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Abstract. A pseudo-line of a real plane curve C'is a global real branch of C'(R) that
is not homologically trivial in P?(R). A geometrically integral real plane curve C
of degree d has at most d — 2 pseudo-lines, provided that C'is not a real projective
line. Let C' be a real plane curve of degree d having exactly d — 2 pseudo-lines.
Suppose that the genus of the normalization of C' is equal to d — 2. We show that
each pseudo-line of C' contains exactly 3 inflection points. This generalizes the fact
that a nonsingular real cubic has exactly 3 real inflection points.
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1. Introduction

Let C C P? be a real algebraic plane curve. The set C(R) of real points is a real analytic
subset of P?(R) and has a finite number of global branches [1]. Let B be such a branch. Since
B is a real analytic subset of P?(R), it has a fundamental class [B] in the homology group
H,(P%(R),Z/27) of P*(R) [2]. We say that B is a pseudo-line of the curve C if [B] # 0 (see
Figure 1). A convenient and equivalent way to express that B is a pseudo-line is that there
is a projective real line L C P?(R) intersecting B in an odd number of points (counted with
multiplicity). In fact, if B is a pseudo-line then any projective real line L C P?(R) intersects B
in an odd number of points (provided, of course, that L # B). These statements all follow
from the fact that H;(P?(R),Z/2Z) is isomorphic to Z/27Z, that the intersection product on
H,(P*(R),Z/27Z) is nondegenerate, and that the fundamental class [L] of a projective real
line L C P%(R) is nonzero in H,(P*(R),Z/27Z) [8].
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Figure 1. A real plane curve having 4 real branches, exactly 3 of them are pseudo-lines. The
marked points are the real inflection points of the curve.

Real plane curves with many pseudo-lines have rarely been studied. The reason may be that
such curves are necessarily singular. Indeed, if C' C P? is a real algebraic curve having many
pseudo-lines then two distinct pseudo-lines B and B’ of C intersect each other in a singular
point of C' (since [B] - [B'] # 0). Curves with many pseudo-lines seem interesting to study
because they turn out to have a more uniform behavior than, for example, nonsingular plane
curves. In fact, one may think of the class of curves having many pseudo-lines and the class
of nonsingular plane curves as lying at opposite ends on the spectrum of all plane curves of
given degree. A study of the passage from curves having many pseudo-lines to curves having
less pseudo-lines might shed a different light on the geometry of nonsingular real plane curves.
In this paper we study the geometry of curves with many pseudo-lines.

Let us make precise what we mean by real plane curves having many pseudo-lines. Let C
be a geometrically integral real plane curve, i.e., its complexification C' xg C is reduced
and irreducible [5]. Let d be the degree of C. We say that C' has many pseudo-lines if C
has exactly d — 2 pseudo-lines and if the genus of the normalization of C' is equal to d — 2
(Figure 1 is a picture of a curve of degree 5 having many pseudo-lines). In Section 2 we give
a motivation for the present definition of a real plane curve having many pseudo-lines.

There are many examples of real plane curves having many pseudo-lines: all nonsingular
real conics and all nonsingular real cubics have many pseudo-lines. In fact, there are curves
having many pseudo-lines of arbitrary degree d > 2. Indeed, choose a nonsingular real

conic X in P? and choose d — 2 real projective lines L,..., Ly_o in P? in general position
such that L;(R) does not intersect X (R) for ¢ = 1,... ,d — 2. Let C’ be the union of X
and Ly,...,Lg 2. Then, by a well known result of Brusotti one can “deform away” all the

nonreal singularities of the real plane curve C’'. What one gets is a real plane curve C of
degree d having exactly d — 2 pseudo-lines such that the genus of the normalization of C' is
equal to d — 2, i.e., C is a real plane curve of degree d having many pseudo-lines (see [6] for
another proof of the existence of such curves).

The paper is devoted to the study of real inflection points on real plane curves having
many pseudo-lines. The main result is the following:
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Theorem 1. Let C be a real plane curve having many pseudo-lines. Then, each pseudo-line
of C contains exactly 3 inflection points.

Theorem 1 generalizes that what is known for nonsingular real cubics [9]: A nonsingular real
cubic has a unique pseudo-line which admits the structure of a real Lie group isomorphic to
the circle group. The set of inflection points on the pseudo-line coincide with the 3-torsion
subgroup. The latter subgroup is isomorphic to Z/3Z. Therefore, the pseudo-line contains
exactly 3 inflection points.

Using Bezout’s Theorem and the fact that a real projective line necessarily intersects a
pseudo-line, it can easily be seen that a real branch of C' that is not a pseudo-line cannot
contain inflection points. Hence, Theorem 1 implies that C' has exactly 3(d—2) real inflection
points. This total of 3(d — 2) real inflection points can also be obtained from the generalized
Klein Equation [10, 11]. However, that equation does not imply anything concerning the
distribution of the real inflection points over the different real branches.

In order to prove Theorem 1, one may show that a smooth pseudo-line of any real plane
curve contains at least 3 inflection points. Then, applying the generalized Klein Equation, one
deduces that each pseudo-line of C' contains exactly 3 inflection points. However, we present
here a proof which does not use the generalized Klein Equation. The proof is inspired on the
case of a nonsingular real cubic, in spite of the absence of a natural structure of a Lie group
on a pseudo-line of C.

Theorem 1 has already been proved in [6] in the case where the curve C' has, besides
the d — 2 pseudo-lines, yet another real branch. The proof in [6] does not seem to generalize
to the case of curves having many pseudo-lines.

Acknowledgement. [ thank J.-J. Risler and the referee for their remarks on an earlier
version of the paper.

2. The number of pseudo-lines of a real plane curve

In this section we briefly justify the present definition of a real curve having many pseudo-
lines.

Proposition 2. Let C C P? be a geometrically integral real plane curve of degree d. If C
has at least d — 1 pseudo-lines then C' is a real projective line in P?.

Proof. Let C be the normalization of C' and let § be its genus. By the genus formula,

§=4d-1)d-2)—p,

where g is the multiplicity of the singular locus of C' [3]. By hypothesis, C' has at least d — 1
pseudo-lines. Since any two distinct pseudo-lines of C intersect each other, u is greater than
or equal to 3(d — 1)(d — 2). Hence, § = 0 and C is a rational curve. Then, C can have at
most 1 pseudo-line. It follows that d—1 < 1,i.e.,d =1 or d = 2. Then, C is a real projective
line or a real conic. But a geometrical integral real conic has no pseudo-lines. Since C' is
supposed to have at least d— 1 pseudo-lines, C' is not a conic. Therefore, C'is a real projective
line in P2, O
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By the above proposition, real plane curves of degree d having at least d — 1 pseudo-lines do
not constitute an interesting class of real curves as far as geometry is concerned. Therefore,
we concentrate on real plane curves having exactly d — 2 pseudo-lines:

Proposition 3. Let C C P? be a geometrically integral real plane curve of degree d having
exactly d — 2 pseudo-lines. Then, the genus g of the normalization of C' is equal to d — 3 or
d—2. Moreover, one has g = d—2 if and only if any two distinct pseudo-lines of C' intersect
in one point only—the intersection being transverse—and C' has no other singularities.

Proof. Let C be the normalization of C. By the genus formula 3], the genus g of C satisfies

§<Hd-1)(d=2) ~Hd-2)(d—3) = d—2
Equality holds if and only if any two distinct pseudo-lines of C' intersect in one point only—the
intersection being transverse—and C has no other singularities. Note that, by definition, the
intersection of two distinct real branches of C' is transverse in a point P if and only if both
branches are smooth at P and both tangent lines are distinct.

Harnack’s Inequality [4] states that the number s of real branches of C satisfies the
inequality

s<g+1.

Since C' has at least d — 2 real branches, one has d —2 < s < g+1,i.e., d—3 < g. Therefore,
gisequal tod—3 ord— 2. O]

In view of the two preceding propositions, the definition of a real plane curve having many
pseudo-lines now seems reasonable.

3. Inflection points on pseudo-lines

We fix, throughout this section, an integer d > 2 and a geometrically integral curve C' C P?
of degree d having many pseudo-lines. In particular, C' has exactly d — 2 pseudo-lines.
Let v: C' — C be the normalization of C'. By hypothesis, the genus § of C is equal to d — 2.

Let us collect in the following statement some immediate properties satisfied by C, some
of which have already been mentioned above:

Proposition 4.
1. The curve C has either d — 2 or d — 1 real branches.

2. Two distinct pseudo-lines of C intersect in one point only. These singularities are the
only singularities of C. They are all real ordinary multiple points. In particular, each
real branch of C is a smooth real analytic curve in P*(R).

3. The curve C' has only ordinary real inflection points and no real multitangent lines.

Proof. 1. By Harnack’s Inequality [4] the number s of real branches of C' satisfies s < g+ 1 =
d — 1. Since C' has many pseudo-lines, s > d — 2. Therefore, s =d —2 or d — 1.

2. These properties have already been shown above (cf. Proposition 3).

3. Suppose that there is a real branch B of C' containing a nonordinary real inflection point P.
Let L C P? be a real projective line such that L(R) is tangent to B at P. By hypothesis, the
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order of contact of L at P is at least 4. Since L(R) intersects at least d — 3 pseudo-lines of C
different from B, the degree of the intersection product L - C' is at least 4 4+ (d — 3) = d + 1.
Contradiction by Bezout’s Theorem since C' is of degree d. Therefore, C' does not have
nonordinary real inflection points.

Let us make precise what we mean by real multitangent lines. Let L C P? be a real line.
We say that L is a multitangent line of C' if either L is tangent to C' at a nonreal closed
point, or L is tangent to C at two distinct real points. This is in accordance with the fact
that a nonreal closed point is a point of degree 2.

Suppose that L is a multitangent line of C' that is tangent to C' at a nonreal point P.
Since L(R) intersects each of the d — 2 pseudo-lines of C, the degree of L - C'is at least (d —
2) 4+ 2deg(P) = d + 2. This contradicts the fact that L - C is of degree d. Hence, there are
no multitangent lines of C' that are tangent at a nonreal point.

Suppose that L is a multitangent line of C' that is tangent to C at two distinct real
points P and P’. Let B (resp. B’) be the real branch of C' to which L(R) is tangent at P
(resp. P'). There are 3 cases to consider:

1. B and B’ are distinct pseudo-lines of C,

2. B and B’ are one and the same pseudo-line of C, and
3. B or B’ is not a pseudo-line of C.

We show that each of these cases leads to a contradiction. In each of the first two cases, the
main observation is that L(R) intersects each pseudo-line of C' in an odd number of points.

In case 1, the degrees of L(R)- B and L(R) - B’ are at least 3. Since L(R) intersects each
of the remaining d — 4 pseudo-lines, the degree of L - C' is at least 3+ 3+ (d —4) = d + 2.
Contradiction.

In case 2, the degree of L(R) - B is at least 5. Since L(R) intersects each of the remain-
ing d — 3 pseudo-lines, the degree of L - C is at least 5 + (d — 3) = d + 2. Contradiction.

In case 3, L(R) is tangent to a real branch O of C' that is not a pseudo-line, i.e., the
degree of L(R) - O is at least 2. Since L(R) intersects each of the d — 2 pseudo-lines of C' and
since the degree of L - C is equal to d = 2 + (d — 2), the real line L(R) is not tangent to a
pseudo-line of C' and is tangent to O at only one point. Contradiction, since L was supposed
to be tangent to C' at two distinct real points. O]

Let us, for completeness, include a proof of the following statement:
Lemma 5. Any pseudo-line of C contains at least 1 inflection point.

Proof. We show first the more general statement that, for any geometrically integral real
plane curve D, the dual curve B of a smooth real branch B of D is homologically trivial
in P?(R)". Indeed, choose a general point P € P?(R) such that P ¢ B. Let p: B — P}(R)
be the restriction of the linear projection from P?(R)\ {P} onto P*(R) with center P. Then,
p is a nonconstant real analytic map from the real analytic curve B into the real analytic
curve P}(R). Such a map is necessarily ramified at an even number of points of B. Therefore,
the number of lines passing through P and tangent to B is even. Dually, this means that the
line dual to P intersects B” in an even number of points. Therefore, B" is homologically
trivial in P?(R) Y.
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Now, let B be a pseudo-line of C. It is clear that B" is a real branch of C'". By the
preceding paragraph, B is not a smooth real branch of C'' since otherwise B = (BY)"
would be homologically trivial. Therefore, BY contains singularities. By Proposition 4 (3),
BY can only contain ordinary cusps as singularities. Hence, B" contains at least 1 ordinary
cusp. It follows that B contains at least 1 inflection point. O

Proof of Theorem 1. Let B be a pseudo-line of C. By Proposition 4 (2), B is a smooth real
analytic curve in P?(R). Let Q be a point on B and let L C P?(R) be the tangent line at Q
to B. Since B is a pseudo-line, L has to intersect B in yet another point P. Using Bezout’s
Theorem, one sees that the point P € B is uniquely determined by (). Let a: B — B be the
map defined by «(Q) = P. It is clear that « is continuous.

An inflection point of B is a fixed point of a and conversely. Therefore, we have to show
that a has exactly 3 fixed points. The idea is to show that « is a topological covering of B
of degree —2. It will then follow from Lemma 7 below that a has exactly 3 fixed points.

For P € B, let mp: P? \ {P} — PL be the linear projection with center P. Here, P}
denotes the real algebraic curve of projective lines in P? passing through P. Of course, PL
is isomorphic to P!, however, not canonically. That will be crucial below. By definition, the
mp-image of a real point Q of P2\ {P} is the real projective line passing through P and Q.

Let fp: C — PL be the unique morphism such that fp = 7p o v on C'\ v~'(P). Then,
fp is a morphism of degree d — i, where u is the multiplicity of C' at P or, equivalently, p is
the number of real branches of C' passing through P. By Proposition 4 (2), one may identify
a real branch of C' with the corresponding real branch of C'. The morphism fp is ramified at
a point ) € B if and only if the real line L C P%(R) through P and Q is tangent to B at Q.
It follows that the fiber a~!(P) is equal to the set of ramification points of the restriction
of fp to B.

Let B’ be a pseudo-line of C not passing through P. Since B’ is contained in P*(R)\ { P},
the restriction of fp to B’ is a continuous map from B’ into P!(R) of odd topological degree
(see [7] for the notion of topological degree mod 2). In particular, the restriction of fp to B’
is surjective. Since there are (d—2)— p pseudo-lines of C' not passing through P and since the
degree of fp is equal to d— u, each fiber of the restriction of fp to B has cardinality at most 2.
In fact, more precisely, for all points R € PL(R), the degree of the divisor (fp|)*(R) on B is
at most 2. Since the topological degree of the restriction of fp to B is even, there are either
0 or 2 points of B at which fp is ramified. In the former case fp|p is not null-homotopic, in
the latter case fp|p is null-homotopic.

Let T = Tgp2(r) be the restriction to B of the tangent bundle of P*(R). Since B is a
pseudo-line, the real analytic vector bundle 7 is isomorphic to the direct sum of a trivial line
bundle and a nontrivial, i.e. a Mébius line bundle on B. Denote by P(7") the projectivization
of 7. The total space of P(7) is a Klein bottle. The fiber P(7)p of P(T) over a point P of B
is canonically isomorphic to PL(R), i.e., we have made the collection of all real projective
lines {PL(R)} pep into a locally trivial real analytic fiber bundle over B. Define

F: Bx B —P(T)

by F(P,Q) = fp(Q) for all (P,Q) € B x B. The map F is real analytic, and, when we
consider B x B to be fibered over B through the projection on the first factor, F' is a map
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of locally trivial real analytic fiber bundles over B. The fiber Fp of F' over P € B is the
map fp|p, i.e., we have made the collection of all maps fp|p into a real analytic family of
maps over B.

Above, we have seen that fp|p is ramified at exactly 0 or 2 points of B. Moreover, fp|p
is not null homotopic in the former case and is null homotopic in the latter case. Since the
maps fp|p vary continuously in a connected family, either all maps fp|p are null homotopic,
or all maps fp|p are not null homotopic. Hence, either all maps fp|p are unramified, or
all maps fp|p are ramified at exactly 2 points. Now, there is, of course, a point Py € B
such that a~!(P) is nonempty. But then, as we have seen above, fp,|p is ramified. Hence,
all maps fp|p are ramified at exactly 2 points of B. Moreover, since, for all R € PL(R),
the degree of the divisor (fp|p)*(R) is at most 2, the image (fp|g)(B) is an interval Ip
in PL(R). The union I of all Ip is an interval subbundle of P(7). Since the latter fiber
bundle is not globally trivial, the interval bundle I is a Mobius bundle over B. This implies
that the ramification locus of F i.e., the union of the ramification loci of the maps fp|g, is
a nontrivial topological covering of the base B of degree +2. Now, this ramification locus is
the transpose of the graph of . Hence, « is of degree +2.

In order to show that a is of degree —2, recall that B has at least 1 inflection point by
Lemma 5 and that such an inflection point is necessarily ordinary by Proposition 4 (3). A
local study of o at an ordinary inflection point of B reveals that « is orientation-reversing.
Hence, the topological degree of « is equal to —2. It follows from Lemma 7 below that
the number of fixed points of « is equal to 3. Therefore, B contains exactly 3 inflection
points. ]

Before proving Lemma 7 one needs the following preliminary statement:

Lemma 6. Let o, 3: S — S be topological coverings either both orientation-preserving or
both orientation-reversing. Then, the product af: S* — S, defined by (a8)(2) = a(z) - B(2)
for any z € S, is also a topological covering.

Proof. Let p: R — S be the universal covering defined by p(t) = exp(2mit) for t € R. Let
&, 3: R — R be liftings of a and 3, respectively, i.e., po@ =aop and po 8 = S o p. Then,
a+fisa lifting of a3. Since o and [ are topological coverings, & and (3 are homeomorphisms
of R onto itself. Since a and [ are either both orientation-preserving or both orientation-
reversing, & and 3 are either both strictly ascending or both strictly descending real functions.
It follows that & + 3 is strictly ascending or strictly descending. In particular, & + 3 is a
homeomorphism and, therefore, af is a topological covering. O

Lemma 7. Let a: S' — S be a topological covering of degree —e, for some e > 0. Then, o
has ezxactly e + 1 fixed points.

Proof. Let 3: S* — S! be the standard topological covering of degree —e, i.e., 8(z) = 2z¢
for z € S'. Then, @ and f3 are isotopic coverings, i.e., there is a homotopy F': S! x [0,1] —
St such that Fy = a, F; = 8 and F; is a topological covering for all ¢ € [0,1]. Define
F': S1 % [0,1] — S by F'(2,t) = F(z,t) - z for (2,t) € S* x [0,1]. By Lemma 6, F’ is
an isotopy of topological coverings of S'. One has F|(z) = z°*'. Hence, the fiber F{~'(1)
consists of e + 1 points. Then, the fiber F,~'(1) consists of e + 1 points too, i.e., there
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are exactly e + 1 points z € S! such that a(z)z = 1. Therefore, a has exactly e + 1 fixed
points. ]
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