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Abstract. We construct star-products on the co-adjoint orbit of the Lie group
Aff(C) of affine transformations of the complex line and apply them to obtain the
irreducible unitary representations of this group. These results show the effective-
ness of the Fedosov quantization even for groups which are neither nilpotent nor
exponential. Together with the result for the group Aff(R) (see [5]), we thus have
a description of quantum MD co-adjoint orbits.

1. Introduction

The notion of ?-products was a few years ago introduced and played a fundamental role in
the basic problem of quantization, see e.g. references [1, 2, 6, 7, . . . ], as a new approach
to quantization on arbitrary symplectic manifolds. In [5] we have constructed star-products
on upper half-plane, obtained the operator ˆ̀Z , Z ∈ aff(R) = LieAff(R) and proved that the
representation

exp(ˆ̀Z) = exp(α
∂

∂s
+ iβes)
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of the group Aff0(R) coincides with the representation TΩ+ obtained from the orbit method
or Mackey small subgroup method. One of the advantages of this group, with which the com-
putation is rather accessible is the fact that its connected component Aff0(R) is exponential.
We could use therefore the canonical coordinates for Kirillov form on the orbits. It is natural
to consider the same problem for the group Aff(C). We can expect that the calculations and
final expressions could be similar to the corresponding ones in real line case, but this group
Aff(C) is no more the exponential, i.e. the exponential map

exp : aff(C)→ Ãff(C)

is no longer a global diffeomorphism and the general theory of D. Arnal and J. Cortet (see
[1], [2]) could not be directly applicable. We overcame these difficulties by a rather different
way which could give new ideas for more general non-exponential groups: To overcome the
main difficulty in applying the deformation quantization to this group, we replace the global
diffeomorphism in Arnal-Cortet’s setting by a local diffeomorphism. With this replacement,
we need to pay attention on the complexity of the symplectic Kirillov form in new coordinates.
We then computed the inverse image of the Kirillov form on appropriate local charts. The
question raised here is how to choose a good local chart in order to make the calculation as
simple as possible. The calculation we propose is realized by using complex analysis on very
simple complex domain.
Our main result consists of an explicit star-product formula (Proposition 3.5) on the

local charts. This means that the functional algebras on co-adjoint orbits admit a suitable
deformation, or in other words, we obtained the quantum co-adjoint orbits of this group as
exact models of new quantum objects, called “quantum punctured complex planes” (C2\L)q.
Then, by using the Fedosov deformation quantization, it is not hard to obtain the list of all
irreducible unitary representations (Theorem 4.2) of the group Aff(C), although the compu-
tation in this case, using the Mackey small subgroup method or the modern orbit method,
is rather delicate. The infinitesimal generators of those exact models of infinite dimensional
irreducible unitary representations, nevertheless, are given by rather simple formulae. We
introduce some preliminary result in §2. The operators ˆ̀A which define the representation of
the Lie algebra aff(C) are found in §3. In particular, we obtain the unitary representations
of the Lie group Ãff(C), the universal covering group of the Aff(C), in Theorem 4.3 of §4.

2. Preliminary results

Recall that the Lie algebra g = aff(C) of affine transformations of the complex line is described
as follows (see [4]). It is well-known that the group Aff(C) is a real 4-dimensional Lie group
which is isomorph to the group of matrices:

Aff(C) ∼=
{(
a b
0 1

)
|a, b ∈ C, a 6= 0

}

The most easy method is to consider X,Y as complex generators, X = X1+iX2 and Y = Y1+
iY2. Then from the relation [X, Y ] = Y , we get [X1, Y1]− [X2, Y2]+i([X1Y2]+[X2, Y1]) = Y1+
iY2. This means that the Lie algebra aff(C) is a real 4-dimensional Lie algebra, having four
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generators with the only nonzero Lie brackets: [X1, Y1]−[X2, Y2] = Y1; [X2, Y1]+[X1, Y2] = Y2
and we can choose another basis denoted again by the same letters such that:

[X1, Y1] = Y1; [X1, Y2] = Y2; [X2, Y1] = Y2; [X2, Y2] = −Y1

Remark 2.1. The exponential map

exp : C −→ C∗ := C\{0}

given by z 7→ ez is just the covering map and therefore the universal covering of C∗: C̃∗ ∼= C.
As a consequence one deduces that

Ãff(C) ∼= Cn C ∼= {(z, w)|z, w ∈ C}

with the following multiplication law:

(z, w)(z′, w′) := (z + z′, w + ezw′)

Remark 2.2. The co-adjoint orbit of Ãff(C) in g∗ passing through F ∈ g∗ is denoted by

Ω := K(Ãff(C))F = {K(g)F |g ∈ Ãff(C)}.

Then, (see [4]):

1. Each point (α, 0, 0, δ) is 0-dimensional co-adjoint orbit Ω(α,0,0,δ).

2. The open set β2 + γ2 6= 0 is the single 4-dimensional co-adjoint orbit Ω = Ωβ2+γ2 6=0.
We shall use Ω in the form Ω ∼= C× C∗.

Remark 2.3. Set

Hk = {w = q1 + iq2 ∈ C| −∞ < q1 < +∞; 2kπ < q2 < 2kπ + 2π}; k = 0,±1, . . .

L = {ρeiϕ ∈ C | 0 < ρ < +∞; ϕ = 0}

and Ck = C\L is a univalent sheet of the Riemann surface of the multi-valued complex
analytic function Ln(w), (k = 0,±1, . . . ). Then there is a natural diffeomorphism
w ∈ Hk 7−→ ew ∈ Ck with each k = 0,±1, . . . . Now consider the map:

C× C −→ Ω = C× C∗

(z, w) 7−→ (z, ew),

with a fixed k ∈ Z. We have a local diffeomorphism

ϕk : C×Hk −→ C× Ck

(z, w) 7−→ (z, ew).

This diffeomorphism ϕk will be needed in the sequel.
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On C×Hk we have the natural symplectic form

ωo =
1

2
[dz ∧ dw + dz ∧ dw], (1)

induced from C2. Put z = p1 + ip2, w = q1 + iq2 and (x1, x2, x3, x4) = (p1, q1, p2, q2) ∈ R4,
then

ωo = dp1 ∧ dq1 − dp2 ∧ dq2.

The corresponding symplectic matrix of ωo is

∧
=





0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0



 and
∧−1

=





0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0





We have therefore the Poisson brackets of functions as follows. With each f, g ∈ C∞(Ω),

{f, g} = ∧ij
∂f

∂xi
∂g

∂xj
=
∂f

∂p1

∂g

∂q1
−
∂f

∂q1

∂g

∂p1
−
∂f

∂p2

∂g

∂q2
+
∂f

∂q2

∂g

∂p2
=

= 2
[∂f
∂z

∂g

∂w
−
∂f

∂w

∂g

∂z
+
∂f

∂z

∂g

∂w
−
∂f

∂w

∂g

∂z

]
.

Proposition 2.4. Fixing the local diffeomorphism ϕk(k ∈ Z), we have:
1. For any element A ∈ aff(C), the corresponding Hamiltonian function Ã in local coor-
dinates (z, w) of the orbit Ω is of the form

Ã ◦ ϕk(z, w) =
1

2
[αz + βew + αz + βew]

2. In local coordinates (z, w) of the orbit Ω, the Kirillov form Ω is just the standard form
(1).

Proof. 1. Each element F ∈ Ω ⊂ (Aff(C))∗ is of the form

F = zX∗ + ewY ∗ =

(
z 0
ew 0

)

in local Darboux coordinates (z, w). From this it follows that

Ã(F ) = 〈F,A〉 = < tr(F.A) =

= < tr

(
αz βz
αew βew

)
=
1

2
[αz + βew + αz + βew]

2. Using the definition of the Poisson brackets{, }, associated to a symplectic form ω, we
have

{Ã, f} = α
∂f

∂w
− βew

∂f

∂z
− βew

∂f

∂z
+ α
∂f

∂w
. (2)
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Let us from now on denote by ξA the Hamiltonian vector field (symplectic gradient) corre-
sponding to the Hamiltonian function Ã, A ∈ aff(C). Now we consider two vector fields:

ξA = α1
∂

∂w
− β1e

w ∂

∂z
− β1e

w ∂

∂z
+ α1

∂

∂w
; ξB = α2

∂

∂w
− β2e

w ∂

∂z
− β2e

w ∂

∂z
+ α2

∂

∂w
,

where A =

(
α1 β1
0 0

)
; B =

(
α2 β2
0 0

)
∈ aff(C). It is easy to check that

ξA ⊗ ξB = β1β2e
2w ∂

∂z
⊗
∂

∂z
+ α1α2

∂

∂w
⊗
∂

∂w
+ β1β2e

2w ∂

∂z
⊗
∂

∂z
+ α1α2

∂

∂w
⊗
∂

∂w
+

+(α1β2 − α2β1)e
w ∂

∂z
⊗
∂

∂w
+ (α1β2 − α2β1)e

w ∂

∂z
⊗
∂

∂w
+ (α1β2 − α2β1)e

w ∂

∂z
⊗
∂

∂w
+

+(α1β2 − α2β1)e
w ∂

∂z
⊗
∂

∂w
+ (β1β2 − β1β2)e

w+w ∂

∂z
⊗
∂

∂z
+ (α1α2 − α1α2)

∂

∂w
⊗
∂

∂w
.

Thus,

〈ω, ξA ⊗ ξB〉 =
1

2

[
(α1β2 − α2β1)e

w + (α1β2 − α2β1)e
w
]
= < tr(F.[A,B]) = 〈F, [A,B]〉.

Thus the proposition is proved. �

3. Computation of operators ˆ̀
(k)
A

Proposition 3.1. With A,B ∈ aff(C), the Moyal ?-product satisfies the relation:

iÃ ? iB̃ − iB̃ ? iÃ = i[̃A,B]. (3)

Proof. Consider two arbitrary elements A = α1X + β1Y ; B = α2X + β2Y . Then the
corresponding Hamiltonian functions are:

Ã =
1

2
[α1z + β1e

w + α1z + β1e
w]; B̃ =

1

2
[α2z + β2e

w + α2z + β2e
w].

It is easy, then, to see that:
P 0(Ã, B̃) = Ã.B̃

P 1(Ã, B̃) = {Ã.B̃} = 2
[∂Ã
∂z

∂B̃

∂w
−
∂Ã

∂w

∂B̃

∂z
+
∂Ã

∂z

∂B̃

∂w
−
∂Ã

∂w

∂B̃

∂z

]

=
1

2

[
(α1β2 − α2β1)e

w + (α1β2 − α2β1)e
w
]

and P r(Ã, B̃) = 0, ∀r ≥ 2.
Thus,

iÃ ? iB̃ − iB̃ ? iÃ =
1

2i

[
P 1(iÃ, iB̃)− P 1(iB̃, iÃ)

]
=

=
i

2

[
(α1β2 − α2β1)e

w + (α1β2 − α2β1)e
w
]
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on one hand. On the other hand, because of [A,B] = (α1β2 − α2β1)Y we have

i[Ã, B] = i〈F, [A,B]〉 =
i

2

[
(α1β2 − α2β1)e

w + (α1β2 − α2β1)e
w
]

The proposition is hence proved. �

For each A ∈ aff(C), the corresponding Hamiltonian function is

Ã =
1

2
[αz + βew + αz + βew]

and we can consider the operator `
(k)
A acting on the dense subspace of smooth functions

L2(R2 × (R2)∗, dp1dq1dp2dq2/(2π)2)∞ by left ?-multiplication by iÃ, i.e. `(k)A (f) = iÃ ? f .
Because of the relation in Proposition 3.1, we have

Corollary 3.2.

`
(k)
[A,B] = `

(k)
A ◦ `

(k)
B − `

(k)
B ◦ `

(k)
A :=

[
`
(k)
A , `

(k)
B

]
(4)

From this it is easy to see that the correspondence A ∈ aff(C) 7−→ `
(k)
A = iÃ ? . is a

representation of the Lie algebra aff(C) on the space C∞(Ω)
[
[ i
2
]
]
of formal power series, see

[7] for more detail.
Now, let us denote Fz(f) the partial Fourier transform of the function f from the variable

z = p1 + ip2 to the variable ξ = ξ1 + iξ2, i.e.

Fz(f)(ξ, w) =
1

2π

∫∫

R2
e−i<(ξz)f(z, w)dp1dp2.

Let us denote by
F−1z (f)(z, w) =

1

2π

∫∫

R2
ei<(ξz)f(ξ, w)dξ1dξ2

the inverse Fourier transform.

Lemma 3.3. Putting g = g(z, w) = F−1z (f)(z, w) we obtain:

1. ∂zg =
i
2
ξg ; ∂rzg = (

i
2
ξ)
r
g, r = 2, 3, . . .

2. ∂zg =
i
2
ξg ; ∂rzg = (

i
2
ξ)
r
g, r = 2, 3, . . .

3. Fz(zg) = 2i∂ξFz(g) = 2i∂ξf ;Fz(zg) = 2i∂ξFz(g) = 2i∂ξf

4. ∂wg = ∂w(F−1z (f)) = Fz
−1(∂wf); ∂wg = ∂w(F−1z (f) = Fz

−1(∂wf)

Proof. As ∂z =
1
2
(∂p1 − i∂p2); ∂z =

1
2
(∂p1 + i∂p2) we obtain 1. and 2.

3. We have Fz(zg) =

=
1

2π

∫∫
e−i(p1ξ1+p2ξ2)p1g(z, w)dp1dp2 + i

1

2π

∫∫
e−i(p1ξ1+p2ξ2)p2g(z, w)dp1dp2 =

= i∂ξ1Fz(g) + i
2∂ξ2Fz(g) = (i∂ξ1 − ∂ξ2)Fz(g) = 2i∂ξFz(g) = 2i∂ξf
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and Fz(zg) =

=
1

2π

∫∫
e−i(p1ξ1+p2ξ2)p1g(z, w)dp1dp2 − i

1

2π

∫∫
e−i(p1ξ1+p2ξ2)p2g(z, w)dp1dp2 = 2i∂ξf.

4. The proof is straightforward. The Lemma 3.3 is therefore proved. �

We also need another lemma which will be used in the sequel.

Lemma 3.4. With g = F−1z (f)(z, w), we have:

1. Fz(P 0(Ã, g)) = i(α∂ξ + α∂ξ)f +
1
2
βewf + 1

2
βewf.

2. Fz(P 1(Ã, g)) = α∂wf + α∂wf − βew(
i
2
ξ)f − βew( i

2
ξ)f.

3. Fz(P r(Ã, g)) = (−1)
r
.2r−1[βew( i

2
ξ)r + βew( i

2
ξ)r]f ∀r ≥ 2.

Proof. 1. Applying Lemma 3.3 we obtain P 0(Ã, g) = Ã.g = 1
2
[αzg + βewg + αzg + βewg].

Thus,

Fz(P
0(Ã, g)) =

1

2
[αFz(zg) + βe

wFz(g) + αFz(zg) + βe
wFz(g)] =

1

2
[2iα∂ξFz(g) + 2iα∂ξFz(g) + βe

wFz(g) + βe
wFz(g)] = i(α∂ξ + α∂ξ)f +

1

2
βewf +

1

2
βewf.

2. (P 1(Ã, g)) = ∧12∂p1Ã∂q1g + ∧
21∂q1Ã∂p1g + ∧

34∂p2Ã∂q2g + ∧
43∂q2Ã∂p2g =

= α∂wg + α∂wg − βe
w∂zg − βe

w∂zg.

This implies that: Fz(P 1(Ã, g)) =

= α∂wFz(g) + α∂wFz(g)− βe
w∂zFz(g)− βe

w∂zFz(g) =

= α∂wf + α∂wf − βe
w(
i

2
ξ)f − βew(

i

2
ξ)f.

3. P 2(Ã, g) = ∧21 ∧21 ∂q1q1Ã∂p1p1g + ∧
21 ∧43 ∂q1q2Ã∂p1p2g + ∧

43 ∧21 ∂q2q1Ã∂p2p1g +

+ ∧43 ∧43∂q2q2Ã∂p2p2g =
1

2

[
(βew + βew − βew + βew + βew − βew + βew + βew)∂2zg +

+(βew + βew + βew − βew − βew + βew + βew + βew)∂2zg
]
= 2βew∂2zg + 2βe

w∂2zg.

This implies also that:

Fz(P
2(Ã, g)) = 2βewFz(∂

2
zg) + 2βe

wFz(∂
2
zg) = 2βe

w(
i

2
ξ)2f + 2βew(

i

2
ξ)2f.

By analogy,
P 3(Ã, g) = (−1)3[4βew∂3zg + 4βe

w∂3zg],

Fz(P
3(Ã, g)) = (−1)3.22[βew(

i

2
ξ)3f + βew(

i

2
ξ)3f ],
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and with r ≥ 4
P r(Ã, g) = (−1)r.2r−1[βew∂rzg + βe

w∂rzg],

Fz(P
r(Ã, g)) = (−1)r.2r−1[βew(

i

2
ξ)r + βew(

i

2
ξ)r]f.

Lemma 3.4 is therefore proved. �

Proposition 3.5. For each A =

(
α β
0 0

)
∈ aff(C) and for each compactly supported C∞-

function f ∈ C∞c (C×Hk), we have: `
(k)
A f := Fz ◦ `

(k)
A ◦ F

−1
z (f) =

= [α(
1

2
∂w − ∂ξ)f + α(

1

2
∂w − ∂ξ)f +

i

2
(βew−

1
2
ξ + βew−

1
2
ξ)f ]. (5)

Proof. Applying Lemma 3.4, we have:

`
(k)
A (f) := FZ(iÃ ? F

−1
z (f)) = i

∑

r≥0

1

r!
(
1

2i
)rFz
(
P r(Ã,F−1z (f))

)
=

= i
{
[i(α∂ξ + α∂ξ)f +

1

2
βewf +

1

2
βewf ] +

1

1!
(
1

2i
)[α∂wf + α∂wf − βe

w(
i

2
ξ)f−

−βew(
i

2
ξ)f ] +

1

2!
(
−1

2i
)22[βew(

i

2
ξ)2f + βew(

i

2
ξ)
2

f ] + · · ·+

+
1

r!
(
−1

2i
)r2r−1[βew(

i

2
ξ)
r

f + βew(
i

2
ξ)
r

f ] + . . .
}

= −(α∂ξ − α∂ξ)f +
1

2
(α∂w + α∂w)f + i

{[1
2
βew +

1

2
βew −

1

2
βew(

1

2
ξ)−

1

2
βew(

1

2
ξ)
]
f+

+
1

2
.
1

2!

[
βew(

−1

2
ξ)
2

+ βew(
−1

2
ξ)
2]
f + · · ·+

1

2

1

k!

[
βew(

−1

2
ξ)
r

+ βew(
−1

2
ξ)
r]
f + . . .

}

=
[
α(
1

2
∂w − ∂ξ) + α(

1

2
∂w − ∂ξ) +

i

2
βewe−

1
2
ξ +
i

2
βewe−

1
2
ξ
]
f

=
[
α(
1

2
∂w − ∂ξ) + α(

1

2
∂w − ∂ξ) +

i

2
(βew−

1
2
ξ + βew−

1
2
ξ)
]
f

The proposition is therefore proved. �

Remark 3.6. Set u=w − 1
2
ξ;v = w + 1

2
ξ we obtain

ˆ̀(k)
A (f) = α

∂f

∂u
+ α
∂f

∂u
+
i

2
(βeu + βeu)f |(u,v), i.e. (6)

ˆ̀(k)
A = α

∂

∂u
+ α
∂

∂u
+
i

2
(βeu + βeu),

which provides a (local) representation of the Lie algebra aff(C).
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4. The irreducible representations of Ãff(C)

Since ˆ̀
(k)
A is a representation of the Lie algebra aff(C), we have:

exp(ˆ̀
(k)
A ) = exp

(
α
∂

∂u
+ α
∂

∂u
+
i

2
(βeu + βeu)

)

is just the corresponding representation of the corresponding connected and simply con-

nected Lie group Ãff(C). Let us first recall the well-known list of all the irreducible unitary
representations of the group of affine transformations of the complex line, see [4] for more
details.

Theorem 4.1. Up to unitary equivalence, every irreducible unitary representation of Ãff(C)
is unitarily equivalent to one of the following one-to-another nonequivalent irreducible unitary
representations:

1. The unitary characters of the group, i.e. the one-dimensional unitary representation
Uλ, λ ∈ C, acting in C following the formula

Uλ(z, w) = e
i<(zλ),∀(z, w) ∈ Ãff(C), λ ∈ C.

2. The infinite dimensional irreducible representations Tθ, θ ∈ S1, acting on the Hilbert
space L2(R× S1) following the formula:

[
Tθ(z, w)f

]
(x) = exp

(
i(<(wx) + 2πθ[

=(x+ z)

2π
])
)
f(x⊕ z), (7)

where (z, w) ∈ Ãff(C); x ∈ R× S1 = C\{0}; f ∈ L2(R× S1);

x⊕ z = <(x+ z) + 2πi{
=(x+ z)

2π
}.

In this section we will prove the following important theorem which is of interest for us both
in theory and practice.

Theorem 4.2. The representation exp(ˆ̀
(k)
A ) of the group Ãff(C) is the irreducible unitary

representation Tθ of the group Ãff(C) associated to Ω by the orbit method, i.e.

exp(ˆ̀
(k)
A )f(x) = [Tθ(expA)f ](x),

where f ∈ L2(R× S1);A =
(
α β
0 0

)
∈ aff(C); θ ∈ S1; k = 0,±1, . . .

Proof. Putting x = eu ∈ C\{0} = R× S1 and recall that
(
a b
0 1

)
= exp(A) = exp

(
α β
0 0

)
,
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we can rewrite (7) as following:

[Tθ(expA)f ](e
u) = exp

(
i(<(
eα − 1

α
βeu) + 2πθ[

=eu+α

2π
])
)
f(eu⊕α),

where

u⊕ α = <(u+ α) + 2πi{
=(u+ α)

2π
} = u+ α− 2πi[

=(u+ α)

2π
].

Therefore, for the one-parameter subgroup exp tA, t ∈ R, we have the action formula:

[
Tθ(exp tA)f

]
(eu) = exp

(
i(<
etα − 1

α
βeu + 2πθ[

=eu+tα

2π
])
)
f(eu⊕tα).

By a direct computation:

∂

∂t

(
[Tθ(exp tA)f ](e

u)
)
= (8)

=
∂

∂t

(
exp
( i
2
(
etα − 1

α
βeu +

etα − 1

α
βeu) + 2πθi[

=eu+tα

2π
]
))
+ f(eu+tα−2πi[

=(u+tα)
2π

])

+ exp
( i
2
(
etα − 1

α
βeu +

etα − 1

α
βeu) + 2πθi[

=eu+tα

2π
]
) ∂
∂t
f(eu+tα−2πi[

=(u+tα)
2π

]) =

=
i

2
(βeu+tα + βeu+tα)

[
Tθ(exp tA)f

]
(eu) + exp

(
i(<(
etα − 1

α
βeu) + 2πθi[

=eu+tα

2π
]
)
αeu⊕tα

∂f

∂u

on one hand. On the other hand, we have:

ˆ̀(k)
A ([Tθ(exp tA)f ](e

u) = (9)

= α
∂

∂u

(
[Tθ(exp tA)f ](e

u)
)
+ α
∂

∂u

(
[Tθ(exp tA)f ](e

u)
)
+
i

2
(βeu + βeu)

[
Tθ(exp tA)f ](e

u)
]
=

= α
i

2
(
etα − 1

α
βeu) exp

(
i(<(
etα − 1

α
βeu) + 2πθ[

=eu+tα

2π
]
))
f(eu⊕tα)+

+α exp
(
i(<(
etα − 1

α
βeu) + 2πθ[

=eu+tα

2π
]
))
eu⊕tα

∂f

∂u
+

+α
i

2
(
etα − 1

α
βeu) exp

(
i(<(
etα − 1

α
βeu) + 2πθ[

=eu+tα

2π
]
))
f(eu⊕tα)+

+
i

2
(βeu + βeu)[Tθ(exp tA)f ](e

u) =
i

2
(βeu+tα + βeu+tα)[Tθ(exp tA)f ](e

u)+

+ exp
(
i(<(
etα − 1

α
βeu) + 2πθ[

=eu+tα

2π
]
))
αeu⊕αt

∂f

∂u

(8) and (9) imply that

∂

∂t
[Tθ(exp tA)f ](x) = ˆ̀

(k)
A

(
[Tθ(exp tA)f ](x)

)
∀x ∈ R× S1.
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Furthermore,

Tθ(exp tA)f ](e
u)|t=0 = exp(2πi[

=eu

2π
]θ)f(eu−2πi[

=u
2π
]) = f(eu).

This means that: exp(ˆ̀
(k)
A )f(x) and [Tθ(exp tA)f ](x) together are the solution of the Cauchy

problem {
∂
∂t
u(t, x) = ˆ̀(k)

A u(t, x);
u(0, x) = id.

The operator ˆ̀
(k)
A is sufficiently well-behaved, so that the Cauchy problem has a unique

solution. From this uniqueness we deduce that

exp(ˆ̀
(k)
A )f(x) ≡ [Tθ(exp tA)f ](x) ∀x ∈ R× S1.

The theorem is hence proved. �

Remark 4.3. We say that a real Lie algebra g is in the class MD iff every K-orbit is of
dimension 0 or dim g. Furthermore, it was proven in [4, Theorem 4.4] that, up to isomorphism,
every Lie algebra of class MD is one of the following:

1. commutative Lie algebras,

2. the Lie algebra aff(R) of affine transformations of the real line,
3. the Lie algebra of affine transformations of the complex line.

Thus, by calculation for the group of affine transformations of the real line Aff(R)) in [5]
and here for the group of affine transformations of the complex line Aff(C) we obtained a
description of the quantum MD co-adjoint orbits.
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