(t)b(s), γ(t)a(s), β(t)b(s),−β(t)a(s)),

n3 = (−
.

β(t)
.

b(s),
.

β(t)
.
a(s),

.
α(t)

.

b(s),−
.
α(t)

.
a(s), 0, 0),

n4 = (0, 0−
.
γ(t)

.

b(s),
.
γ(t)

.
a(s),

.

β(t)
.

b(s),−
.

β(t)
.
a(s)),

Recall that a submanifold of a Riemannian manifold is said to be minimal if its mean curva-
ture vector H vanishes identically (see, for instance, Chen [1]).
In the case under consideration, Imf is minimal if and only if

h(e1, e1) + h(e2, e2) = 0,

where h denotes the second fundamental form of f , or equivalently

<h(e1, e1) + h(e2, e2), ni> = 0, i ∈ {1, 2, 3, 4}.

A straightforward calculation leads to

<g22
∂2f

∂t2
+ g11

∂2f

∂s2
− 2g12

∂2f

∂t∂s
, ni> = 0, i ∈ {1, 2, 3, 4}. (1)

We have

∂2f

∂t2
= (

..
α(t)a(s),

..
α(t)b(s),

..

β(t)a(s),
..

β(t)b(s),
..
γ(t)a(s),

..
γ(t)b(s)),

∂2f

∂s2
= (α(t)

..
a(s), α(t)

..

b(s), β(t)
..
a(s), β(t)

..

b(s), γ(t)
..
a(s), γ(t)

..

b(s)),

∂2f

∂t∂s
= (

.
α(t)

.
a(s),

.
α(t)

.

b(s),
.

β(t)
.
a(s),

.

β(t)
.

b(s),
.
γ(t)

.
a(s),

.
γ(t)

.

b(s)).

Since <∂
2f
∂t2
, ni> = <

∂2f
∂s2
, ni> = 0, i = 1, 2, (1) implies

g12<
∂2f

∂t∂s
, n1> = g12<

∂2f

∂t∂s
, n2> = 0.

We distinguish two cases:

a) g12 = 0; in this case c1 is spherical or c2 is a circle centered at the origin.

b) < ∂
2f
∂t∂s
, n1> = <

∂2f
∂t∂s
, n2> = 0, which is equivalent to

(
.
a(s)b(s)− a(s)

.

b(s))(
.

β(t)α(t)−
.
α(t)β(t)) = 0,

(
.
a(s)b(s)− a(s)

.

b(s))(
.
γ(t)β(t)− γ(t)

.

β(t)) = 0.
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We have two subcases:

b1)
.
a(s)b(s)− a(s)

.

b(s) = 0, i.e. c2 is a portion of a straight line passing through the origin;

b2)
.

β(t)α(t)−
.
α(t)β(t) = 0 and

.
γ(t)β(t)− γ(t)

.

β(t) = 0, i.e. c1 is a portion of a straight line
passing through the origin.

Also the case a) has two subcases:

a1) c2 is a circle centered at the origin. Then c2(s) = (cos s, sin s). Using equation (1) for
i = 3, 4, we get

<g22
∂2f

∂t2
+ g11

∂2f

∂s2
, n3> = <g22

∂2f

∂t2
+ g11

∂2f

∂s2
, n4> = 0,

or equivalently

‖c1‖
2
<
∂2f

∂t2
, n3>+ ‖

.
c1‖
2
<
∂2f

∂s2
,n3> = 0, (2)

‖c1‖
2
<
∂2f

∂t2
, n4>+ ‖

.
c1‖
2
<
∂2f

∂s2
,n4> = 0. (3)

We may choose t such that ‖c1‖ = ‖
.
c1‖ . Then the last equations become

.

β(t)(
..
α(t)− α(t))−

.
α(t)(

..

β(t)− β(t)) = 0, (4)
.
γ(t)(

..

β(t)− β(t))−
.

β(t)(
..
γ(t)− γ(t)) = 0. (5)

By ‖c1‖ = ‖
.
c1‖ , one has

.
α(t)(

..
α(t)− α(t)) +

.

β(t)(
..

β(t)− β(t)) +
.
γ(t)(

..
γ(t)− γ(t)) = 0. (6)

Consider the system (4)–(6). We have two subsubcases:

a11)
.

β(t) = 0 =⇒ β(t) = 0 =⇒ c1 is an orthogonal hyperbola in the plane x2 = 0.

a12) If all the components of c1 are not constant, then by (4)–(6), it follows that

..
α(t) = α(t),
..

β(t) = β(t),
..
γ(t) = γ(t).

Then

α(t) = λ1 cosh(t+ µ1),
β(t) = λ2 cosh(t+ µ2),
γ(t) = λ3 cosh(t+ µ3).

a2) c1 is spherical, then α
2 + β2 + γ2 = 1. Also we may assume c1 is parametrized by arc

length, i.e.
.
α
2
+
.

β
2
+
.
γ
2
= 1.

Let c2(s) = ρ(s)(cos s, sin s); then a(s) = ρ(s) cos s, b(s) = ρ(s) sin s. One has

.
a(s) =

.
ρ(s) cos s− ρ(s) sin s,

.

b(s) =
.
ρ(s)sin s+ρ(s) cos s,
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..
a(s) =

..
ρ(s) cos s− 2

.
ρ(s) sin s− ρ(s) cos s,

..

b(s) =
..
ρ(s) sin s+ 2

.
ρ(s) cos s− ρ(s) sin s.

We have

∂2f

∂t2
= (

..
α(t)a(s),

..
α(t)b(s),

..

β(t)a(s),
..

β(t)b(s),
..
γ(t)a(s),

..
γ(t)b(s)),

∂2f

∂s2
= (α(t)

..
a(s), α(t)

..

b(s), β(t)
..
a(s), β(t)

..

b(s), γ(t)
..
a(s), γ(t)

..

b(s)).

Using equations (2) and (3), we get

(ρ2 +
.
ρ
2
)<
∂2f

∂t2
, n3>+ ρ

2<
∂2f

∂s2
,n3> = 0, (7)

(ρ2 +
.
ρ
2
)<
∂2f

∂t2
, n4>+ ρ

2<
∂2f

∂s2
,n4> = 0. (8)

The equation (7) becomes

(ρ2 +
.
ρ
2
)(
..
α(t)

.

β(t)−
.
α(t)

..

β(t))(
.
a(s)b(s)− a(s)

.

b(s))

+ρ2(α(t)
.

β(t)−
.
α(t)β(t))(

.
a(s)

..

b(s)−
..
a(s)

.

b(s)) = 0,

which leads to

−(ρ2 +
.
ρ
2
)(
..
α(t)

.

β(t)−
.
α(t)

..

β(t)) + (α(t)
.

β(t)−
.
α(t)β(t))(2

.
ρ
2
− ρ

..
ρ+ ρ2) = 0,

or equivalently

2
.
ρ
2
− ρ

..
ρ+ ρ2

ρ2 +
.
ρ
2 =

..
α(t)

.

β(t)−
.
α(t)

..

β(t)

α(t)
.

β(t)−
.
α(t)β(t)

. (9)

The left hand term is a function of s and right hand term is a function of t, then both should
be a constant, say k. Similarly from (8) we find

..

β(t)
.
γ(t)−

.

β(t)
..
γ(t)

β(t)
.
γ(t)−

.

β(t)γ(t)
= k. (10)

If c1 has a constant component, which must be 0, then c1 is a portion of a circle. In this case
c2 is an orthogonal hyperbola (see also [6]).
Otherwise from the equation (9) and (10) we get

..
α(t)− kα(t)

.
α(t)

=

..

β(t)− kβ(t)
.

β(t)
=

..
γ(t)− kγ(t)

.
γ(t)

= m(t). (11)

Since c1 is parametrized by arc length, we have
.
α(t)

..
α(t)+

.

β(t)
..

β(t)+
.
γ(t)

..
γ(t) = 0. Substituting

(11) in the last relation, we obtain m(t) = 0. Then we get
..
α(t) = kα(t),

..

β(t) = kβ(t),
..
γ(t) = kγ(t).
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c1 being spherical, we have k<0. We put k = −l2, l>0. Finally we find

α(t) = ε1 cos lt+ η1 sin lt,
β(t) = ε2 cos lt+ η2 sin lt,
γ(t) = ε3 cos lt+ η3 sin lt.

satisfying ε21 + ε
2
2 + ε

2
3 = η

2
1 + η

2
2 + η

2
3 = 1 and ε1η1 + ε2η2 + ε3η3 = 0.

Also from equation (9) one gets

ρ
..
ρ−

.
ρ
2
= (1 + l2)(ρ2 +

.
ρ
2
). (12)

Putting w =
.
ρ
ρ
, from (12) one obtains w = tan[(1 + l2)s+ l1], which implies

ρ(s) =
l2

[cos(1 + l2)s+ l1]
1

1+l2

,

where l1, l2 are constant. Thus c2 is sinusoidal spiral. In particular for l = 1, c2 is an
orthogonal hyperbola.
Conversely, it is easily seen that in all the above discussed cases, the tensor product

immersion c1 ⊗ c2 is minimal.
Summing up, the following theorem is proved.

Theorem 2.1. The tensor product immersion c1 ⊗ c2 of a Euclidean space curve and a
Euclidean plane curve is a minimal surface in E6 if and only if either
i) c1 is a straight line through 0;

ii) c2 is a straight line through 0;

iii) c1 is a circle centered at 0 and c2 is an orthogonal hyperbola centered at 0;

iv) c1 is an orthogonal hyperbola centered at 0 and c2 is a circle centered at 0;

v) c2 is a circle centered at 0 and c1 is given by

c1(t) = (λ1 cosh(t+ µ1), λ2 cosh(t+ µ2), λ3 cosh(t+ µ3));

vi) c1 is given by

c1(t) = (ε1 cos lt+ η1 sin lt, ε2 cos lt+ η2 sin lt, ε3 cos lt+ η3 sin lt),

where ε21 + ε
2
2 + ε

2
3 = η

2
1 + η

2
2 + η

2
3 = 1 and ε1η1 + ε2η2 + ε3η3 = 0, and

c2(s) =
l2

[cos(1 + l2)s+ l1]
1

1+l2

(cos s, sin s),

with l1, l2 =constant.
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3. Totally real and slant tensor product surfaces

Let c1 : R → E3 and c2 : R → E2 be two Euclidean curves and f = c1 ⊗ c2 their tensor
product.
We identify E6 with C3 and consider the standard complex structure J given by

J(y1, . . . , y6) = (−y2, y1,−y4, y3,−y6, y5), y1, . . . , y6 ∈ R.

Then Imf is a real 2-dimensional submanifold of C3, which is totally real, i.e. the complex
structure J of E6 at each point transforms the tangent space to the surface into the normal
space, according to the following result.

Theorem 3.1. The tensor product immersion c1 ⊗ c2 of a Euclidean space curve and a
Euclidean plane curve is totally real in (C3, J) if and only if c1 is spherical or c2 is a portion
of a straight line passing through 0.

Proof. Imf is a totally real surface if and only if J(∂f
∂t
) is orthogonal to ∂f

∂s
and J(∂f

∂s
) is

orthogonal to ∂f
∂t
. We have

J(
∂f

∂t
) = (−

.
α(t)b(s),

.
α(t)a(s),−

.

β(t)b(s),
.

β(t)a(s),−
.
γ(t)b(s),

.
γ(t)a(s)),

where
.
α means the derivative of α.

By a straightforward calculation, we obtain

<J(
∂f

∂t
),
∂f

∂s
> = −<J(

∂f

∂s
),
∂f

∂t
> = 0

if and only if
α(t)

.
α(t) + β(t)

.

β(t) + γ(t)
.
γ(t) = 0

or
a(s)

.

b(s)− b(s)
.
a(s) = 0.

Integrating these equations, we find that c1 is spherical or c2 is a portion of a straight line
which contains 0, respectively.
Recall the definition of a slant surface in (C3, J) (see [2]). Let M be a surface in (C3, J).

For a given orthonormal basis {e1, e2} of TxM (x ∈M), we put

θ(TxM) = arccos<Je1, e2>,

which is independent of the choice of {e1, e2}. M is said to be slant if θ(TxM) is constant
along M . Totally real and complex surfaces are improper slant surfaces, with slant angles
θ = π

2
and θ = 0, respectively.

Let c1 : R → E3, c2 : R → E2 be two Euclidean curves. From Theorem 3.1, we know
that if c2 is a portion of a straight line containing 0, c1 ⊗ c2 is an improper slant surface.
Otherwise, we consider polar coordinates on c2. Then

c2(s) = ρ2(s)(cos s, sin s).
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A straightforward computation leads to

<Je1, e2> =
[a(s)

.

b(s)− b(s)
.
a(s)][α(t)

.
α(t) + β(t)

.

β(t) + γ(t)
.
γ(t)]√

‖ċ1‖2‖c1‖2‖ċ2‖2‖c2‖2 −<c1, ċ1>2<c2, ċ2>2
.

Let A(t) = α2(t) + β2(t) + γ2(t), B =
.
α
α
and R =

.
ρ
ρ
. Then

cos θ =
1√

ρ2(ρ2 +
.
ρ
2
)A2 − ρ2

.
ρ
2
(
.
A
2
)2
ρ2
.

A

2
.

Therefore Imf is a slant surface if and only if

B = constant and R = constant,

or equivalently

A(t) = k1e
l1t,

ρ(s) = k2e
l2s.

We proved the following

Theorem 3.2. The tensor product immersion c1 ⊗ c2 of a Euclidean space curve and a
Euclidean plane curve is a proper slant surface if and only if c2 is a logarithmic spiral curve
or a circle and c1 satisfies α

2(t) + β2(t) + γ2(t) = k1e
l1t , for all t ∈ R.
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