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Abstract. In this paper we study the ring of global sections Γ(U,O) of an open
subset U = D(I) ⊆ SpecA, where A is a two-dimensional noetherian ring. The
main concern is to give a geometric criterion when these rings are finitely generated,
in order to correct an invalid statement of Schenzel in [7].

1. Introduction

Let A be a noetherian ring with an ideal I ⊆ A and U = D(I) ⊆ SpecA the corresponding
open subset. If U is an affine scheme, then the ring of global sections B = Γ(U,OX) –
which is also called the ideal-transform T (I) – is of finite type over A. The converse is by no
means true, in dimension two however we have the following result due to Eakin et. al. ([4],
Theorem 3.2): Suppose A is a local excellent1 Cohen-Macaulay domain of dimension two,
and let I be an ideal of height one. Then (among other characterizations) D(I) is affine if
and only if B is noetherian if and only if B is of finite type over A.

Schenzel states in [7], Theorem 4.1 and 4.2, that this holds more general for two-dimensional
excellent local domains. However, this is not true, as the following example shows.2

1In fact the result was stated under the somewhat weaker conditions that the normalization is finite and
the local rings of the normalization are analytically irreducible, instead of excellent.
2The mistake in [7] is at the end of the proof of Theorem 4.1, where the statement T ⊆ TN is wrong.
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Example. Let X = SpecA be an affine excellent irreducible surface which is regular outside
one single closed point P and such that in the normalization two points P1, P2 lie over P .
Outside these points the normalization mapping X̃ −→ X is isomorphic.

Let Y = V (I) be the image of an irreducible curve Y ′ passing through P1, but not through
P2. Then U = X−Y is not affine, since the preimage of Y consists of the curve Y ′ and of the
isolated point P2. On the other hand, U = X − Y is normal and isomorphic to X̃ − Y ′−P2,
so the rings of global sections are identical. Since X̃ is normal, this ring equals also the ring
of global sections of X̃ − Y ′. X̃ is a normal excellent affine surface, thus the complement of
a curve is affine, and B is finitely generated. For an explicit example see below.

In this paper we give a criterion for two-dimensional local rings to decide the finiteness of
the ring of global sections of U = D(I), I an ideal of height one. The criterion is based on
the combinatoric of the components in the completion Â of A. It says that in case U is not
affine the ring of global sections of U is not finitely generated if and only if there exists an
irreducible component of Spec Â where U is affine and a component where U is not affine
such that their intersection is one-dimensional.

The criterion is (due to the connectedness theorem of Hartshorne) seen to be fulfilled in case
A is Cohen-Macaulay, thus we recover the result of Eakin et. al. as a corollary (Cor. 2.4).
Another consequence is that if D(I) is non-affine and connected, then T (I) is not noetherian
(Cor. 2.3).

In the third section we extend the result to the non-complete case and describe the conditions
used in the criterion in terms of the normalization.

2. The complete case

Let X = SpecA be the spectrum of a local complete noetherian ring A of dimension 2, and
let P denote the closed point. Let Xj = V (pj) = SpecA/pj be the irreducible components
of X corresponding to the minimal primes pj, j ∈ J .

Let I be an ideal in A, Y = V (I) and U = D(I). U is affine if and only if Uj = U ∩ Xj is
affine on every component, and this is due to the theorem of Lichtenbaum-Hartshorne (see
[3], 8.2.1) the case if and only if ht I(A/pj) ≤ 1 for every j ∈ J . Thus U is not affine if and
only if there exists a two-dimensional component Xj where Yj = Y ∩Xj consists just of the
single point P .

We want to know for an ideal I of height one whether the ring of global sections of D(I) is
finitely generated. If D(I) is affine, this is the case, so we suppose furtheron that D(I) is
not affine. We divide J = J0 ∪ J1 in such a way, that for j ∈ J1 the open subsets Uj ⊆ Xj
are affine and for j ∈ J0 not. Thus the Xj, j ∈ J0, are the two-dimensional components of
X where Yj is just the closed point. The affineness of U is equivalent with J0 = ∅.

Put a0 =
⋂
j∈J0 pj and a1 =

⋂
j∈J1 pj and X0 = SpecA/a0, X1 = SpecA/a1. We denote the

structure sheaves on these closed subschemes of X with Oi, i = 0, 1.

Furthermore we put Ui = U∩Xi, i = 0, 1, considered as an open subset inXi with the induced
scheme structure, put Bi = Γ(Ui,Oi). U1 = SpecB1 ⊂ X1 is affine, U0 is not affine. The
closed embedding X1 ↪→ X yields a (closed) restriction map Γ(U,OX) −→ Γ(U1,O1) = B1.
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Finally, let b = a0 + a1 ⊆ m and R = A/b. R is a zero- or one-dimensional local complete
noetherian ring, let Z = SpecR und Z× = D(m) ⊂ Z. The dimension of Z = V (b) = X0∩X1
is the crucial point for Γ(U,OX) to be noetherian or not.
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For our proof we have to put on A the condition S1 of Serre, meaning that every associated
prime of A is minimal, equivalently that every zero-divisor lies in a minimal prime or that
every ideal of height one contains a non-zero-divisor. This is fulfilled for example if A is
reduced.

Theorem 2.1. Let A be a two-dimensional complete local noetherian ring, fulfilling the con-
dition S1. Let I be an ideal of height one and suppose that U = D(I) is not affine. Then the
following are equivalent.

(1) Γ(U,OX) is not of finite type.

(2) Γ(U,OX) is not noetherian.

(3) The image of Γ(U,OX) −→ Γ(U1,O1) is not noetherian.

(4) The intersection Z of X0 and X1 is one-dimensional.

Proof. The implications (3) ⇒ (2) and (2) ⇒ (1) are clear. (1) ⇒ (4). Suppose Z = {P} is
only the closed point. Then U is the disjoint union of U0 and U1 (both closed hence open in
U). Thus we have

Γ(U,OX) = Γ(U0,O0)⊕ Γ(U1,O1) .

Since U1 is affine, the second component is of finite type. Since U0 = X0−{P}, the mapping
A/a0 −→ Γ(U0,OX) is also of finite type, see Lemma 2.2 (1).

So we have to show (4)⇒ (3). We denote the image of Γ(U,OX) −→ Γ(U1,O1) by C.

Let h ∈ A be an element such that in Z = SpecR we have V (h) = V (m) = {P}. Thus 1/h
is a function defined on Z× = Z − {P} = D(h). Since Z× ↪→ U1 is a closed embedding and
since U1 is affine, there exists a function q ∈ B1 = Γ(U1,O1) with q |Z×= 1/h.
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Let a ∈ b ⊂ A be a regular element (i.e. a non-zero-divisor) inside the describing ideal of
Z. The functions aqn are defined on U1 and the restrictions to Z

× are zero, thus they are
extendible to Z. Since Z ↪→ X0 is closed and X0 is affine, these functions are also extendible
to X0 and in particular to U0. So we may assume that these functions are defined on U and
we see that they lie in C.

Consider in C the ideal (a, aq, aq2, aq3, ...) spanned by this functions, and suppose that it is
finitely generated. Then we have an equation

aqn+1 = anaq
n + ...+ a1aq + a0a

with ai ∈ C ⊂ B1. We may assume that ai ∈ Γ(U,OX). Since a is regular in A, it is also a
regular in A/ai. (For if ax ∈ ai =

⋂
j∈Ji pj, we have ax ∈ pj for all j ∈ Ji and thus x ∈ pj

for all j ∈ Ji, so x = 0 mod ai.) Since the restriction A/a1 = Γ(X1,O1) −→ Γ(U1,O1) is
injective, a is also a regular element in B1.

This yields in B1 (on U1) the equation q
n+1 = anq

n + ...+ a1q + a0. This equation restricted
to Z× ⊆ U1 yields an integral equation for q = 1/h over R[a′i] ⊆ Rh, where the a

′
i denote the

restrictions of ai on Rh = Γ(Z
×,OZ).

We claim that the a′i are integral over R: Consider the elements ai ∈ Γ(U,OX) as functions on
U0 – as elements of B0. Since U0 = X0−{P}, the ai ∈ B0 are integral over A/a0 = Γ(X0,O0),
see Lemma 2.2. The closed embeddings (Z× ⊂ Z) ↪→ (U0 ⊂ X0) show that the a′i are integral
over R = Γ(Z,OZ). It follows that q |Z= 1/h would be integral over R, but this is not
possible. 2

Lemma 2.2. Let A be a local noetherian ring of dimension two fulfilling S1. Let m be the
maximal ideal and B = Γ(D(m),O) the ring of global sections. Then the following hold.

(1) A −→ B is of finite type.

(2) If furthermore all components of SpecA have dimension two, B is even finite over A.

Proof. We first prove the second part, using [6], 5.11.4 (or [2], 2.5.). A point x ∈ AssOX has
height zero, for every ideal of bigger height contains a regular element. The closure x̄ is a
two-dimensional component and therefore the point P has codimension two on it.

The first part follows from the second part. The one-dimensional components of X meet
the other components only in the closed point, thus the punctured curves are connected
components of W = D(m). These are affine and of finite type. 2

We deduce from the theorem two corollaries.

Corollary 2.3. Let A be a local complete noetherian ring of dimension two fulfilling S1. Let
I be an ideal of height one. If U = D(I) is connected and Γ(U,OX) is of finite type, then U
is affine.

Proof. Suppose U is not affine, then in the partition described above U0 is not empty, and
U1 is not empty since I is of height one. Put Z = X0 ∩X1. Since U is connected, U0 and U1
are not disjoint, thus Z does not consist only of the closed point, it must be a curve. Then
due to the theorem the ring of global sections can not be noetherian. 2

We recover the result of Eakin et. al. in the Cohen-Macaulay case.
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Corollary 2.4. Let A be a local complete noetherian Cohen-Macaulay ring of dimension
two. Let I be an ideal of height one. Then U = D(I) is affine if and only if its ring of global
sections is of finite type (or noetherian).

Proof. Again, suppose U to be not affine, putX = X0∪X1 as before with the describing ideals
a0 and a1. Then a0 ∩ a1 is nilpotent, thus due to the connectedness theorem of Hartshorne
(see [5], Theorem 18.12) the ideal a0 + a1 has height one. Since it describes the intersection,
Z = X0 ∩X1 is one-dimensional and Γ(U,OX) is not noetherian. 2

Example. Of course, U = D(I) can be affine without being connected. A = K[[x, y, z]]/(xy)
is Cohen-Macaulay (K a field), the complement of the common axis V (x, y) is affine, but not
connected.

Remark. We may associate to a complete local ring of dimension two a graph Γ in such a
way, that for each irreducible two-dimensional component we associate a point, and two points
are connected by an edge if and only if the intersection of the corresponding components is
one-dimensional. Then an open subset as above yields a partition Γ = Γ0 ∪ Γ1, and the ring
of global sections is noetherian if and only if there is no edge between points of Γ0 and of Γ1.

3. Interpretation in the normalization

We want to extend the result from the complete case to the general case. Suppose we are given
a curve V (I) ⊆ SpecA where A is a two-dimensional noetherian domain. Then Γ(D(I),O)
is of finite type if this is true in every (closed) point x ∈ SpecA, see [1]. Furthermore, we
have the following lemma.

Lemma 3.1. Let A −→ A′ be faithfully flat and let U ⊆ SpecA denote an open subset with
preimage U ′. Then B = Γ(U,O) is of finite type over A if and only if B′ = Γ(U ′,O′) is of
finite type over A′.

Proof. We have B′ = B ⊗A A′ due to flatness. This yields the first implication. If B′ is of
finite type, we may assume that it is generated by finitely many elements of B, thus there
is a surjection A′[T1, . . . , Tn] −→ B′ = B ⊗A A′ induced by A[T1, . . . , Tn] −→ B. Due to
faithfulness, this must also be surjective. 2

Therefore the condition in the theorem that Γ(U,O) is of finite type is preserved by passing
to the completion, and we may skip in Cor. 2.4 the assumption of completeness.

So we take a look at the condition that the intersection of two components in the completion
is one-dimensional, and we want to describe it in terms of the normalization of A. For this we
recall some correspondences between normalization and completion, see [6], 7.6.1 and 7.6.2.
Let X be the spectrum of a local excellent domain A with completion X̂ and normalization
X̃. Then the normalization of X̂ equals the completion of X̃ (semilocal), and this consists of
connected components being the normalizations of the irreducible components of X̂ and the
completion of the localizations of X̃ as well. In particular, there is a correspondence between
the irreducible components of X̂ and the closed points of X̃.
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For a closed subset C ⊆ X the completion of C equals the preimage of C in X̂ yielding a
canonical inclusion Ĉ ⊆ X̂. The irreducible components of Ĉ correspond again to closed
points of C̃, but this is of course not the preimage of C in the normalization X̃.

Lemma 3.2.. Let A be an excellent local domain of dimension two, P0 ∈ X̃ the closed point
on X̃ corresponding to the irreducible component X0 of the completion X̂. Let C ⊂ X be an
irreducible curve and let D ⊂ X̃ be the preimage of C without the isolated points.

(1) There exists an irreducible component of Ĉ on X0 if and only if P0 is not an isolated
point on ϕ−1(C) (ϕ : X̃ −→ X normalization map ).

(2) The irreducible component C0 of Ĉ lies on X0 if and only if there exists a point R ∈ D̃
over P0 mapping to the point Q0 ∈ C̃ corresponding to C0.

(3) The component C0 of Ĉ connects the irreducible components X1 and X2 of X̂ if and only
if the corresponding point Q0 ∈ C̃ is reached by points R1, R2 ∈ D̃ lying over P1 and P2.

Proof. (1) We consider the mapping (completion) X̃0 −→ X̃P0 , where X̃P0 means the local-
ization at P0. The preimage of C ⊂ X in X̃P0 is just the closed point if and only if this is
true in X̃0, and this is the case if and only if Ĉ is zero-dimensional on X0.

(2) The preimage of Ĉ in
˜̂
X without the isolated points equals D̂, being the preimage of

D. The statement C0 ⊂ X0 is equivalent to the statement that there exists an irreducible

component D0 ⊆ D̂ ⊂
˜̂
X over C0 lying on X̃0. Let R be the point on D̃ corresponding to

the component D0 ⊆ D̂. Suitable diagrams show that D0 dominates C0 is equivalent with R
maps to Q0 and that D0 ⊆ X̃0 is equivalent with R maps to P0.

(3) follows from (2). 2

This motivates the following definition.

Definition. Let X denote a reduced irreducible noetherian scheme, ϕ : X̃ −→ X its normal-
ization, P ∈ X a closed point and P1, P2 ∈ X̃, ϕ(P1) = ϕ(P2) = P . We call an irreducible
curve C ⊂ X a melting curve for the points P1 and P2 if and only if P1, P2 are not isolated
on ϕ−1(C) and there exist points R1, R2 ∈ D̃ (D as in Lemma 3.2) over P1, P2 mapping to
one common point Q ∈ C̃.

Theorem 3.3. Let X = SpecA, where A is an excellent local domain of dimension two.
Then the intersection of the components X1 and X2 on X̂ is one-dimensional if and only if
there exists a melting curve for P1, P2 ∈ X̃.

Proof. If C is a melting curve for P1 and P2 with common point Q as in the definition, then
the previous proposition says that the corresponding component C0 lies on X1 and X2, thus
the intersection is one-dimensional.

For the converse, let C0 be an irreducible curve on X1 ∩X2 with prime ideal q ⊂ Â of height
one. Then p = q ∩ A is also of height one. For q is not a normal point of Â, since on the
normalization there are at least two points above it. Then also p is not a normal point,
because the normal locus commutes with completion under the condition of excellence (see
[6], 7.8.3.1.) Thus htp = 1, C = V (p) is a curve, C0 a component of its completion and we
may apply the previous proposition. 2
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Proposition 3.4. Let P1, P2 be two closed points in the normalization X̃ over P ∈ SpecA,
where A is a two-dimensional noetherian domain. Then the following hold.

(1) If there exist two different irreducible curves C1, C2 with Pi ∈ Ci = V (qi) on X̃ such that
q1 ∩ A = q2 ∩ A = p, then C = V (p) is a melting curve for P1, P2.

(2) If C is normal (or analytically irreducible) and P1 and P2 are not isolated on ϕ
−1(C),

then C is a melting curve.

(3) If P1, P2 ∈ C ′ is irreducible and ϕ(C ′) = C is a melting curve, then ϕ|C′ : C ′ −→ C is
not birational. A melting curve lies in the non-normal locus.

Proof. (1) Both mappings C1 −→ C and C2 −→ C are surjective, and this is then also true
for the normalizations. Thus for any closed point Q ∈ C̃ there are points on C̃i over Pi
mapping to Q.

(2) If C is analytically irreducible, then any closed point of D̃ maps to the only closed point
of C̃.

(3) Suppose C ′ −→ C is birational. Then the normalizations of these curves are the same,
and different points cannot be identified. If the generic point of a curve C is normal, then D
consists just of one irreducible component, and D −→ C is birational. 2

Examples. We give some typical examples of (non-)melting curves to illustrate the cases
the previous proposition is talking about. They are given by mappings A2K −→ A

n
K such

that the affine plane is the normalization of the image (K is a field).

(1) (x, y) 7−→ (x, y3−y, y2−1). This identifies the two different curves V (y−1) and V (y+1).
The common image curve C is a melting curve.

r
r

−→ r
........................

........................

(2) (x, y) 7−→ (x, y2, xy). The line V (x) is melted with itself, identifying the points (0, 1) and
(0,−1). V (x) −→ V (r, t) is not birational, C is a melting curve.

r
r

−→ r
   

 ````

���
�XXXX

(3) (x, y) 7−→ (x, y2, y((y − 1)2 + x2)((y + 1)2 + x2), xy). This identifies only the two points.
V (x) is birational with its image C, thus C is not a melting curve.
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r
r

−→ r

(4) Consider the mapping (x, y) 7−→ (x, y2, y(x2− y2(y+1)) followed by the identification of
the points (0, 0, 0) and (−1, 0, 0). Then D = V (x2 − y2(y + 1)) 7−→ C is not birational, but
C (= the image of D) is not a melting curve for their common point. Thus the necessary
condition in Prop. 3.4 (3) is not sufficient.
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schen Räumen. J. Reine Angew. Math. 285 (1976), 149–171.
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