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1. Introduction

Let S = ⊕S(u,v) be a standard bigraded R-algebra over an Artinian local ring K = S(0,0),
i.e. S is generated by finitely many forms of degree (1, 0) and (0, 1) over K. The Hilbert
function of S is defined as

H(u, v) := `(S(u,v)),

where ` denotes the length of the underlying K-module. Van der Waerden [12] proved
that if K is a field, then H(u, v) is given by a polynomial

P (u, v) =
∑

i+j≤dimS−2

aij

(
u

i

)(
v

j

)

for large u and v, where aij are integers. This has been extended to the Artinian case by
Bhattacharya [1].
A bihomogeneous prime ideal p of S is called relevant if p does not contain S(1,0) and

S(0,1). Let BiProj(S) denote the set of the relevant bihomogeneous prime ideal of S. The
relevant dimension of S is defined as

rdimS := max{dimS/p | p ∈ BiProj(S)}.

As shown by D. Katz, S. Mandal and J. K. Verma [4], degP (u, v) = rdimS − 2. The
numbers aij with i+ j = rdimS − 2 are called the mixed multiplicities of S.
Let (R,m) be a local ring of positive dimension d and I an ideal of R . We can associate

with I the Rees algebra R[It] = ⊕
i≥0
Iiti. Let M := (m, It) be the maximal graded ideal

of R[It]. The associated graded ring grMR[It] := ⊕
n≥0
Mn/Mn+1 has a natural bigrading

with

(grMR[It])(u,v) = m
uIv/mu+1Iv.
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As shown by Bhattacharya [1], the numerical function dimk m
uIv/mu+1Iv is given by a

polynomial in u and v for all large values of u and v. Let s be the degree of this polynomial
and write the terms of total degree s as

∑

i+j=s

aij

i!j!
uivj

where aij are non negative integers.
Teissier and Risler [9] linked these numbers to the Milnor numbers of general hyper-

plane sections of complex analytic hypersurfaces with isolated singularities. They called
the number aij a mixed multiplicity of the pair (m, I) and denoted it by eij(m|I). The
multiplicity of the Rees algebra R[It] and of the extended Rees algebra R[It, t−1] can be
expressed in terms of the mixed multiplicities as follows:

e(R[It]) =
∑

i+j=d−1

eij(m|I)

if I has positive height and, if I ( m2,

e(R[It, t−1] = e(R) +
∑

i+j=d−1

eij(m|I).

See [11, Theorem (3.1)], [5, Proof of (3.7)] for more details. Though we have a well
developed theory on mixed multiplicities when I is an m-primary ideal [9], [6], there have
been few cases where the mixed multiplicities can be computed in terms of well-known
invariants of m and I when I is not an m-primary ideal.
In this paper we study the case R = ⊕

n≥0
Rn is a standard graded algebra over a field

k = R0, m = ⊕
n>0
Rn and I a homogeneous ideal of R. Note that we can define the mixed

multiplicities eij(m|I) as in the local case and that the above formulas for the multiplicities
of the Rees algebras can be proved similarly.
Let x1, . . . , xn be a sequence of homogeneous elements in R with deg x1 ≤ . . . ≤

deg xn. Let I denote the ideal (x1, . . . , xn). The multiplicity of the Rees algebra R[It]
was computed by Herzog, Trung, and Ulrich [2] when x1, . . . , xn is a d-sequence and by
Trung [10] when x1, . . . , xn is a subsystem of parameters which is filter-regular. They used
a technique which is similar to that of Gröbner bases and which does not involve mixed
multiplicities. Using this technique Raghavan and Verma [7] were able to compute the
mixed multiplicities eij(m|I) when x1, . . . , xn is a d-sequence. However, their method is a
bit complicated and can not be applied to study the case I is generated by a subsystem of
parameters.
In Section 2 of this paper we will use a simpler argument to compute the mixed multiplic-

ities eij(m|I) when x1, . . . , xn is a d-sequence. Let Ii = (x1, . . . , xi−1) : xi, i = 1, . . . , n,
d1 = dimR/I1 and r = max{i | dimR/Ii = d1 − i+ 1}. We obtain the formula

eid1−i−1(m|I) =

{
0 if 0 ≤ i ≤ d1 − r − 1,

e(R/Id1−i) if d1 − r ≤ i ≤ d1 − 1.
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We point out that this formula is more precise than that of Raghavan and Verma.
In Section 3 we will use the same argument to compute the mixed multiplicities eij(m|I)

when x1, . . . , xn is a subsystems of homogeneous parameters which is filter-regular with
respect to I. Put deg xi = ai. We obtain the formula

eid−i−1(m|I) =

{
0 if 0 ≤ i ≤ d− n− 1,

a1 . . . ad−i−1e(R) if d− n ≤ i ≤ d− 1.

This formula was posed as a problem in [10]. It is worth to mention that the condition
x1, . . . , xn is a filter-regular sequence with deg x1 ≤ . . . ≤ deg xn is automatically satisfied
in a generalized Cohen-Macaulay ring or if I is generated by elements of the same degree.
We do not know whether there is a compact formula for eij(m|I) in the above cases

when the degrees of x1, . . . , xn are not increasing.

Acknowledgement. The author would like to thank Prof. Ngô Viêt Trung for his guid-
ance.

2. Mixed multiplicities of ideals generated by d-sequences

Let R = ⊕
n≥0
Rn be a standard graded algebra over a field k = R0 and m = ⊕

n>0
Rn. Let

x1, . . . , xn be a sequence of homogeneous elements of R and I = (x1, . . . , xn).
Let A denote the polynomial ring R[T1, . . . , Tn]. If we map Ti to xit, i = 1, . . . , n, we

get a representation of the Rees algebra

R[It] ∼= A/J,

where J is the ideal of A generated by the forms vanishing at x1, . . . , xn. For all h =
(a0, . . . , an) ∈ Nn+1 put

Ah := Ra0T
a1
1 . . . T

an
n .

Then A = ⊕
h∈Nn+1

Ah, that is, A is an Nn+1-graded ring. Note that (m, T1, . . . , Tn) is the

maximal graded ideal of A. Define the following degree-lexicographic order on Nn+1:

(a0, a1, . . . , an) < (b0, b1, . . . , bn)

if the first non-zero component from the left side of

(
n∑

i=0

ai −
n∑

i=0

bi, a0 − b0, . . . , an − bn)

is negative. Then < is a terms order on Nn+1. Set

FhA := ⊕
h
′≥h
Ah′ .

It is clear that F = {FhA}h∈Nn+1 is a filtration of A. The filtration F imposes a filtration
on A/J which we also denote by F .
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For every polynomial f ∈ A, we denote by f∗ the initial term of f , i.e. f∗ = fh′ if

f =
∑

h∈Nn+1
fh and h

′
:= min{h| fh 6= 0}. Let J∗ denote the ideal of A generated by all

elements f∗, f ∈ J . Then
grF (A/J) ∼= A/J

∗.

The Nn+1-graded structure imposes a bigrading on A with

A(u,v) = ⊕
α1+...+αn=v

A(u,α1,... ,αn)

for all (u, v) ∈ N2. Since J∗ is an Nn+1-bigraded ideal of A, J∗ is also a bigraded ideal of
A. Hence A/J∗ is a bigraded algebra over k with respect to the bigrading induced from
A.
Now we shall see that the Bhattacharya function of (m, I) coincides with the Hilbert

function of A/J∗.

Lemma 2.1. For all (u, v) ∈ N2 we have

dimk(m
uIv/mu+1Iv) = dimk(A/J

∗)(u,v).

Proof. We know that
muIv/mu+1Iv = (grMR[It])(u,v).

Let M = (m, T1, . . . , Tn) be the maximal graded ideal of A. Then

grMR[It] ∼= grM(A/J).

The bigrading on grMR[It] imposes a bigrading on grM(A/J) with

grM(A/J)(u,v) =

( ⊕
α0≥u

α1+...+αn≥v

A(α0,... ,αn) + J)/( ⊕
α0≥u

α1+...+αn≥v+1

A(α0,... ,αn) + ⊕
α0≥u+1

α1+...+αn≥v

A(α0,... ,αn) + J)

∼= A
α1+...+αn=v

(u,α1,... ,αn) + J/J.

Using the filtration F on A/J we can decompose the latter module into a series of graded
pieces of the associated ring grF (A/J) ∼= A/J∗ and we obtain

dimk grM(A/J)(u,v) =
∑

α1+...+αn=v

dimk (A/J
∗)(u,α1,... ,αn)

= dimk ⊕
α1+...+αn=v

(A/J∗)(u,α1,... ,αn)

= dimk (A/J
∗)(u,v).

�

According to Lemma 2.1 we can use the Hilbert function of A/J∗ to compute the mixed
multiplicities ei(m|I). Herzog-Trung-Ulrich [2] computed J∗ explicitly when x1, . . . , xn is
a d-sequence of homogeneous elements with increasing degrees. Recall that x1, . . . , xn is
said to be a d-sequence if
(1) xi /∈ (x1, . . . , xi−1, xi+1, . . . , xn),
(2) (x1, . . . , xi) : xi+1xk = (x1, . . . , xi) : xk for all k ≥ i+ 1 and all i ≥ 0.
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Lemma 2.2. [2, Lemma 1.2] Let x1, . . . , xn be a homogeneous d-sequence of R with
deg x1 ≤ . . . ≤ deg xn. Then

J∗ = (I1T1, . . . , InTn),

where Ij := (x1, . . . , xj−1) : xj for 1 ≤ j ≤ n.

Now we come to the main result of this section.

Theorem 2.3. Let I be an ideal generated by a homogeneous d-sequence x1, . . . , xn of
R with deg x1 ≤ . . . ≤ deg xn. Let I0 = 0, Ii = (x1, . . . , xi−1) : xi, i = 1, . . . , n and
d1 = dimR/I1. Then the degree of the Hilbert polynomial of grMR[It] is d1 − 1 and

eid1−i−1(m|I) =

{
0 if 0 ≤ i ≤ d1 − r − 1,

e(R/Id1−i) if d1 − r ≤ i ≤ d1 − 1,

where r = max{i|dimR/Ii = d1 − i+ 1}.

Proof. We will use an idea from [8, Theorem 3.7] to estimate the coefficients of the terms
of the total degree of HA/J∗(u, v). For this we will compute the function

HA/J∗(α0, . . . , αn) = dimk(A/J
∗)(α0,... ,αn).

Any element f ∈ J∗ with deg f = (α0, . . . , αn) is of the form yT
α1
1 . . . T

αn
n with y ∈ (Ii)α0

for some i = 1, . . . , n with αi 6= 0. Since I1, . . . , In is an increasing sequence of ideals, we
get

J∗(α0,... ,αn) = (Im(α1,... ,αn))α0T
α1
1 . . . T

αn
n

where m(α1, . . . , αn) := max{i|αi 6= 0}. Therefore

HA/J∗(α0, . . . , αn) = dimk(R/Im(α1,... ,αn))α0 = HR/Im(α1,... ,αn)(α0)

if (α1, . . . , αn) 6= 0. From this we get the Hilbert function of A/J∗ as a bigraded algebra:

HA/J∗(u, v) =
∑

α1+...+αn=v

HR/Im(α1,... ,αn)(u)

=
n∑

i=1

(
v + i− 2

i− 1

)
HR/Ii(u),

where the latter equality follows from the fact that the number of vectors (α1, . . . , αn)

with α1 + . . .+ αn = v and m(α1, . . . , αn) = i is given by
(
v+i−2
i−1

)
.

Put di = dimR/Ii. Then

HR/Ii(u) =
e(R/Ii)

(di − 1)!
udi−1 + terms of lower degree.

Therefore,

HA/J∗(u, v) =
n∑

i=1

[
e(R/Ii)

(di − 1)!(i− 1)!
udi−1vi−1 + terms of total degree < di + i− 2

]
.
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Since xi−1 is a non-zerodivisor modulo Ii−1 we have

di = dimR/Ii ≤ dimR/(Ii−1, xi−1) = dimR/Ii−1 − 1 = di−1 − 1.

From this it follows that di < di−1 < . . . < d1. Hence d1 − 1 is the total degree of
HA/J∗(u, v). By the assumption, di = d1 − i + 1 if 1 ≤ i ≤ r, and di < d1 − i + 1 if
r < i ≤ n. Hence from the above formula for HA/J∗(u, v) we obtain

eid1−i−1(m|I) =

{
0 if 0 ≤ i ≤ d1 − r − 1,

e(R/Id1−i) if d1 − r ≤ i ≤ d1 − 1. �

Remark. Raghavan and Verma [7] already computed the bigraded Hilbert series grMR[It].
From this they get the formula

eij(m|I) = ei(R/Ij+1)− ei(R/Ij+2) (i+ j = s),

where for a standard graded algebra B over a field the symbol ei(B) denotes the i-th
coefficient of the Hilbert polynomial PB(u) of B, i.e. PB(u) =

∑
i≥0
ei(B)

(
u+i
i

)
. This formula

is not explicit as our formula in Theorem 2.3.

Examples 2.4. It is known that the sequence x1, . . . , xn is a d-sequence in the following
cases (see [3]). Hence we can use Theorem 2.3 to compute the mixed multiplicities.

(1) Regular sequence. Let I be generated by an R-sequence x1, . . . , xn of homogeneous
elements with deg xi = ai, a1 ≤ . . . ≤ an. Since e(R/Ii) = a1 . . . ai−1e(R), we have

eid−i−1(m|I) = a1 . . . ai−1e(R), 1 ≤ i ≤ n.

(2) Subsystem of parameters of Buchsbaum rings. Let R be a graded Buchsbaum ring and I
an ideal of R generated by a subsequence x1 . . . , xn of a homogeneous system of parameters
of R with deg xi = ai, a1 ≤ . . . ≤ an. By [2, Corollary 1.5] e(R/Ii) = a1 . . . ai−1e(R).
Hence

eid−i−1(m|I) = a1 . . . ai−1e(R), 1 ≤ i ≤ n.

(3) Almost complete intersection. Let R be a Gorenstein ring and I = (x1, . . . , xn) a
homogeneous almost complete intersection of R of height n − 1 > 0 which satisfies the
following conditions:
(i) x1, . . . , xn−1 is a regular sequence,
(ii) a1 ≤ . . . ≤ an, ai = deg xi,
(iii) R/I is Cohen-Macaulay,
(iv) IRP = (x1, . . . , xn−1)P for all minimal prime ideals P of I.

Note that e(R/Ii) = a1 . . . ai−1e(R) for i = 1, . . . , n − 1, and e(R/In) = a1 . . . an−1
e(R)− e(R/I) because (x1, . . . , xn−1) = In ∩ I. Then we obtain

eid−i−1(m|I) =

{
a1 . . . ai−1e(R) if 1 ≤ i ≤ n− 1,

a1 . . . an−1e(R)− e(R/I) if i = n.
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3. Mixed multiplicities of subsystems of parameters

Let R= ⊕
n≥0
Rn be a standard graded algebra over a field k, m= ⊕

n>0
Rn and I=(x1, . . . , xn)

a homogeneous ideal of R. Assume that R[It] ∼= A/J , where A = R[T1, . . . , Tn]. As we
have seen in Section 2, A has a natural Nn+1-graded structure. The degree lexicographical
order on Nn+1 induces a filtration F on R[It]. We may write

grFR[It] ∼= A/J
∗,

where J∗ is the ideal generated by the initial elements of J . Moreover, A/J∗ is a bigraded
algebra with respect to the bigrading induced from A. By Lemma 2.1, the Bhattacharya
function `(muIv/mu+1Iv) coincides with the Hilbert function of A/J∗.
We shall see that the ideal J∗ can be estimated if I is generated by a filter-regular

sequence. Recall that a sequence x1, . . . , xn of elements of R is called filter-regular with
respect to I if xi /∈ P for all associated prime ideals P 6⊇ I of (x1, . . . , xi−1), i = 1, . . . , n
(see e.g. [10]). For i = 1, . . . , n we set

Ji := ∪
∞
m=1(x1, . . . , xi−1) : I

m.

Note that Ji is equal to the intersection of all primary components of (x1, . . . , xi−1) whose
associated prime ideals do not contain I.

Lemma 3.1. [10, Lemma 3.1] Let I be generated by a filter-regular sequence x1, . . . , xn
with respect to I with deg x1 ≤ . . . ≤ deg xn. Let P := (J1T1, . . . , JnTn). Then

J∗ ⊆ P.

Set Ii := (x1, . . . , xi−1)R, i = 1, . . . , n, and

L := (I2T2, . . . , InTn).

Since L is the ideal generated by the initial forms of the relations xiTj − xjTi we have

L ⊆ J∗.

If I is generated by a subsystem of parameters with increasing degrees which is filter-
regular, we can use Lemma 2.1 to show that the mixed multiplicities of A/J∗ and A/L
are the same. Note that every subsystem of parameters of R is filter-regular if R is a
generalized Cohen-Macaulay ring.

Proposition 3.2. Let I be a homogeneous ideal generated by a subsystem of parameters
x1, . . . , xn which is a filter-regular sequence with deg x1 ≤ . . . ≤ deg xn. Then the mixed
multiplicities of A/J∗ and A/L are equal.

To prove Proposition 3.2 we shall need the following observation on the additivity of mixed
multiplicities.
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Lemma 3.3. Let S be a standard bigraded algebra with 0 = Q1 ∩ . . . ∩ Qs ∩ Q, where
Q1, . . . , Qs are the relevant primary components of highest dimension. Then

ej(S) =
s∑

i=1

ej(S/Qi).

Proof. We use induction on s. If s = 1, from the exact sequence

0 −→ S = S/Q1 ∩Q −→ S/Q1 ⊕ S/Q −→ S/Q1 +Q −→ 0

we get
HS(u, v) = HS/Q1(u, v) +HS/Q(u, v)−HS/Q1+Q(u, v).

Since rdimS/Q1 > rdimS/Q ≥ rdimS/Q1 +Q,

ej(S) = ej(S/Q1).

If s > 1, put P = Q2 ∩ . . . ∩Qs ∩Q. From the exact sequence

0 −→ S = S/Q1 ∩ P −→ S/Q1 ⊕ S/P −→ S/Q1 + P −→ 0

we get
HS(u, v) = HS/Q1(u, v) +HS/P (u, v)−HS/Q1+P (u, v).

Since the associated prime ideals of P are not contained in the associated prime ideal of
Q1, rdimS/Q1 + P < rdimS/Q1 = rdimS/P = rdimS. Hence

ej(S) = ej(S/Q1) + ej(S/P ).

By induction we may assume that

ej(S/P ) =
s∑

i=2

ej(S/Qi).

Therefore,

ej(S) =
s∑

i=1

ej(S/Qi). �

Proof of Proposition 3.2. By Lemma 3.3 we only need to show that the relevant primary
components of highest dimension of J∗ and L are equal. The ideal L has the decomposition

L = ∩ni=1(Ii, Ti+1, . . . , Tn).

It is clear that every relevant primary component of highest dimension of L must be of the
form (q, Ti+1, . . . , Tn) for some primary component q of Ii with

dimR/q = dimR/Ii = dimR− i+ 1, i = 1, . . . , n.
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Let p denote the associated prime ideal of q. Then I 6⊆ p because dimR/I < dimR/p.
Therefore

JiRp = (∪
∞
m=1Ii : I

m)Rp = IiRp.

From this we deduce that q ⊇ Ji. On the other hand, the ideal P = (J1T1, . . . , JnTn) has
the following decomposition

P = ∩ni=1(Ji, Ti+1, . . . , Tn) ∩ (T1, . . . , Tn).

So P is contained in all relevant primary components of highest dimension of L. But
L ⊆ J∗ ⊆ P by Lemma 3.1. Therefore, the relevant primary components of highest
dimension of L and J∗ must be equal. �

Now we will compute the mixed multiplicities of A/L and therefore the mixed multiplicities
eij(m|I).

Lemma 3.4. [10, Lemma 1.6] Let x be a homogeneous filter-regular element with respect
to an ideal I of R with ht I ≥ 2, set a := deg x. Then

e(R/(x)) = ae(R).

Theorem 3.5. Let I be a homogeneous ideal of R generated by a subsystem of parameters
x1, . . . , xn which is a filter-regular sequence with respect to I with deg x1 = a1 ≤ . . . ≤
deg xn = an. Then

eid−i−1(m|I) =

{
0 if 0 ≤ i ≤ d− n− 1,

a1 . . . ad−i−1e(R) if d− n ≤ i ≤ d− 1.

Proof. By Lemma 2.1 and Lemma 3.2, eij(A/J
∗) = eij(A/L). Therefore we only need to

compute the mixed multiplicities of A/L. As in the proof of Theorem 2.3 we have

HA/L(u, v) =
∑

α1+...+αn=v

HR/Im(α1,... ,αn)(u) =
n∑

i=1

(
v + i− 2

i− 1

)
HR/Ii(u).

Since dimR/Ii = d− i+ 1,

HR/Ii(u) =
e(R/Ii)

(d− i)!
ud−i + terms of lower degree.

Using Lemma 3.4 we can easily show that

e(R/Ii) = a1 . . . ai−1e(R).

Thus

HA/L(u, v) =
n∑

i=1

a1 . . . ai−1e(R)

(d− i)!(i− 1)!
ud−ivi−1 + terms of total degree < d− 1.
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From this it follows show that

eid−i−1(m|I) =

{
0 if 0 ≤ i ≤ d− n− 1,

a1 . . . ad−i−1e(R) if d− n ≤ i ≤ d− 1. �

Remark. The formula of Theorem 3.5 was posed as a problem in [10, Remark of Th. 3.3].

Using the characterization of the multiplicity of the Rees algebra R[It] and the extended
Rees algebra R[It, t−1] we immediately obtain the following result which was proved in
[10] by a different method.

Corollary 3.6. [10, Corollary 3.6 and Corollary 4.4] Let I be as in Theorem 3.5. Then

e(R[It]) =
(
1 +

n−1∑

i=1

a1 . . . ai

)
e(R),

e(R[It, t−1]) =
(
1 +

n−1∑

i=l

a1 . . . ai

)
e(R),

where l is the largest integer for which al = 1 (l = 0 and a1 . . . al = 1 if ai > 1 for all
i = 1, . . . , n).

References

[1] Bhattacharya, P. B.: The Hilbert function of two ideals. Math. Proc. Cambridge
Philos. Soc. 53 (1957), 568–575.

[2] Herzog, J.; Trung, N. V.; Ulrich, B.: On the multiplicity of blow-up rings of ideals
generated by d-sequences. J. Pure Appl. Algebra 80 (1992), 273–297.

[3] Huneke, C.: The theory of d-sequences and powers of ideals. Adv. Math. 46 (1982),
249–279.

[4] Katz, D.; Mandal, S.; Verma, J. K.: Hilbert functions of bigraded algebras. To appear
in Proceedings of the workshop on commutative algebra, Trieste 1992.

[5] Katz, D.; Verma, J.: Extended Rees algebras and mixed multiplicities. Math. Z. 202
(1989), 111–128.

[6] Rees, D.: Generalisation of reduction and mixed multiplicities. J. London Math. Soc.
29 (1984), 397–414.

[7] Raghavan, K. N.; Verma, J. K.: Mixed Hilbert coefficients of homogeneous d-sequences
and quadratic sequences. J. Algebra 195 (1997), 211–232.

[8] Simis, A.; Trung, N. V.; Valla, G.: The diagonal subalgebra of a blow-up algebra. J.
Pure Appl. Algebra 125 (1998), 305–328.
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