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Abstract. A pseudo-line of a real plane curve C is a global real branch of C(R) that
is not homologically trivial in P2(R). A geometrically integral real plane curve C
of degree d has at most d− 2 pseudo-lines, provided that C is not a real projective
line. Let C be a real plane curve of degree d having exactly d − 2 pseudo-lines.
Suppose that the genus of the normalization of C is equal to d− 2. We show that
each pseudo-line of C contains exactly 3 inflection points. This generalizes the fact
that a nonsingular real cubic has exactly 3 real inflection points.
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1. Introduction

Let C ⊆ P2 be a real algebraic plane curve. The set C(R) of real points is a real analytic
subset of P2(R) and has a finite number of global branches [1]. Let B be such a branch. Since
B is a real analytic subset of P2(R), it has a fundamental class [B] in the homology group
H1(P2(R),Z/2Z) of P2(R) [2]. We say that B is a pseudo-line of the curve C if [B] 6= 0 (see
Figure 1). A convenient and equivalent way to express that B is a pseudo-line is that there
is a projective real line L ⊆ P2(R) intersecting B in an odd number of points (counted with
multiplicity). In fact, if B is a pseudo-line then any projective real line L ⊆ P2(R) intersects B
in an odd number of points (provided, of course, that L 6= B). These statements all follow
from the fact that H1(P2(R),Z/2Z) is isomorphic to Z/2Z, that the intersection product on
H1(P2(R),Z/2Z) is nondegenerate, and that the fundamental class [L] of a projective real
line L ⊆ P2(R) is nonzero in H1(P2(R),Z/2Z) [8].
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Figure 1. A real plane curve having 4 real branches, exactly 3 of them are pseudo-lines. The
marked points are the real inflection points of the curve.

Real plane curves with many pseudo-lines have rarely been studied. The reason may be that
such curves are necessarily singular. Indeed, if C ⊆ P2 is a real algebraic curve having many
pseudo-lines then two distinct pseudo-lines B and B′ of C intersect each other in a singular
point of C (since [B] · [B′] 6= 0). Curves with many pseudo-lines seem interesting to study
because they turn out to have a more uniform behavior than, for example, nonsingular plane
curves. In fact, one may think of the class of curves having many pseudo-lines and the class
of nonsingular plane curves as lying at opposite ends on the spectrum of all plane curves of
given degree. A study of the passage from curves having many pseudo-lines to curves having
less pseudo-lines might shed a different light on the geometry of nonsingular real plane curves.
In this paper we study the geometry of curves with many pseudo-lines.
Let us make precise what we mean by real plane curves having many pseudo-lines. Let C

be a geometrically integral real plane curve, i.e., its complexification C ×R C is reduced
and irreducible [5]. Let d be the degree of C. We say that C has many pseudo-lines if C
has exactly d − 2 pseudo-lines and if the genus of the normalization of C is equal to d − 2
(Figure 1 is a picture of a curve of degree 5 having many pseudo-lines). In Section 2 we give
a motivation for the present definition of a real plane curve having many pseudo-lines.
There are many examples of real plane curves having many pseudo-lines: all nonsingular

real conics and all nonsingular real cubics have many pseudo-lines. In fact, there are curves
having many pseudo-lines of arbitrary degree d ≥ 2. Indeed, choose a nonsingular real
conic X in P2 and choose d − 2 real projective lines L1, . . . , Ld−2 in P2 in general position
such that Li(R) does not intersect X(R) for i = 1, . . . , d − 2. Let C ′ be the union of X
and L1, . . . , Ld−2. Then, by a well known result of Brusotti one can “deform away” all the
nonreal singularities of the real plane curve C ′. What one gets is a real plane curve C of
degree d having exactly d − 2 pseudo-lines such that the genus of the normalization of C is
equal to d− 2, i.e., C is a real plane curve of degree d having many pseudo-lines (see [6] for
another proof of the existence of such curves).
The paper is devoted to the study of real inflection points on real plane curves having

many pseudo-lines. The main result is the following:
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Theorem 1. Let C be a real plane curve having many pseudo-lines. Then, each pseudo-line
of C contains exactly 3 inflection points.

Theorem 1 generalizes that what is known for nonsingular real cubics [9]: A nonsingular real
cubic has a unique pseudo-line which admits the structure of a real Lie group isomorphic to
the circle group. The set of inflection points on the pseudo-line coincide with the 3-torsion
subgroup. The latter subgroup is isomorphic to Z/3Z. Therefore, the pseudo-line contains
exactly 3 inflection points.
Using Bezout’s Theorem and the fact that a real projective line necessarily intersects a

pseudo-line, it can easily be seen that a real branch of C that is not a pseudo-line cannot
contain inflection points. Hence, Theorem 1 implies that C has exactly 3(d−2) real inflection
points. This total of 3(d− 2) real inflection points can also be obtained from the generalized
Klein Equation [10, 11]. However, that equation does not imply anything concerning the
distribution of the real inflection points over the different real branches.
In order to prove Theorem 1, one may show that a smooth pseudo-line of any real plane

curve contains at least 3 inflection points. Then, applying the generalized Klein Equation, one
deduces that each pseudo-line of C contains exactly 3 inflection points. However, we present
here a proof which does not use the generalized Klein Equation. The proof is inspired on the
case of a nonsingular real cubic, in spite of the absence of a natural structure of a Lie group
on a pseudo-line of C.
Theorem 1 has already been proved in [6] in the case where the curve C has, besides

the d− 2 pseudo-lines, yet another real branch. The proof in [6] does not seem to generalize
to the case of curves having many pseudo-lines.

Acknowledgement. I thank J.-J. Risler and the referee for their remarks on an earlier
version of the paper.

2. The number of pseudo-lines of a real plane curve

In this section we briefly justify the present definition of a real curve having many pseudo-
lines.

Proposition 2. Let C ⊆ P2 be a geometrically integral real plane curve of degree d. If C
has at least d− 1 pseudo-lines then C is a real projective line in P2.

Proof. Let C̃ be the normalization of C and let g̃ be its genus. By the genus formula,

g̃ = 1
2
(d− 1)(d− 2)− µ,

where µ is the multiplicity of the singular locus of C [3]. By hypothesis, C has at least d− 1
pseudo-lines. Since any two distinct pseudo-lines of C intersect each other, µ is greater than
or equal to 1

2
(d − 1)(d − 2). Hence, g̃ = 0 and C is a rational curve. Then, C can have at

most 1 pseudo-line. It follows that d−1 ≤ 1, i.e., d = 1 or d = 2. Then, C is a real projective
line or a real conic. But a geometrical integral real conic has no pseudo-lines. Since C is
supposed to have at least d−1 pseudo-lines, C is not a conic. Therefore, C is a real projective
line in P2.
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By the above proposition, real plane curves of degree d having at least d− 1 pseudo-lines do
not constitute an interesting class of real curves as far as geometry is concerned. Therefore,
we concentrate on real plane curves having exactly d− 2 pseudo-lines:

Proposition 3. Let C ⊆ P2 be a geometrically integral real plane curve of degree d having
exactly d− 2 pseudo-lines. Then, the genus g̃ of the normalization of C is equal to d− 3 or
d− 2. Moreover, one has g̃ = d− 2 if and only if any two distinct pseudo-lines of C intersect
in one point only—the intersection being transverse—and C has no other singularities.

Proof. Let C̃ be the normalization of C. By the genus formula [3], the genus g̃ of C̃ satisfies

g̃ ≤ 1
2
(d− 1)(d− 2)− 1

2
(d− 2)(d− 3) = d− 2.

Equality holds if and only if any two distinct pseudo-lines of C intersect in one point only—the
intersection being transverse—and C has no other singularities. Note that, by definition, the
intersection of two distinct real branches of C is transverse in a point P if and only if both
branches are smooth at P and both tangent lines are distinct.
Harnack’s Inequality [4] states that the number s of real branches of C satisfies the

inequality
s ≤ g̃ + 1.

Since C has at least d− 2 real branches, one has d− 2 ≤ s ≤ g̃+1, i.e., d− 3 ≤ g̃. Therefore,
g̃ is equal to d− 3 or d− 2.

In view of the two preceding propositions, the definition of a real plane curve having many
pseudo-lines now seems reasonable.

3. Inflection points on pseudo-lines

We fix, throughout this section, an integer d ≥ 2 and a geometrically integral curve C ⊆ P2
of degree d having many pseudo-lines. In particular, C has exactly d − 2 pseudo-lines.
Let ν : C̃ → C be the normalization of C. By hypothesis, the genus g̃ of C̃ is equal to d− 2.
Let us collect in the following statement some immediate properties satisfied by C, some

of which have already been mentioned above:

Proposition 4.
1. The curve C has either d− 2 or d− 1 real branches.

2. Two distinct pseudo-lines of C intersect in one point only. These singularities are the
only singularities of C. They are all real ordinary multiple points. In particular, each
real branch of C is a smooth real analytic curve in P2(R).

3. The curve C has only ordinary real inflection points and no real multitangent lines.

Proof. 1. By Harnack’s Inequality [4] the number s of real branches of C satisfies s ≤ g̃+1 =
d− 1. Since C has many pseudo-lines, s ≥ d− 2. Therefore, s = d− 2 or d− 1.

2. These properties have already been shown above (cf. Proposition 3).

3. Suppose that there is a real branch B of C containing a nonordinary real inflection point P .
Let L ⊆ P2 be a real projective line such that L(R) is tangent to B at P . By hypothesis, the
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order of contact of L at P is at least 4. Since L(R) intersects at least d− 3 pseudo-lines of C
different from B, the degree of the intersection product L · C is at least 4 + (d− 3) = d+ 1.
Contradiction by Bezout’s Theorem since C is of degree d. Therefore, C does not have
nonordinary real inflection points.
Let us make precise what we mean by real multitangent lines. Let L ⊆ P2 be a real line.

We say that L is a multitangent line of C if either L is tangent to C at a nonreal closed
point, or L is tangent to C at two distinct real points. This is in accordance with the fact
that a nonreal closed point is a point of degree 2.
Suppose that L is a multitangent line of C that is tangent to C at a nonreal point P .

Since L(R) intersects each of the d− 2 pseudo-lines of C, the degree of L ·C is at least (d−
2) + 2 deg(P ) = d + 2. This contradicts the fact that L · C is of degree d. Hence, there are
no multitangent lines of C that are tangent at a nonreal point.
Suppose that L is a multitangent line of C that is tangent to C at two distinct real

points P and P ′. Let B (resp. B′) be the real branch of C to which L(R) is tangent at P
(resp. P ′). There are 3 cases to consider:
1. B and B′ are distinct pseudo-lines of C,

2. B and B′ are one and the same pseudo-line of C, and

3. B or B′ is not a pseudo-line of C.

We show that each of these cases leads to a contradiction. In each of the first two cases, the
main observation is that L(R) intersects each pseudo-line of C in an odd number of points.
In case 1, the degrees of L(R) ·B and L(R) ·B′ are at least 3. Since L(R) intersects each

of the remaining d − 4 pseudo-lines, the degree of L · C is at least 3 + 3 + (d − 4) = d + 2.
Contradiction.
In case 2, the degree of L(R) · B is at least 5. Since L(R) intersects each of the remain-

ing d− 3 pseudo-lines, the degree of L · C is at least 5 + (d− 3) = d+ 2. Contradiction.
In case 3, L(R) is tangent to a real branch O of C that is not a pseudo-line, i.e., the

degree of L(R) ·O is at least 2. Since L(R) intersects each of the d− 2 pseudo-lines of C and
since the degree of L · C is equal to d = 2 + (d − 2), the real line L(R) is not tangent to a
pseudo-line of C and is tangent to O at only one point. Contradiction, since L was supposed
to be tangent to C at two distinct real points.

Let us, for completeness, include a proof of the following statement:

Lemma 5. Any pseudo-line of C contains at least 1 inflection point.

Proof. We show first the more general statement that, for any geometrically integral real
plane curve D, the dual curve Bg of a smooth real branch B of D is homologically trivial
in P2(R)g. Indeed, choose a general point P ∈ P2(R) such that P 6∈ B. Let p : B → P1(R)
be the restriction of the linear projection from P2(R) \ {P} onto P1(R) with center P . Then,
p is a nonconstant real analytic map from the real analytic curve B into the real analytic
curve P1(R). Such a map is necessarily ramified at an even number of points of B. Therefore,
the number of lines passing through P and tangent to B is even. Dually, this means that the
line dual to P intersects Bg in an even number of points. Therefore, Bg is homologically
trivial in P2(R)g.
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Now, let B be a pseudo-line of C. It is clear that Bg is a real branch of Cg. By the
preceding paragraph, Bg is not a smooth real branch of Cg since otherwise B = (Bg)g

would be homologically trivial. Therefore, Bg contains singularities. By Proposition 4 (3),
Bg can only contain ordinary cusps as singularities. Hence, Bg contains at least 1 ordinary
cusp. It follows that B contains at least 1 inflection point.

Proof of Theorem 1. Let B be a pseudo-line of C. By Proposition 4 (2), B is a smooth real
analytic curve in P2(R). Let Q be a point on B and let L ⊆ P2(R) be the tangent line at Q
to B. Since B is a pseudo-line, L has to intersect B in yet another point P . Using Bezout’s
Theorem, one sees that the point P ∈ B is uniquely determined by Q. Let α : B → B be the
map defined by α(Q) = P . It is clear that α is continuous.
An inflection point of B is a fixed point of α and conversely. Therefore, we have to show

that α has exactly 3 fixed points. The idea is to show that α is a topological covering of B
of degree −2. It will then follow from Lemma 7 below that α has exactly 3 fixed points.
For P ∈ B, let πP : P2 \ {P} → P1P be the linear projection with center P . Here, P1P

denotes the real algebraic curve of projective lines in P2 passing through P . Of course, P1P
is isomorphic to P1, however, not canonically. That will be crucial below. By definition, the
πP -image of a real point Q of P2 \ {P} is the real projective line passing through P and Q.
Let fP : C̃ → P1P be the unique morphism such that fP = πP ◦ ν on C̃ \ ν−1(P ). Then,

fP is a morphism of degree d− µ, where µ is the multiplicity of C at P or, equivalently, µ is
the number of real branches of C passing through P . By Proposition 4 (2), one may identify
a real branch of C with the corresponding real branch of C̃. The morphism fP is ramified at
a point Q ∈ B if and only if the real line L ⊆ P2(R) through P and Q is tangent to B at Q.
It follows that the fiber α−1(P ) is equal to the set of ramification points of the restriction
of fP to B.
Let B′ be a pseudo-line of C not passing through P . Since B′ is contained in P2(R)\{P},

the restriction of fP to B
′ is a continuous map from B′ into P1(R) of odd topological degree

(see [7] for the notion of topological degree mod 2). In particular, the restriction of fP to B
′

is surjective. Since there are (d−2)−µ pseudo-lines of C not passing through P and since the
degree of fP is equal to d−µ, each fiber of the restriction of fP to B has cardinality at most 2.
In fact, more precisely, for all points R ∈ P1P (R), the degree of the divisor (fP |B)?(R) on B is
at most 2. Since the topological degree of the restriction of fP to B is even, there are either
0 or 2 points of B at which fP is ramified. In the former case fP |B is not null-homotopic, in
the latter case fP |B is null-homotopic.
Let T = TB/P2(R) be the restriction to B of the tangent bundle of P2(R). Since B is a

pseudo-line, the real analytic vector bundle T is isomorphic to the direct sum of a trivial line
bundle and a nontrivial, i.e. a Möbius line bundle on B. Denote by P(T ) the projectivization
of T . The total space of P(T ) is a Klein bottle. The fiber P(T )P of P(T ) over a point P of B
is canonically isomorphic to P1P (R), i.e., we have made the collection of all real projective
lines {P1P (R)}P∈B into a locally trivial real analytic fiber bundle over B. Define

F : B ×B −→ P(T )

by F (P,Q) = fP (Q) for all (P,Q) ∈ B × B. The map F is real analytic, and, when we
consider B × B to be fibered over B through the projection on the first factor, F is a map
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of locally trivial real analytic fiber bundles over B. The fiber FP of F over P ∈ B is the
map fP |B, i.e., we have made the collection of all maps fP |B into a real analytic family of
maps over B.
Above, we have seen that fP |B is ramified at exactly 0 or 2 points of B. Moreover, fP |B

is not null homotopic in the former case and is null homotopic in the latter case. Since the
maps fP |B vary continuously in a connected family, either all maps fP |B are null homotopic,
or all maps fP |B are not null homotopic. Hence, either all maps fP |B are unramified, or
all maps fP |B are ramified at exactly 2 points. Now, there is, of course, a point P0 ∈ B
such that α−1(P0) is nonempty. But then, as we have seen above, fP0|B is ramified. Hence,
all maps fP |B are ramified at exactly 2 points of B. Moreover, since, for all R ∈ P1P (R),
the degree of the divisor (fP |B)?(R) is at most 2, the image (fP |B)(B) is an interval IP
in P1P (R). The union I of all IP is an interval subbundle of P(T ). Since the latter fiber
bundle is not globally trivial, the interval bundle I is a Möbius bundle over B. This implies
that the ramification locus of F , i.e., the union of the ramification loci of the maps fP |B, is
a nontrivial topological covering of the base B of degree ±2. Now, this ramification locus is
the transpose of the graph of α. Hence, α is of degree ±2.
In order to show that α is of degree −2, recall that B has at least 1 inflection point by

Lemma 5 and that such an inflection point is necessarily ordinary by Proposition 4 (3). A
local study of α at an ordinary inflection point of B reveals that α is orientation-reversing.
Hence, the topological degree of α is equal to −2. It follows from Lemma 7 below that
the number of fixed points of α is equal to 3. Therefore, B contains exactly 3 inflection
points.

Before proving Lemma 7 one needs the following preliminary statement:

Lemma 6. Let α, β : S1 → S1 be topological coverings either both orientation-preserving or
both orientation-reversing. Then, the product αβ : S1 → S1, defined by (αβ)(z) = α(z) · β(z)
for any z ∈ S1, is also a topological covering.

Proof. Let p : R → S1 be the universal covering defined by p(t) = exp(2πit) for t ∈ R. Let
α̃, β̃ : R→ R be liftings of α and β, respectively, i.e., p ◦ α̃ = α ◦ p and p ◦ β̃ = β ◦ p. Then,
α̃+β̃ is a lifting of αβ. Since α and β are topological coverings, α̃ and β̃ are homeomorphisms
of R onto itself. Since α and β are either both orientation-preserving or both orientation-
reversing, α̃ and β̃ are either both strictly ascending or both strictly descending real functions.
It follows that α̃ + β̃ is strictly ascending or strictly descending. In particular, α̃ + β̃ is a
homeomorphism and, therefore, αβ is a topological covering.

Lemma 7. Let α : S1 → S1 be a topological covering of degree −e, for some e > 0. Then, α
has exactly e+ 1 fixed points.

Proof. Let β : S1 → S1 be the standard topological covering of degree −e, i.e., β(z) = z̄e

for z ∈ S1. Then, α and β are isotopic coverings, i.e., there is a homotopy F : S1 × [0, 1]→
S1 such that F0 = α, F1 = β and Ft is a topological covering for all t ∈ [0, 1]. Define
F ′ : S1 × [0, 1] → S1 by F ′(z, t) = F (z, t) · z̄ for (z, t) ∈ S1 × [0, 1]. By Lemma 6, F ′ is
an isotopy of topological coverings of S1. One has F ′1(z) = z̄

e+1. Hence, the fiber F ′1
−1(1)

consists of e + 1 points. Then, the fiber F ′0
−1(1) consists of e + 1 points too, i.e., there
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are exactly e + 1 points z ∈ S1 such that α(z)z̄ = 1. Therefore, α has exactly e + 1 fixed
points.
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