Geodesic CR-Lightlike Submanifolds

Bayram Sahin Rifat Güneş

Department of Mathematics, Faculty of Sciences and Arts Inonu University, Malatya, Turkey e-mail:bsahin@inonu.edu.tr

Abstract. Geodesic (totally geodesic, D-geodesic, D'-geodesic and mixed geodesic) CR-lightlike submanifolds in indefinite Kaehler manifold are investigated. Some necessary and sufficient conditions on totally geodesic, D-geodesic, D'-geodesic and mixed geodesic CR-lightlike submanifolds are obtained. We find geometric properties of CR-lightlike submanifolds of an indefinite Kaehler manifold.

1. Introduction

The general theory of a lightlike submanifold has been developed by Kupeli [10] and Bejancu-Duggal [8]. In [9], the authors constructed the principal vector bundles to a lightlike submanifold in semi-Riemann manifold and obtained Gauss-Weingarten formulae as well as other properties of this submanifold.

The study of the geometry of CR-submanifolds in a Kaehler manifold was initiated by Bejancu and has been developed by [2], [4], [5], [6] and others.

In this paper, CR-lightlike submanifolds of indefinite Kaehler manifolds which were defined in [8] are considered. In particular, we study geodesic CR-lightlike submanifolds in indefinite Kaehler manifolds. Some characterizations of totally geodesic, D-geodesic, D'geodesic and mixed geodesic CR-lightlike submanifolds in indefinite Kaehler manifolds are given.

2. Preliminaries

Let $(\overline{M},\overline{g})$ be a real (m+n)-dimensional semi-Riemann manifold, m, n > 1 and \overline{g} be a semi-Riemann metric on \overline{M} . We denote by q the constant index of \overline{g} and we suppose that \overline{M} is not Riemann manifold.

0138-4821/93 \$ 2.50 © 2001 Heldermann Verlag

Let M be a lightlike submanifold of dimension m of \overline{M} . In this case there exists a smooth distribution on M, named a radical distribution such that $N_p = TM_p \cap TM_p^{\perp}, \forall p \in M$. If the rank of RadTM is r > 0, M is called an r-lightlike submanifold of \overline{M} . Then, there are four cases: I. $0 < r < \min\{m, n\}$; II. 1 < r = n < m; III. 1 < r = m < n; IV. 1 < r = m = n. In the first case the submanifold is called an r-lightlike submanifold, in the second a coisotropic submanifold, in the third an isotropic submanifold and in the fourth a totally lightlike submanifold.

Let M be an r-lightlike submanifold of \overline{M} . We consider the complementary distribution S(TM) of Rad(TM) on TM which is called a screen distribution. Then, we have the direct orthogonal sum

$$TM = RadTM \perp S(TM). \tag{2.1}$$

As S(TM) is a nondegenerate vector subbundle of $T\overline{M}|_M$, we put

$$T\overline{M}\mid_{M} = S(TM) \perp S(TM)^{\perp}, \qquad (2.2)$$

where $S(TM)^{\perp}$ is the complementary orthogonal vector subbundle of S(TM) in $T\overline{M} \mid_{M}$. Moreover, S(TM), $S(TM)^{\perp}$ are non-degenerate, we have the following orthogonal direct decomposition

$$S(TM)^{\perp} = S(TM^{\perp}) \perp S(TM^{\perp})^{\perp}.$$
(2.3)

Theorem 2.1. [9] Let $(M, g, S(TM), S(TM^{\perp}))$ be an *r*-lightlike submanifold of a semi-Riemannian manifold $(\overline{M}, \overline{g})$. Then, there exists a complementary vector bundle ltr(TM)called a lightlike transversal bundle of Rad(TM) in $S(TM^{\perp})^{\perp}$ and the basis of $\Gamma(ltr(TM) \mid_U)$ consists of smooth sections $\{N_1, \ldots, N_r\}$ of $S(TM^{\perp})^{\perp} \mid_U$ such that

$$\overline{g}(N_i,\xi_j) = \delta_{ij}, \overline{g}(N_i,N_j) = 0, \, i,j = 0, 1 \dots, r$$

where $\{\xi_1, \ldots, \xi_r\}$ is a basis of $\Gamma(RadTM) \mid_U$.

We consider the vector bundle

$$tr(TM) = ltr(TM) \perp S(TM^{\perp}).$$
(2.4)

Thus

$$T\overline{M} = TM \oplus tr(TM) = S(TM) \perp S(TM^{\perp}) \perp (Rad(TM) \oplus ltr(TM).$$
(2.5)

Now, let $\overline{\nabla}$ be the Levi-Civita connection on \overline{M} , we have

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \,\forall X, Y \in \Gamma \left(TM\right)$$

and

$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V, \, \forall X \in \Gamma(TM) \text{ and } V \in \Gamma(tr(TM)).$$

Using the projectors $L: tr(TM) \longrightarrow ltr(TM), S: tr(TM) \longrightarrow S(TM^{\perp})$, from [9], we have

$$\overline{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y)$$
(2.6)

and

$$\overline{\nabla}_X N = -A_N X + \nabla_X^l N + D^s(X, N) \tag{2.7}$$

$$\overline{\nabla}_X W = -A_W X + \nabla^s_X W + D^l(X, W) \tag{2.8}$$

for any $X, Y \in \Gamma(TM)$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$, where $h^{l}(X,Y) = Lh(X,Y)$, $h^{s}(X,Y) = Sh(X,Y)$, $\nabla^{l}_{X}N$, $D^{l}(X,W) \in \Gamma(ltr(TM))$, $\nabla^{s}_{X}W$, $D^{s}(X,N) \in \Gamma(S(TM^{\perp}))$ and $\nabla_{X}Y, A_{N}X, A_{W}X \in \Gamma(TM)$.

Denote by P the projection morphism of TM to the screen distribution, we consider the decomposition

$$\nabla_X PY = \nabla_X^* PY + h^*(X, PY) \tag{2.9}$$

$$\nabla_X \xi = -A_{\xi}^* X + \nabla_X^{*^t} \xi \tag{2.10}$$

for any $X, Y \in \Gamma(TM)$, $\xi \in \Gamma(Rad(TM))$. Then we have the following equations

$$\overline{g}\left(h^{l}(X, PY), \xi\right) = g\left(A_{\xi}^{*}X, PY\right), \ \overline{g}\left(h^{*}(X, PY), N\right) = g\left(A_{N}X, PY\right),$$
(2.11)

$$g\left(A_{\xi}^*PX, PY\right) = g\left(PX, A_{\xi}^*PY\right), \ A_{\xi}^*\xi = 0.$$
(2.12)

Let $(\overline{M}, \overline{J}, \overline{g})$ be a real 2m-dimensional indefinite almost Hermitian manifold and M be a real n-dimensional submanifold of \overline{M} .

Definition 2.1. [8] A submanifold M of an indefinite almost Hermitian manifold \overline{M} is said to be a CR-lightlike submanifold if the following two conditions are fulfilled:

i) $\overline{J}(Rad(TM))$ is a distribution on M such that

$$Rad(TM) \cap \overline{J}Rad(TM) = \{0\}$$
 .

ii) There exist vector bundles S(TM), $S(TM^{\perp})$, ltr(TM), D_0 and D' over M such that

$$S(TM) = \left\{ \overline{J} \left(RadTM \right) \oplus D' \right\} \perp D_0, \ \overline{J}D_0 = D_0, \ \overline{J}D' = L_1 \perp L_2,$$

where D_0 is a nondegenerate distribution on M and L_1, L_2 are vector bundles of ltr(TM) and $S(TM^{\perp})$, respectively.

From the definition of CR-lightlike submanifold, we have

$$TM = D \oplus D'$$

where

$$D = RadTM \perp \overline{J}RadTM \perp D_0.$$

We denote by S and Q the projections on D and D', respectively. Then we have

$$\overline{J}X = fX + \omega X \tag{2.13}$$

for any $X, Y \in \Gamma(TM)$, where $fX = \overline{J}SX$ and $\omega X = \overline{J}QX$. On the other hand, we set

$$\overline{J}V = BV + CV \tag{2.14}$$

for any $V \in \Gamma(tr(TM))$, where $BV \in \Gamma(TM)$ and $CV \in \Gamma(tr(TM))$. Unless otherwise stated, M_1 and M_2 are supposed to as $\overline{J}L_1$ and $\overline{J}L_2$, respectively.

3. Geodesic CR-lightlike submanifolds

Definition 3.1. A CR-lightlike submanifold of an indefinite almost Hermitian manifold is called mixed geodesic CR-lightlike submanifold if its second fundamental form h satisfies

$$h(X, U) = 0$$

for any $X \in \Gamma(D)$ and $U \in \Gamma(D')$.

Definition 3.2. A CR-lightlike submanifold of an indefinite almost Hermitian manifold is called D-geodesic CR-lightlike submanifold if its second fundamental form h satisfies

$$h(X,Y) = 0$$

for any $X, Y \in \Gamma(D)$.

Definition 3.3. A CR-lightlike submanifold of an indefinite almost Hermitian manifold is called D'-geodesic CR-lightlike submanifold if its second fundamental form h satisfies

$$h(U,V) = 0$$

for any $U, V \in \Gamma(D')$.

Theorem 3.1. Let \overline{M} be an indefinite Kaehler manifold and M be a CR-lightlike submanifold of \overline{M} . Then, M is totally geodesic if and only if

 $(L_{\mathcal{E}}\overline{g})(X,Y) = 0$

and

$$(L_W\overline{g})(X,Y) = 0$$

for any $X, Y \in \Gamma(TM), \xi \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. We note that to show M is totally geodesic, it suffices to show that

$$h(X,Y) = 0$$

for any $X, Y \in \Gamma(TM)$. On the other hand, by the definition of lightlike submanifolds h(X, Y) = 0 if and only if $\overline{q}(h(X, Y), \xi) = 0$

and

$$\overline{g}(h(X,Y),W) = 0.$$

From (2.6) and definition of Lie derivative we have

$$\begin{split} \overline{g}\left(h(X,Y),\xi\right) &= \overline{g}\left(\overline{\nabla}_X Y,\xi\right) \\ &= X\overline{g}\left(Y,\xi\right) - \overline{g}\left(Y,\overline{\nabla}_X\xi\right) \\ &= -\overline{g}\left(Y,[X,\xi]\right) - \overline{g}\left(Y,\overline{\nabla}_\xi X\right) \\ &= -\overline{g}\left(Y,[X,\xi]\right) - \xi\overline{g}\left(Y,X\right) + \overline{g}\left(\overline{\nabla}_\xi Y,X\right) \\ &= -\overline{g}\left(Y,[X,\xi]\right) - \xi\overline{g}\left(Y,X\right) + \overline{g}\left(X,[\xi,Y]\right) + \overline{g}\left(\overline{\nabla}_Y\xi,X\right) \\ &= -\left(L_{\xi}\overline{g}\right)\left(X,Y\right) + \overline{g}\left(\overline{\nabla}_Y\xi,X\right) \\ &= -\left(L_{\xi}\overline{g}\right)\left(X,Y\right) - \overline{g}\left(\xi,\overline{\nabla}_Y X\right) \end{split}$$

or

$$2\overline{g}\left(h(X,Y),\xi\right) = -\left(L_{\xi}\overline{g}\right)\left(X,Y\right). \tag{3.1}$$

In a similar way we obtain

$$\begin{split} \overline{g}\left(h(X,Y),W\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,W\right) \\ &= X\overline{g}\left(Y,W\right) - \overline{g}\left(Y,\overline{\nabla}_{X}W\right) \\ &= -\overline{g}\left(Y,[X,W]\right) - \overline{g}\left(Y,\overline{\nabla}_{W}X\right) \\ &= -\overline{g}\left(Y,[X,W]\right) - W\overline{g}\left(Y,X\right) + \overline{g}\left(\overline{\nabla}_{W}Y,X\right) \\ &= -\overline{g}\left(Y,[X,W]\right) - W\overline{g}\left(Y,X\right) + \overline{g}\left(X,[W,Y]\right) + \overline{g}\left(\overline{\nabla}_{Y}W,X\right) \\ &= -\left(L_{W}\overline{g}\right)\left(X,Y\right) + \overline{g}\left(\overline{\nabla}_{Y}W,X\right) \\ &= -\left(L_{W}\overline{g}\right)\left(X,Y\right) - \overline{g}\left(W,\overline{\nabla}_{Y}X\right) \end{split}$$

or

$$2\overline{g}(h(X,Y),W) = -(L_W\overline{g})(X,Y)$$
(3.2)

for any $W \in \Gamma(S(TM^{\perp}))$. Thus, from (3.1) and (3.2), the proof is complete.

It is obvious that from the proof of the theorem, the assertion of the theorem is true for any lightlike submanifold of a semi-Riemann manifold.

Lemma 3.2. Let M be a CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then $= (l_1(X, Y), W) = = (A, Y, Y)$

$$\overline{g}(h(X,Y),W) = \overline{g}(A_WX,Y)$$

for any $X \in \Gamma(D), Y \in \Gamma(D')$ and $W \in \Gamma\left(S(TM^{\perp})\right)$.

Proof. For any $X \in \Gamma(D), Y \in \Gamma(D')$ and $W \in \Gamma(S(TM^{\perp}))$ we have

$$\overline{g}(h(X,Y),W) = \overline{g}(\overline{\nabla}_X Y,W)$$
$$= -\overline{g}(Y,\overline{\nabla}_X W)$$

From (2.8) it follows

$$\overline{g}(h(X,Y),W) = -\overline{g}(Y, -A_WX + \nabla_X^s W + D^l(X,W))$$
$$= \overline{g}(Y, A_WX).$$

Theorem 3.3. Let M be a CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then M is mixed geodesic if and only if

$$A_{\xi}^*X \in \Gamma\left(D_0 \perp \overline{J}L_1\right)$$

and

$$A_W X \in \Gamma \left(D_0 \perp RadTM \perp \overline{J}L_1 \right)$$

for any $X \in \Gamma(D)$, $\xi \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

587

Proof. By the definition of CR-lightlike submanifolds, M is mixed geodesic if and only if

and
$$\overline{g}(h(X,Y),\xi) = 0$$

 $\overline{g}\left(h(X,Y),W\right)=0$

for any $X \in \Gamma(D)$ and $Y \in \Gamma(D')$ and $W \in \Gamma(S(TM^{\perp}))$. Thus, from (2.6) and (2.10) we get

$$\overline{g}(h(X,Y),\xi) = \overline{g}(h^{l}(X,Y),\xi)$$

$$= \overline{g}(\overline{\nabla}_{X}Y,\xi)$$

$$= -\overline{g}(Y,\overline{\nabla}_{X}\xi)$$

$$= -\overline{g}(Y,\nabla_{X}\xi)$$

$$\overline{a}(h(Y,Y),\xi) = \overline{a}(Y,A^{*}Y)$$
(3.3)

or

$$\overline{g}(h(X,Y),\xi) = \overline{g}(Y,A_{\xi}^*X).$$
(3.3)

Thus assertion of theorem follows from (3.3) and Lemma 3.2.

Theorem 3.4. Let M be a CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then M is D-geodesic if and only if

and

$$\overline{g}(Y, A_W X) = \overline{g}\left(D^l(X, W), Y\right)$$

$$\nabla_X^* \overline{J}\xi \notin \Gamma\left(D_0 \perp \overline{J}L_1\right), \ A_\xi^* Y \notin \Gamma\left(\overline{J}L_1\right)$$

for any $X, Y \in \Gamma(D), \xi, \xi' \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. By the definition of lightlike submanifolds and Definition 3.2, M is D-geodesic if and only if

and

$$\overline{g}\left(h^{l}\left(X,Y\right),\xi\right) = 0$$

 $\overline{g}\left(h^{s}\left(X,Y\right),W\right) = 0$

for any $X, Y \in \Gamma(D), \xi, \xi' \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Thus we have

$$\overline{g}(h^{s}(X,Y),W) = \overline{g}(\overline{\nabla}_{X}Y,W)$$

$$= -\overline{g}(Y,\overline{\nabla}_{X}W)$$

$$= -\overline{g}(Y,-A_{W}X + \nabla_{X}^{s}W + D^{l}(X,W))$$

$$= -\overline{g}(Y,-A_{W}X) - \overline{g}(Y,D^{l}(X,W))$$

$$\overline{a}(h^{s}(X,Y),W) = \overline{a}(Y,A_{W}X) - \overline{a}(Y,D^{l}(X,W))$$
(3.4)

or

$$\overline{g}\left(h^{s}\left(X,Y\right),W\right) = \overline{g}\left(Y,A_{W}X\right) - \overline{g}\left(Y,D^{l}(X,W)\right).$$
(3.4)

In a similar way we get

$$\begin{aligned} \overline{g}\left(h^{l}\left(X,Y\right),\xi\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,\xi\right) \\ &= -\overline{g}\left(\overline{J}Y,\overline{\nabla}_{X}\overline{J}\xi\right) \\ &= -\overline{g}\left(\overline{J}Y,\nabla_{X}\overline{J}\xi + h\left(X,\overline{J}\xi\right)\right) \\ &= -\overline{g}\left(\overline{J}Y,\nabla_{X}\overline{J}\xi\right) - \overline{g}\left(\overline{J}Y,h\left(X,\overline{J}\xi\right)\right) \end{aligned}$$

588

or from (2.9) we obtain

$$\overline{g}\left(h^{l}\left(X,Y\right),\xi\right) = -\overline{g}\left(\overline{J}Y,\nabla_{X}^{*}\overline{J}\xi\right) - \overline{g}\left(\overline{J}Y,h\left(X,\overline{J}\xi\right)\right).$$
(3.5)

Since $Y \in \Gamma(D)$ for the second expression in the right side of equation (3.5), we have $Y \in \Gamma(Rad(TM)), Y \in \Gamma(\overline{J}Rad(TM))$ or $Y \in \Gamma(D_0)$. If $Y \in \Gamma(Rad(TM))$, we get

$$\overline{g}\left(h^{l}\left(X,\overline{J}\xi\right),\overline{J}Y\right)=0$$

and if $Y \in \Gamma(D_0)$ then we obtain

$$\overline{g}\left(h^{l}\left(X,\overline{J}\xi\right),\overline{J}Y\right)=0.$$

If $Y \in \Gamma(\overline{J}Rad(TM))$ then we put $Y = \overline{J}\xi'$. Hence we derive

$$-\overline{g}\left(h^{l}\left(X,\overline{J}\xi\right),\xi'\right) = -\overline{g}\left(A_{\xi'}^{*}X,\overline{J}\xi\right).$$
(3.6)

Thus, from (3.5) follows

$$\overline{g}\left(h^{l}\left(X,Y\right),\xi\right) = -\overline{g}\left(Y,\nabla_{X}^{*}\overline{J}\xi\right) - \overline{g}\left(A_{\xi'}^{*}X,\overline{J}\xi\right)$$

Hence if $\nabla_X^* \overline{J}\xi \notin \Gamma(D_0 \perp M_1)$ and $A_{\xi}^* X \notin \Gamma(M_1)$ we get $h^l(X, Y) = 0$. Conversely, if $h^l(X, Y) = 0$ then, for any $Y \in \Gamma(\overline{J}RadTM)$, since

$$g(h^{l}(X,Y),\xi) = g(A_{\xi}^{*}X,Y) = 0$$

we have $A_{\xi}^*X \notin \Gamma(M_1)$ and for any $Y \in \Gamma(D_0 \perp RadTM)$, we obtain

$$\overline{g}(h^l(X,Y),\xi) = \overline{g}(\overline{\nabla}_X Y,\xi)$$

$$= \overline{g}(\overline{\nabla}_X \overline{J}Y, \overline{J}\xi)$$

$$= -\overline{g}(\overline{J}Y, \overline{\nabla}_X \overline{J}\xi)$$

$$= -\overline{g}(\overline{J}Y, \nabla_X \overline{J}\xi)$$

$$= -\overline{g}(\overline{J}Y, \nabla_X \overline{J}\xi)$$

$$= -\overline{g}(\overline{J}Y, \nabla_X^* \overline{J}\xi).$$

Since M is D-geodesic, we derive $\nabla_X^* \overline{J}\xi \notin \Gamma(D_0 \perp M_1)$.

Theorem 3.5. Let M be a CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then M is D'-geodesic if and only if A_WZ and A_{ξ}^*Z have no components in $M_2 \perp \overline{J}RadTM$ for any $Z \in \Gamma(D'), \xi \in \Gamma(RadTM)$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. From (2.6) we have

$$\overline{g}(h(Z,V),W) = \overline{g}\left(\overline{\nabla}_Z V,W\right)$$
$$= -\overline{g}\left(V,\overline{\nabla}_Z W\right)$$

for any $Z, V \in \Gamma(D')$, or

$$\overline{g}(h(Z,V),W) = \overline{g}(A_W Z, V).$$
(3.7)

On the other hand we get

$$\overline{g}(h(Z,V),\xi) = \overline{g}(\overline{\nabla}_Z V,\xi)$$
$$= -\overline{g}(V,\overline{\nabla}_Z \xi)$$

or

$$\overline{g}(h(Z,V),\xi) = \overline{g}\left(A_{\xi}^*Z,V\right).$$
(3.8)

Then our assertion follows from (3.7) and (3.8).

Corollary 3.6. Let M be a CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then M is D'-geodesic if and only if

- i) $A_W Z$ has no component in $M_2 \perp \overline{J} RadTM$,
- ii) $A_{\overline{J}V}Z$ has no component in M_1 , for any $Z, V \in \Gamma(D'), \xi \in \Gamma(Rad(TM))$.

Proof. From (2.6)

$$\overline{g}(h(Z,V),\xi) = \overline{g}(\overline{\nabla}_Z V,\xi)$$

$$= \overline{g}(\overline{J}\overline{\nabla}_Z V,\overline{J}\xi)$$

$$= \overline{g}(\overline{\nabla}_Z \overline{J}V,\overline{J}\xi)$$

$$= -\overline{g}(A_{\overline{J}V}Z,\overline{J}\xi)$$

for any $Z, V \in \Gamma(D')$. Then our assertion follows from Theorem 3.4.

Lemma 3.7. Let M be a CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . If the distribution D is integrable then the following assertions hold:

i)
$$\overline{g}\left(D^{l}\left(\overline{J}X,W\right),Y\right) = \overline{g}\left(D^{l}\left(X,W\right),\overline{J}Y\right) \iff \overline{g}\left(A_{W}\overline{J}X,Y\right) = \overline{g}\left(A_{W}X,\overline{J}Y\right),$$

ii) $\overline{g}\left(D^{l}\left(\overline{J}X,W\right),\xi\right) = \overline{g}\left(A_{W}X,\overline{J}\xi\right),$ iii) $\overline{g}\left(D^{l}\left(X,W\right),\xi\right) = \overline{g}\left(A_{W}\overline{J}X,\overline{J}\xi\right).$

Proof. From (2.8) we have

$$\begin{aligned} \overline{g}\left(D^{l}\left(\overline{J}X,W\right),Y\right) &= \overline{g}\left(\overline{\nabla}_{\overline{J}X}W - \nabla^{s}_{\overline{J}X}W + A_{W}\overline{J}X,Y\right) \\ &= \overline{g}\left(\overline{\nabla}_{\overline{J}X}W + A_{W}\overline{J}X,Y\right) \\ &= -\overline{g}\left(W,\overline{\nabla}_{\overline{J}X}Y\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right) \\ &= -\overline{g}\left(W,\nabla_{\overline{J}X}Y + h\left(\overline{J}X,Y\right)\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right) \\ &= -\overline{g}\left(W,h\left(\overline{J}X,Y\right)\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right). \end{aligned}$$

Then, taking in account that D is integrable, we obtain

$$\overline{g}\left(D^{l}\left(\overline{J}X,W\right),Y\right) = -\overline{g}\left(W,h\left(\overline{J}X,Y\right)\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right)$$

$$= -\overline{g}\left(W,h\left(X,\overline{J}Y\right)\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right)$$

$$= -\overline{g}\left(W,\overline{\nabla}_{X}\overline{J}Y\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right)$$

$$= \overline{g}\left(\overline{\nabla}_{X}W,\overline{J}Y\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right)$$

$$= -\overline{g}\left(A_{W}X,\overline{J}Y\right) + \overline{g}\left(D^{l}\left(X,W\right),\overline{J}Y\right) + \overline{g}\left(A_{W}\overline{J}X,Y\right)$$

or

$$\overline{g}\left(D^{l}\left(\overline{J}X,W\right),Y\right)-\overline{g}\left(D^{l}\left(X,W\right),\overline{J}Y\right)=\overline{g}\left(A_{W}\overline{J}X,Y\right)-\overline{g}\left(A_{W}X,\overline{J}Y\right).$$

This is proof of (i). Substituting $Y = \xi$, $Y = \overline{J}\xi$ in (i) we obtain (ii) and (iii).

Lemma 3.8. Let M be a mixed geodesic CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then we have

$$A_{\xi}^*X \in \Gamma\left(\overline{J}Rad(TM)\right)$$

for any $X \in \Gamma(D')$.

Proof. Using the Kaehler character of \overline{M} and (2.6),

$$h\left(\overline{J}\xi, X\right) = \overline{\nabla}_X \overline{J}\xi - \nabla_X \overline{J}\xi$$
$$= \overline{J} \overline{\nabla}_X \xi - \nabla_X \overline{J}\xi$$
$$= \overline{J} \nabla_X \xi + \overline{J} h(X,\xi) - \nabla_X \overline{J}\xi$$

for any $X \in \Gamma(D')$, $Y \in \Gamma(D')$. Since M is mixed geodesic, we have

$$\overline{J}\nabla_X\xi=\nabla_X\overline{J}\xi.$$

From (2.9) and (2.10) we derive

$$-\overline{J}A_{\xi}^{*}X + \overline{J}\nabla_{X}^{*}\xi = \nabla_{X}^{*}\overline{J}\xi + h^{*}(X,\overline{J}\xi)$$

or from (2.13)

$$-fA_{\xi}^{*}X - \omega A_{\xi}^{*}X + \overline{J}\nabla_{X}^{*}{}^{t}\xi = \nabla_{X}^{*}\overline{J}\xi + h^{*}(X,\overline{J}\xi).$$

Thus

$$\omega A_{\varepsilon}^* X = 0$$

or

$$A_{\xi}^*X \in \Gamma\left(\overline{J}Rad(TM) \perp D_0\right).$$

If $A_{\xi}^{*}X \in \Gamma(D_{0})$ then since D_{0} is nondegenerate, it must be

$$\overline{g}\left(A_{\xi}^*X, Z_0\right) \neq 0.$$

But from (2.6) and (2.10) we get

$$\overline{g}\left(A_{\xi}^{*}X, Z_{0}\right) = \overline{g}\left(-\nabla_{X}\xi + \nabla_{X}^{*^{t}}\xi, Z_{0}\right)$$

$$= \overline{g}\left(-\nabla_{X}\xi, Z_{0}\right)$$

$$= \overline{g}\left(-\overline{\nabla}_{X}\xi, Z_{0}\right)$$

$$= \overline{g}\left(\xi, \overline{\nabla}_{X}Z_{0}\right)$$

$$= \overline{g}\left(\xi, \nabla_{X}Z_{0} + h(X, Z_{0})\right)$$

$$= 0.$$

Thus $A_{\xi}^*X \notin \Gamma(D_0)$.

From (2.10) and Lemma 3.2, we have the following lemma.

Lemma 3.9. Let M be a mixed geodesic CR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then

$$\overline{g}\left(h^{l}\left(X,Y\right),\xi\right)=0$$

for any $X \in \Gamma(D'), Y \in \Gamma(M_2)$ and $\xi \in \Gamma(Rad(TM))$.

By the definition of CR-lightlike submanifolds and from (2.11), (2.12) we have the following corollaries.

Corollary 3.10. Let \overline{M} be an indefinite almost complex manifold and M be a mixed CRlightlike submanifold of \overline{M} . Then

$$A_{\xi}^*X \in \Gamma\left(\overline{J}Rad(TM) \perp M_2\right)$$

for any $X \in \Gamma(D')$.

Corollary 3.11. Let \overline{M} be an indefinite almost complex manifold and M be a mixed CRlightlike submanifold of \overline{M} . Then

$$A_{\xi}^*X \in \Gamma\left(D_0 \perp M_1\right)$$

for any $X \in \Gamma(D)$.

Corollary 3.12. Let \overline{M} be an indefinite almost complex manifold and M be a CR-lightlike submanifold of \overline{M} . If $h^*(X,Y) = 0$ then we have:

a) $A_N X$ has no component in $\overline{J}Rad(TM) \perp M_2$

b) $A_N Y$ has no component $D_0 \perp M_1$ for any $X \in \Gamma(D), Y \in \Gamma(D')$.

Corollary 3.13. Let \overline{M} be an indefinite almost complex manifold and M be a mixed CR-lightlike submanifold of \overline{M} . Then:

- a) $A_W X$ has no component in $\overline{J}RadTM \perp M_2$
- b) $A_W Y$ has no component in $D_0 \perp M_1$

for any $X \in \Gamma(D), Y \in \Gamma(D')$.

Lemma 3.14. Let \overline{M} be an indefinite Kaehler manifold and M be a CR-lightlike submanifold of \overline{M} . Then

$$\overline{g}\left(A_W\overline{J}X,Y\right) = \overline{g}\left(A_WY,\overline{J}X\right) - \overline{g}\left(\overline{J}X,D^l(Y,W)\right)$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(D')$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. From (2.8),

$$\overline{g}\left(A_W\overline{J}X,Y\right) = \overline{g}\left(h\left(\overline{J}X,Y\right),W\right)$$
$$= \overline{g}\left(\overline{\nabla}_Y\overline{J}X,W\right)$$
$$= -\overline{g}\left(\overline{J}X,\overline{\nabla}_YW\right)$$
$$= \overline{g}\left(\overline{J}X,A_WY\right) - \overline{g}\left(D^l(Y,W),\overline{J}X\right)$$

for $X \in \Gamma(D), Y \in \Gamma(D')$ and $W \in \Gamma\left(S(TM^{\perp})\right)$.

Theorem 3.15. Let \overline{M} be an indefinite Kaehler manifold and M be a mixed geodesic CRlightlike submanifold of \overline{M} . Then

$$A_V X \in \Gamma(D)$$

for any
$$X \in \Gamma(D)$$
, $V \in \Gamma(L_1 \perp L_2)$.

Proof. Since M is mixed geodesic, h(X, Y) = 0 for any $X \in \Gamma(D)$, $Y \in \Gamma(D')$. From (2.6) we have

$$0 = \overline{\nabla}_X Y - \nabla_X Y$$

Since D' is anti-invariant there exists $V \in \Gamma(L_1 \perp L_2)$ such that $\overline{J}V = Y$. Thus, from (2.8), (2.13) and (2.14) we get

$$0 = \overline{\nabla}_X \overline{J}V - \nabla_X Y$$

= $\overline{J} \overline{\nabla}_X V - \nabla_X Y$
= $\overline{J}(-A_V X + \nabla_X^t V) - \nabla_X Y$
= $-\overline{J}A_V X + \overline{J}\nabla_X^t V - \nabla_X Y$
= $-fA_V X - \omega A_V X + B\nabla_X^t V + C\nabla_X^t V - \nabla_X Y.$

Hence

$$\omega A_V X = C \nabla_X^t V$$

or

$$A_V X \in \Gamma(D).$$

Corollary 3.16. Let \overline{M} be an indefinite Kaehler manifold and M be a mixed geodesic CR-lightlike submanifold of \overline{M} . Then M is a mixed geodesic CR-lightlike submanifold if and only if

$$A_V X \in \Gamma(D)$$

and $L_1 \perp L_2$ is parallel with respect to D (that is, $\nabla^t_X V \in \Gamma(L_1 \perp L_2)$ for any $V \in \Gamma(L_1 \perp L_2)$ and $X \in \Gamma(D)$).

References

- Bejancu, A.: CR-Submanifolds of a Kaehler manifold I. Proc. Amer. Math. Soc. 69 (1978), 135–142.
- [2] Bejancu, A.: CR-Submanifolds of a Kaehler Manifold II. Trans. Amer. Math. Soc. 250 (1979), 333–345.
- [3] Bejancu, A.; Kon, M.; Yano, K.: CR-Submanifolds of Complex Space Form. J. Differential Geom. 16 (1981), 137–145.
- [4] Yano, K.; Kon, M.: On CR-submanifolds of a Complex Projective Space. J. Differential Geom. 16 (1981), 431–444.
- [5] Chen, B. Y.: CR-Submanifolds of a Kaehler Manifold I. J. Differential Geom. 16 (1981), 305–323.
- [6] Chen, B. Y.: CR-Submanifolds of a Kaehler Manifold II. J. Differential Geom. 16 (1981), 493–509.
- [7] Duggal, K. L.; Bejancu, A.: Lightlike Submanifolds of Codimension Two. Math. J. Toyama Univ. (1992), 59–82.
- [8] Duggal, K. L.; Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Its Applications. Kluwer, Dordrecht 1996.
- Bejancu, A.; Duggal, K. L.: Lightlike Submanifolds of Semi-Riemannian Manifolds. Acta Appl. Math. 38 (1995), 197–215.
- [10] Kupeli, D. N.: Singular Semi-Riemannian Geometry. Kluwer, Dordrecht 1996.

Received October 22, 2000