On Mixed Multiplicities of Homogeneous Ideals

Nguyen Duc Hoang
Department of Mathematics
Hanoi Pedagogical University, Vietnam

1. Introduction

Let $S=\oplus S_{(u, v)}$ be a standard bigraded R-algebra over an Artinian local ring $K=S_{(0,0)}$, i.e. S is generated by finitely many forms of degree $(1,0)$ and $(0,1)$ over K. The Hilbert function of S is defined as

$$
H(u, v):=\ell\left(S_{(u, v)}\right)
$$

where ℓ denotes the length of the underlying K-module. Van der Waerden [12] proved that if K is a field, then $H(u, v)$ is given by a polynomial

$$
P(u, v)=\sum_{i+j \leq \operatorname{dim} S-2} a_{i j}\binom{u}{i}\binom{v}{j}
$$

for large u and v, where $a_{i j}$ are integers. This has been extended to the Artinian case by Bhattacharya [1].

A bihomogeneous prime ideal \mathfrak{p} of S is called relevant if \mathfrak{p} does not contain $S_{(1,0)}$ and $S_{(0,1)}$. Let $\operatorname{BiProj}(S)$ denote the set of the relevant bihomogeneous prime ideal of S. The relevant dimension of S is defined as

$$
\operatorname{rdim} S:=\max \{\operatorname{dim} S / \mathfrak{p} \mid \mathfrak{p} \in \operatorname{BiProj}(S)\}
$$

As shown by D. Katz, S. Mandal and J. K. Verma [4], $\operatorname{deg} P(u, v)=\operatorname{rdim} S-2$. The numbers $a_{i j}$ with $i+j=\operatorname{rdim} S-2$ are called the mixed multiplicities of S.

Let (R, \mathfrak{m}) be a local ring of positive dimension d and I an ideal of R. We can associate with I the Rees algebra $R[I t]=\underset{i \geq 0}{\oplus} I^{i} t^{i}$. Let $M:=(\mathfrak{m}, I t)$ be the maximal graded ideal of $R[I t]$. The associated graded ring $g r_{M} R[I t]:=\underset{n \geq 0}{\oplus} M^{n} / M^{n+1}$ has a natural bigrading with

$$
\left(g r_{M} R[I t]\right)_{(u, v)}=\mathfrak{m}^{u} I^{v} / \mathfrak{m}^{u+1} I^{v}
$$

As shown by Bhattacharya [1], the numerical function $\operatorname{dim}_{k} \mathfrak{m}^{u} I^{v} / \mathfrak{m}^{u+1} I^{v}$ is given by a polynomial in u and v for all large values of u and v. Let s be the degree of this polynomial and write the terms of total degree s as

$$
\sum_{i+j=s} \frac{a_{i j}}{i!j!} u^{i} v^{j}
$$

where $a_{i j}$ are non negative integers.
Teissier and Risler [9] linked these numbers to the Milnor numbers of general hyperplane sections of complex analytic hypersurfaces with isolated singularities. They called the number $a_{i j}$ a mixed multiplicity of the pair (\mathfrak{m}, I) and denoted it by $e_{i j}(\mathfrak{m} \mid I)$. The multiplicity of the Rees algebra $R[I t]$ and of the extended Rees algebra $R\left[I t, t^{-1}\right]$ can be expressed in terms of the mixed multiplicities as follows:

$$
e(R[I t])=\sum_{i+j=d-1} e_{i j}(\mathfrak{m} \mid I)
$$

if I has positive height and, if $I \subsetneq \mathfrak{m}^{2}$,

$$
e\left(R\left[I t, t^{-1}\right]=e(R)+\sum_{i+j=d-1} e_{i j}(\mathfrak{m} \mid I)\right.
$$

See [11, Theorem (3.1)], [5, Proof of (3.7)] for more details. Though we have a well developed theory on mixed multiplicities when I is an \mathfrak{m}-primary ideal [9], [6], there have been few cases where the mixed multiplicities can be computed in terms of well-known invariants of \mathfrak{m} and I when I is not an \mathfrak{m}-primary ideal.

In this paper we study the case $R=\underset{n>0}{\oplus} R_{n}$ is a standard graded algebra over a field $k=R_{0}, \mathfrak{m}=\underset{n>0}{\oplus} R_{n}$ and I a homogeneous ideal of R. Note that we can define the mixed multiplicities $e_{i j}(\mathfrak{m} \mid I)$ as in the local case and that the above formulas for the multiplicities of the Rees algebras can be proved similarly.

Let x_{1}, \ldots, x_{n} be a sequence of homogeneous elements in R with deg $x_{1} \leq \ldots \leq$ $\operatorname{deg} x_{n}$. Let I denote the ideal $\left(x_{1}, \ldots, x_{n}\right)$. The multiplicity of the Rees algebra $R[I t]$ was computed by Herzog, Trung, and Ulrich [2] when x_{1}, \ldots, x_{n} is a d-sequence and by Trung [10] when x_{1}, \ldots, x_{n} is a subsystem of parameters which is filter-regular. They used a technique which is similar to that of Gröbner bases and which does not involve mixed multiplicities. Using this technique Raghavan and Verma [7] were able to compute the mixed multiplicities $e_{i j}(\mathfrak{m} \mid I)$ when x_{1}, \ldots, x_{n} is a d-sequence. However, their method is a bit complicated and can not be applied to study the case I is generated by a subsystem of parameters.

In Section 2 of this paper we will use a simpler argument to compute the mixed multiplicities $e_{i j}(\mathfrak{m} \mid I)$ when x_{1}, \ldots, x_{n} is a d-sequence. Let $I_{i}=\left(x_{1}, \ldots, x_{i-1}\right): x_{i}, i=1, \ldots, n$, $d_{1}=\operatorname{dim} R / I_{1}$ and $r=\max \left\{i \mid \operatorname{dim} R / I_{i}=d_{1}-i+1\right\}$. We obtain the formula

$$
e_{i d_{1}-i-1}(\mathfrak{m} \mid I)= \begin{cases}0 & \text { if } 0 \leq i \leq d_{1}-r-1 \\ e\left(R / I_{d_{1}-i}\right) & \text { if } d_{1}-r \leq i \leq d_{1}-1\end{cases}
$$

We point out that this formula is more precise than that of Raghavan and Verma.
In Section 3 we will use the same argument to compute the mixed multiplicities $e_{i j}(\mathfrak{m} \mid I)$ when x_{1}, \ldots, x_{n} is a subsystems of homogeneous parameters which is filter-regular with respect to I. Put deg $x_{i}=a_{i}$. We obtain the formula

$$
e_{i d-i-1}(\mathfrak{m} \mid I)= \begin{cases}0 & \text { if } 0 \leq i \leq d-n-1 \\ a_{1} \ldots a_{d-i-1} e(R) & \text { if } d-n \leq i \leq d-1\end{cases}
$$

This formula was posed as a problem in [10]. It is worth to mention that the condition x_{1}, \ldots, x_{n} is a filter-regular sequence with $\operatorname{deg} x_{1} \leq \ldots \leq \operatorname{deg} x_{n}$ is automatically satisfied in a generalized Cohen-Macaulay ring or if I is generated by elements of the same degree.

We do not know whether there is a compact formula for $e_{i j}(\mathfrak{m} \mid I)$ in the above cases when the degrees of x_{1}, \ldots, x_{n} are not increasing.

Acknowledgement. The author would like to thank Prof. Ngô Viêt Trung for his guidance.

2. Mixed multiplicities of ideals generated by \boldsymbol{d}-sequences

Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a standard graded algebra over a field $k=R_{0}$ and $\mathfrak{m}=\underset{n>0}{\oplus} R_{n}$. Let x_{1}, \ldots, x_{n} be a sequence of homogeneous elements of R and $I=\left(x_{1}, \ldots, x_{n}\right)$.

Let A denote the polynomial ring $R\left[T_{1}, \ldots, T_{n}\right]$. If we map T_{i} to $x_{i} t, i=1, \ldots, n$, we get a representation of the Rees algebra

$$
R[I t] \cong A / J
$$

where J is the ideal of A generated by the forms vanishing at x_{1}, \ldots, x_{n}. For all $h=$ $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{N}^{n+1}$ put

$$
A_{h}:=R_{a_{0}} T_{1}^{a_{1}} \ldots T_{n}^{a_{n}}
$$

Then $A=\underset{h \in \mathbb{N}^{n+1}}{\oplus} A_{h}$, that is, A is an \mathbb{N}^{n+1}-graded ring. Note that $\left(\mathfrak{m}, T_{1}, \ldots, T_{n}\right)$ is the maximal graded ideal of A. Define the following degree-lexicographic order on \mathbb{N}^{n+1} :

$$
\left(a_{0}, a_{1}, \ldots, a_{n}\right)<\left(b_{0}, b_{1}, \ldots, b_{n}\right)
$$

if the first non-zero component from the left side of

$$
\left(\sum_{i=0}^{n} a_{i}-\sum_{i=0}^{n} b_{i}, a_{0}-b_{0}, \ldots, a_{n}-b_{n}\right)
$$

is negative. Then $<$ is a terms order on \mathbb{N}^{n+1}. Set

$$
F_{h} A:=\underset{h^{\prime} \geq h}{\oplus} A_{h^{\prime}} .
$$

It is clear that $F=\left\{F_{h} A\right\}_{h \in \mathbb{N}^{n+1}}$ is a filtration of A. The filtration F imposes a filtration on A / J which we also denote by F.

For every polynomial $f \in A$, we denote by f^{*} the initial term of f, i.e. $f^{*}=f_{h^{\prime}}$ if $f=\sum_{h \in \mathbb{N}^{n}+1} f_{h}$ and $h^{\prime}:=\min \left\{h \mid f_{h} \neq 0\right\}$. Let J^{*} denote the ideal of A generated by all elements $f^{*}, f \in J$. Then

$$
g r_{F}(A / J) \cong A / J^{*}
$$

The \mathbb{N}^{n+1}-graded structure imposes a bigrading on A with

$$
A_{(u, v)}=\underset{\alpha_{1}+\ldots+\alpha_{n}=v}{\oplus} A_{\left(u, \alpha_{1}, \ldots, \alpha_{n}\right)}
$$

for all $(u, v) \in \mathbb{N}^{2}$. Since J^{*} is an \mathbb{N}^{n+1}-bigraded ideal of A, J^{*} is also a bigraded ideal of A. Hence A / J^{*} is a bigraded algebra over k with respect to the bigrading induced from A.

Now we shall see that the Bhattacharya function of (\mathfrak{m}, I) coincides with the Hilbert function of A / J^{*}.

Lemma 2.1. For all $(u, v) \in \mathbb{N}^{2}$ we have

$$
\operatorname{dim}_{k}\left(\mathfrak{m}^{u} I^{v} / \mathfrak{m}^{u+1} I^{v}\right)=\operatorname{dim}_{k}\left(A / J^{*}\right)_{(u, v)}
$$

Proof. We know that

$$
\mathfrak{m}^{u} I^{v} / \mathfrak{m}^{u+1} I^{v}=\left(g r_{M} R[I t]\right)_{(u, v)}
$$

Let $\mathfrak{M}=\left(\mathfrak{m}, T_{1}, \ldots, T_{n}\right)$ be the maximal graded ideal of A. Then

$$
g r_{M} R[I t] \cong g r_{\mathfrak{M}}(A / J) .
$$

The bigrading on $g r_{M} R[I t]$ imposes a bigrading on $g r_{\mathfrak{M}}(A / J)$ with

$$
\begin{aligned}
& \quad g r_{\mathfrak{M}}(A / J)_{(u, v)}= \\
& \left(\underset{\substack{\alpha_{0} \geq u \\
\alpha_{1}+\ldots+\alpha_{n} \geq v}}{\oplus} A_{\left(\alpha_{0}, \ldots, \alpha_{n}\right)}+J\right) /\left(\underset{\substack{\alpha_{0} \geq u \\
\alpha_{1}+\ldots+\alpha_{n} \geq v+1}}{\oplus} A_{\left(\alpha_{0}, \ldots, \alpha_{n}\right)}+\underset{\substack{\alpha_{0} \geq u+1 \\
\alpha_{1}+\ldots+\alpha_{n} \geq v}}{\oplus} A_{\left(\alpha_{0}, \ldots, \alpha_{n}\right)}+J\right) \\
& \quad \cong{ }_{\alpha_{1}+\ldots+\alpha_{n}=v} A^{\left(u, \alpha_{1}, \ldots, \alpha_{n}\right)}+J / J .
\end{aligned}
$$

Using the filtration F on A / J we can decompose the latter module into a series of graded pieces of the associated ring $g r_{F}(A / J) \cong A / J^{*}$ and we obtain

$$
\begin{aligned}
& \operatorname{dim}_{k} g r_{\mathfrak{M}}(A / J)_{(u, v)}=\sum_{\alpha_{1}+\ldots+\alpha_{n}=v} \operatorname{dim}_{k}\left(A / J^{*}\right)_{\left(u, \alpha_{1}, \ldots, \alpha_{n}\right)} \\
&=\operatorname{dim}_{k} \stackrel{\oplus}{\alpha_{1}+\ldots+\alpha_{n}=v} \\
&=\operatorname{dim}_{k}\left(A / J^{*}\right)_{\left(u, \alpha_{1}, \ldots, \alpha_{n}\right)} \\
&(u, v)
\end{aligned}
$$

According to Lemma 2.1 we can use the Hilbert function of A / J^{*} to compute the mixed multiplicities $e_{i}(\mathfrak{m} \mid I)$. Herzog-Trung-Ulrich [2] computed J^{*} explicitly when x_{1}, \ldots, x_{n} is a d-sequence of homogeneous elements with increasing degrees. Recall that x_{1}, \ldots, x_{n} is said to be a d-sequence if
(1) $x_{i} \notin\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$,
(2) $\left(x_{1}, \ldots, x_{i}\right): x_{i+1} x_{k}=\left(x_{1}, \ldots, x_{i}\right): x_{k}$ for all $k \geq i+1$ and all $i \geq 0$.

Lemma 2.2. [2, Lemma 1.2] Let x_{1}, \ldots, x_{n} be a homogeneous d-sequence of R with $\operatorname{deg} x_{1} \leq \ldots \leq \operatorname{deg} x_{n}$. Then

$$
J^{*}=\left(I_{1} T_{1}, \ldots, I_{n} T_{n}\right),
$$

where $I_{j}:=\left(x_{1}, \ldots, x_{j-1}\right): x_{j}$ for $1 \leq j \leq n$.
Now we come to the main result of this section.
Theorem 2.3. Let I be an ideal generated by a homogeneous d-sequence x_{1}, \ldots, x_{n} of R with $\operatorname{deg} x_{1} \leq \ldots \leq \operatorname{deg} x_{n}$. Let $I_{0}=0, I_{i}=\left(x_{1}, \ldots, x_{i-1}\right): x_{i}, i=1, \ldots, n$ and $d_{1}=\operatorname{dim} R / I_{1}$. Then the degree of the Hilbert polynomial of $g r_{M} R[I t]$ is $d_{1}-1$ and

$$
e_{i d_{1}-i-1}(m \mid I)= \begin{cases}0 & \text { if } 0 \leq i \leq d_{1}-r-1 \\ e\left(R / I_{d_{1}-i}\right) & \text { if } d_{1}-r \leq i \leq d_{1}-1\end{cases}
$$

where $r=\max \left\{i \mid \operatorname{dim} R / I_{i}=d_{1}-i+1\right\}$.
Proof. We will use an idea from [8, Theorem 3.7] to estimate the coefficients of the terms of the total degree of $H_{A / J^{*}}(u, v)$. For this we will compute the function

$$
H_{A / J^{*}}\left(\alpha_{0}, \ldots, \alpha_{n}\right)=\operatorname{dim}_{k}\left(A / J^{*}\right)_{\left(\alpha_{0}, \ldots, \alpha_{n}\right)}
$$

Any element $f \in J^{*}$ with $\operatorname{deg} f=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ is of the form $y T_{1}^{\alpha_{1}} \ldots T_{n}^{\alpha_{n}}$ with $y \in\left(I_{i}\right)_{\alpha_{0}}$ for some $i=1, \ldots, n$ with $\alpha_{i} \neq 0$. Since I_{1}, \ldots, I_{n} is an increasing sequence of ideals, we get

$$
\left.J_{\left(\alpha_{0}, \ldots, \alpha_{n}\right)}^{*}=\left(I_{m\left(\alpha_{1}, \ldots, \alpha_{n}\right)}\right)\right)_{\alpha_{0}} T_{1}^{\alpha_{1}} \ldots T_{n}^{\alpha_{n}}
$$

where $m\left(\alpha_{1}, \ldots, \alpha_{n}\right):=\max \left\{i \mid \alpha_{i} \neq 0\right\}$. Therefore

$$
H_{A / J^{*}}\left(\alpha_{0}, \ldots, \alpha_{n}\right)=\operatorname{dim}_{k}\left(R / I_{m\left(\alpha_{1}, \ldots, \alpha_{n}\right)}\right)_{\alpha_{0}}=H_{R / I_{m\left(\alpha_{1}, \ldots, \alpha_{n}\right)}}\left(\alpha_{0}\right)
$$

if $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$. From this we get the Hilbert function of A / J^{*} as a bigraded algebra:

$$
\begin{aligned}
H_{A / J^{*}}(u, v) & =\sum_{\alpha_{1}+\ldots+\alpha_{n}=v} H_{R / I_{m\left(\alpha_{1}, \ldots, \alpha_{n}\right)}}(u) \\
& =\sum_{i=1}^{n}\binom{v+i-2}{i-1} H_{R / I_{i}}(u)
\end{aligned}
$$

where the latter equality follows from the fact that the number of vectors $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha_{1}+\ldots+\alpha_{n}=v$ and $m\left(\alpha_{1}, \ldots, \alpha_{n}\right)=i$ is given by $\binom{v+i-2}{i-1}$.

Put $d_{i}=\operatorname{dim} R / I_{i}$. Then

$$
H_{R / I_{i}}(u)=\frac{e\left(R / I_{i}\right)}{\left(d_{i}-1\right)!} u^{d_{i}-1}+\text { terms of lower degree. }
$$

Therefore,

$$
H_{A / J^{*}}(u, v)=\sum_{i=1}^{n}\left[\frac{e\left(R / I_{i}\right)}{\left(d_{i}-1\right)!(i-1)!} u^{d_{i}-1} v^{i-1}+\text { terms of total degree }<d_{i}+i-2\right] .
$$

Since x_{i-1} is a non-zerodivisor modulo I_{i-1} we have

$$
d_{i}=\operatorname{dim} R / I_{i} \leq \operatorname{dim} R /\left(I_{i-1}, x_{i-1}\right)=\operatorname{dim} R / I_{i-1}-1=d_{i-1}-1
$$

From this it follows that $d_{i}<d_{i-1}<\ldots<d_{1}$. Hence $d_{1}-1$ is the total degree of $H_{A / J^{*}}(u, v)$. By the assumption, $d_{i}=d_{1}-i+1$ if $1 \leq i \leq r$, and $d_{i}<d_{1}-i+1$ if $r<i \leq n$. Hence from the above formula for $H_{A / J^{*}}(u, v)$ we obtain

$$
e_{i d_{1}-i-1}(m \mid I)= \begin{cases}0 & \text { if } 0 \leq i \leq d_{1}-r-1 \\ e\left(R / I_{d_{1}-i}\right) & \text { if } d_{1}-r \leq i \leq d_{1}-1\end{cases}
$$

Remark. Raghavan and Verma [7] already computed the bigraded Hilbert series $g r_{\mathfrak{M}} R[I t]$. From this they get the formula

$$
e_{i j}(\mathfrak{m} \mid I)=e_{i}\left(R / I_{j+1}\right)-e_{i}\left(R / I_{j+2}\right) \quad(i+j=s),
$$

where for a standard graded algebra B over a field the symbol $e_{i}(B)$ denotes the i-th coefficient of the Hilbert polynomial $P_{B}(u)$ of B, i.e. $P_{B}(u)=\sum_{i>0} e_{i}(B)\binom{u+i}{i}$. This formula is not explicit as our formula in Theorem 2.3.

Examples 2.4. It is known that the sequence x_{1}, \ldots, x_{n} is a d-sequence in the following cases (see [3]). Hence we can use Theorem 2.3 to compute the mixed multiplicities.
(1) Regular sequence. Let I be generated by an R-sequence x_{1}, \ldots, x_{n} of homogeneous elements with $\operatorname{deg} x_{i}=a_{i}, a_{1} \leq \ldots \leq a_{n}$. Since $e\left(R / I_{i}\right)=a_{1} \ldots a_{i-1} e(R)$, we have

$$
e_{i d-i-1}(m \mid I)=a_{1} \ldots a_{i-1} e(R), 1 \leq i \leq n
$$

(2) Subsystem of parameters of Buchsbaum rings. Let R be a graded Buchsbaum ring and I an ideal of R generated by a subsequence $x_{1} \ldots, x_{n}$ of a homogeneous system of parameters of R with $\operatorname{deg} x_{i}=a_{i}, a_{1} \leq \ldots \leq a_{n}$. By [2, Corollary 1.5] $e\left(R / I_{i}\right)=a_{1} \ldots a_{i-1} e(R)$. Hence

$$
e_{i d-i-1}(m \mid I)=a_{1} \ldots a_{i-1} e(R), 1 \leq i \leq n .
$$

(3) Almost complete intersection. Let R be a Gorenstein ring and $I=\left(x_{1}, \ldots, x_{n}\right)$ a homogeneous almost complete intersection of R of height $n-1>0$ which satisfies the following conditions:
(i) x_{1}, \ldots, x_{n-1} is a regular sequence,
(ii) $a_{1} \leq \ldots \leq a_{n}, a_{i}=\operatorname{deg} x_{i}$,
(iii) R / I is Cohen-Macaulay,
(iv) $I R_{P}=\left(x_{1}, \ldots, x_{n-1}\right)_{P}$ for all minimal prime ideals P of I.

Note that $e\left(R / I_{i}\right)=a_{1} \ldots a_{i-1} e(R)$ for $i=1, \ldots, n-1$, and $e\left(R / I_{n}\right)=a_{1} \ldots a_{n-1}$ $e(R)-e(R / I)$ because $\left(x_{1}, \ldots, x_{n-1}\right)=I_{n} \cap I$. Then we obtain

$$
e_{i d-i-1}(m \mid I)= \begin{cases}a_{1} \ldots a_{i-1} e(R) & \text { if } 1 \leq i \leq n-1, \\ a_{1} \ldots a_{n-1} e(R)-e(R / I) & \text { if } i=n .\end{cases}
$$

3. Mixed multiplicities of subsystems of parameters

Let $R=\underset{n \geq 0}{\oplus} R_{n}$ be a standard graded algebra over a field $k, \mathfrak{m}=\underset{n>0}{\oplus} R_{n}$ and $I=\left(x_{1}, \ldots, x_{n}\right)$ a homogeneous ideal of R. Assume that $R[I t] \cong A / J$, where $A=R\left[T_{1}, \ldots, T_{n}\right]$. As we have seen in Section 2, A has a natural \mathbb{N}^{n+1}-graded structure. The degree lexicographical order on \mathbb{N}^{n+1} induces a filtration F on $R[I t]$. We may write

$$
g r_{F} R[I t] \cong A / J^{*},
$$

where J^{*} is the ideal generated by the initial elements of J. Moreover, A / J^{*} is a bigraded algebra with respect to the bigrading induced from A. By Lemma 2.1, the Bhattacharya function $\ell\left(\mathfrak{m}^{u} I^{v} / \mathfrak{m}^{u+1} I^{v}\right)$ coincides with the Hilbert function of A / J^{*}.

We shall see that the ideal J^{*} can be estimated if I is generated by a filter-regular sequence. Recall that a sequence x_{1}, \ldots, x_{n} of elements of R is called filter-regular with respect to I if $x_{i} \notin P$ for all associated prime ideals $P \nsupseteq I$ of $\left(x_{1}, \ldots, x_{i-1}\right), i=1, \ldots, n$ (see e.g. [10]). For $i=1, \ldots, n$ we set

$$
J_{i}:=\cup_{m=1}^{\infty}\left(x_{1}, \ldots, x_{i-1}\right): I^{m}
$$

Note that J_{i} is equal to the intersection of all primary components of $\left(x_{1}, \ldots, x_{i-1}\right)$ whose associated prime ideals do not contain I.
Lemma 3.1. [10, Lemma 3.1] Let I be generated by a filter-regular sequence x_{1}, \ldots, x_{n} with respect to I with $\operatorname{deg} x_{1} \leq \ldots \leq \operatorname{deg} x_{n}$. Let $P:=\left(J_{1} T_{1}, \ldots, J_{n} T_{n}\right)$. Then

$$
J^{*} \subseteq P
$$

Set $I_{i}:=\left(x_{1}, \ldots, x_{i-1}\right) R, i=1, \ldots, n$, and

$$
L:=\left(I_{2} T_{2}, \ldots, I_{n} T_{n}\right)
$$

Since L is the ideal generated by the initial forms of the relations $x_{i} T_{j}-x_{j} T_{i}$ we have

$$
L \subseteq J^{*}
$$

If I is generated by a subsystem of parameters with increasing degrees which is filterregular, we can use Lemma 2.1 to show that the mixed multiplicities of A / J^{*} and A / L are the same. Note that every subsystem of parameters of R is filter-regular if R is a generalized Cohen-Macaulay ring.

Proposition 3.2. Let I be a homogeneous ideal generated by a subsystem of parameters x_{1}, \ldots, x_{n} which is a filter-regular sequence with $\operatorname{deg} x_{1} \leq \ldots \leq \operatorname{deg} x_{n}$. Then the mixed multiplicities of A / J^{*} and A / L are equal.

To prove Proposition 3.2 we shall need the following observation on the additivity of mixed multiplicities.

Lemma 3.3. Let S be a standard bigraded algebra with $0=Q_{1} \cap \ldots \cap Q_{s} \cap Q$, where Q_{1}, \ldots, Q_{s} are the relevant primary components of highest dimension. Then

$$
e_{j}(S)=\sum_{i=1}^{s} e_{j}\left(S / Q_{i}\right)
$$

Proof. We use induction on s. If $s=1$, from the exact sequence

$$
0 \rightarrow S=S / Q_{1} \cap Q \rightarrow S / Q_{1} \oplus S / Q \rightarrow S / Q_{1}+Q \rightarrow 0
$$

we get

$$
H_{S}(u, v)=H_{S / Q_{1}}(u, v)+H_{S / Q}(u, v)-H_{S / Q_{1}+Q}(u, v)
$$

Since $\operatorname{rdim} S / Q_{1}>\operatorname{rdim} S / Q \geq \operatorname{rdim} S / Q_{1}+Q$,

$$
e_{j}(S)=e_{j}\left(S / Q_{1}\right)
$$

If $s>1$, put $P=Q_{2} \cap \ldots \cap Q_{s} \cap Q$. From the exact sequence

$$
0 \rightarrow S=S / Q_{1} \cap P \rightarrow S / Q_{1} \oplus S / P \rightarrow S / Q_{1}+P \rightarrow 0
$$

we get

$$
H_{S}(u, v)=H_{S / Q_{1}}(u, v)+H_{S / P}(u, v)-H_{S / Q_{1}+P}(u, v) .
$$

Since the associated prime ideals of P are not contained in the associated prime ideal of $Q_{1}, \operatorname{rdim} S / Q_{1}+P<\operatorname{rdim} S / Q_{1}=\operatorname{rdim} S / P=\operatorname{rdim} S$. Hence

$$
e_{j}(S)=e_{j}\left(S / Q_{1}\right)+e_{j}(S / P)
$$

By induction we may assume that

$$
e_{j}(S / P)=\sum_{i=2}^{s} e_{j}\left(S / Q_{i}\right)
$$

Therefore,

$$
e_{j}(S)=\sum_{i=1}^{s} e_{j}\left(S / Q_{i}\right)
$$

Proof of Proposition 3.2. By Lemma 3.3 we only need to show that the relevant primary components of highest dimension of J^{*} and L are equal. The ideal L has the decomposition

$$
L=\cap_{i=1}^{n}\left(I_{i}, T_{i+1}, \ldots, T_{n}\right) .
$$

It is clear that every relevant primary component of highest dimension of L must be of the form $\left(\mathfrak{q}, T_{i+1}, \ldots, T_{n}\right)$ for some primary component \mathfrak{q} of I_{i} with

$$
\operatorname{dim} R / \mathfrak{q}=\operatorname{dim} R / I_{i}=\operatorname{dim} R-i+1, i=1, \ldots, n
$$

Let \mathfrak{p} denote the associated prime ideal of \mathfrak{q}. Then $I \nsubseteq \mathfrak{p}$ because $\operatorname{dim} R / I<\operatorname{dim} R / \mathfrak{p}$. Therefore

$$
J_{i} R_{\mathfrak{p}}=\left(\cup_{m=1}^{\infty} I_{i}: I^{m}\right) R_{\mathfrak{p}}=I_{i} R_{\mathfrak{p}}
$$

From this we deduce that $\mathfrak{q} \supseteq J_{i}$. On the other hand, the ideal $P=\left(J_{1} T_{1}, \ldots, J_{n} T_{n}\right)$ has the following decomposition

$$
P=\cap_{i=1}^{n}\left(J_{i}, T_{i+1}, \ldots, T_{n}\right) \cap\left(T_{1}, \ldots, T_{n}\right)
$$

So P is contained in all relevant primary components of highest dimension of L. But $L \subseteq J^{*} \subseteq P$ by Lemma 3.1. Therefore, the relevant primary components of highest dimension of L and J^{*} must be equal.

Now we will compute the mixed multiplicities of A / L and therefore the mixed multiplicities $e_{i j}(\mathfrak{m} \mid I)$.
Lemma 3.4. [10, Lemma 1.6] Let x be a homogeneous filter-regular element with respect to an ideal I of R with ht $I \geq 2$, set $a:=\operatorname{deg} x$. Then

$$
e(R /(x))=a e(R)
$$

Theorem 3.5. Let I be a homogeneous ideal of R generated by a subsystem of parameters x_{1}, \ldots, x_{n} which is a filter-regular sequence with respect to I with $\operatorname{deg} x_{1}=a_{1} \leq \ldots \leq$ $\operatorname{deg} x_{n}=a_{n}$. Then

$$
e_{i d-i-1}(\mathfrak{m} \mid I)= \begin{cases}0 & \text { if } 0 \leq i \leq d-n-1 \\ a_{1} \ldots a_{d-i-1} e(R) & \text { if } d-n \leq i \leq d-1\end{cases}
$$

Proof. By Lemma 2.1 and Lemma 3.2, $e_{i j}\left(A / J^{*}\right)=e_{i j}(A / L)$. Therefore we only need to compute the mixed multiplicities of A / L. As in the proof of Theorem 2.3 we have

$$
H_{A / L}(u, v)=\sum_{\alpha_{1}+\ldots+\alpha_{n}=v} H_{R / I_{m\left(\alpha_{1}, \ldots, \alpha_{n}\right)}}(u)=\sum_{i=1}^{n}\binom{v+i-2}{i-1} H_{R / I_{i}}(u)
$$

Since $\operatorname{dim} R / I_{i}=d-i+1$,

$$
H_{R / I_{i}}(u)=\frac{e\left(R / I_{i}\right)}{(d-i)!} u^{d-i}+\text { terms of lower degree. }
$$

Using Lemma 3.4 we can easily show that

$$
e\left(R / I_{i}\right)=a_{1} \ldots a_{i-1} e(R)
$$

Thus

$$
H_{A / L}(u, v)=\sum_{i=1}^{n} \frac{a_{1} \ldots a_{i-1} e(R)}{(d-i)!(i-1)!} u^{d-i} v^{i-1}+\text { terms of total degree }<d-1
$$

From this it follows show that

$$
e_{i d-i-1}(\mathfrak{m} \mid I)= \begin{cases}0 & \text { if } 0 \leq i \leq d-n-1 \\ a_{1} \ldots a_{d-i-1} e(R) & \text { if } d-n \leq i \leq d-1\end{cases}
$$

Remark. The formula of Theorem 3.5 was posed as a problem in [10, Remark of Th. 3.3].
Using the characterization of the multiplicity of the Rees algebra $R[I t]$ and the extended Rees algebra $R\left[I t, t^{-1}\right]$ we immediately obtain the following result which was proved in [10] by a different method.

Corollary 3.6. [10, Corollary 3.6 and Corollary 4.4] Let I be as in Theorem 3.5. Then

$$
\begin{gathered}
e(R[I t])=\left(1+\sum_{i=1}^{n-1} a_{1} \ldots a_{i}\right) e(R), \\
e\left(R\left[I t, t^{-1}\right]\right)=\left(1+\sum_{i=l}^{n-1} a_{1} \ldots a_{i}\right) e(R),
\end{gathered}
$$

where l is the largest integer for which $a_{l}=1\left(l=0\right.$ and $a_{1} \ldots a_{l}=1$ if $a_{i}>1$ for all $i=1, \ldots, n)$.

References

[1] Bhattacharya, P. B.: The Hilbert function of two ideals. Math. Proc. Cambridge Philos. Soc. 53 (1957), 568-575.
[2] Herzog, J.; Trung, N. V.; Ulrich, B.: On the multiplicity of blow-up rings of ideals generated by d-sequences. J. Pure Appl. Algebra 80 (1992), 273-297.
[3] Huneke, C.: The theory of d-sequences and powers of ideals. Adv. Math. 46 (1982), 249-279.
[4] Katz, D.; Mandal, S.; Verma, J. K.: Hilbert functions of bigraded algebras. To appear in Proceedings of the workshop on commutative algebra, Trieste 1992.
[5] Katz, D.; Verma, J.: Extended Rees algebras and mixed multiplicities. Math. Z. 202 (1989), 111-128.
[6] Rees, D.: Generalisation of reduction and mixed multiplicities. J. London Math. Soc. 29 (1984), 397-414.
[7] Raghavan, K. N.; Verma, J. K.: Mixed Hilbert coefficients of homogeneous d-sequences and quadratic sequences. J. Algebra 195 (1997), 211-232.
[8] Simis, A.; Trung, N. V.; Valla, G.: The diagonal subalgebra of a blow-up algebra. J. Pure Appl. Algebra 125 (1998), 305-328.
[9] Teissier, B.: Cycles évanescent, sections planes, et conditions de Whitney. Singularités à Cargése 1972, Astérisque 7-8 (1973), 285-362.
[10] Trung, N. V.: Filter-regular sequences and multiplicities of blow-up rings of ideals of the principal class. J. Math. Kyoto Univ. 333 (1993), 665-683.
[11] Verma, J. K.: Rees algebras and mixed multiplicities. Proc. Amer. Math. Soc. 104 (1988), 1036-1045.
[12] van der Waerden, B. L.: On Hilbert's function, series of composition of ideals and a generalization of the theorem of Bezout. Proc. K. Akad. Wet. Amsterdam 31 (1928), 749-770.

Received December 7, 1999

