On the Permutation Products of Manifolds

Samet Kera
Institute of Mathematics, P.O.Box 162, 1000 Skopje, Macedonia
e-mail: sametasa@iunona.pmf.ukim.edu.mk

Abstract

In this paper it is proven the following conjecture: If G is a subgroup of the permutation group S_{n} and M is a 2-dimensional real manifold, then M^{n} / G is a manifold if and only if $G=S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{r}}$ where $S_{m_{1}}, \ldots, S_{m_{r}}$ are permutation groups of partition of $\{1,2, \ldots, n\}$ into r subsets with cardinalities m_{1}, \ldots, m_{r}, and M^{n} is the topological product of n copies of M.

MSC 2000: 53C99, 20B35
Keywords: permutation products on manifolds, cyclic products on manifolds, permutation group

1. Introduction

Let M be a nonvoid set and let n be a positive integer. In the Cartesian product M^{n} we define a relation $\approx \operatorname{such}$ that $\left(x_{1}, \ldots, x_{n}\right) \approx\left(y_{1}, \ldots, y_{n}\right)$ if there exists a permutation $\vartheta:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that $y_{i}=x_{\vartheta(i)} \quad(1 \leq i \leq n)$. This is an equivalence relation. The class represented by $\left(x_{1}, \ldots, x_{n}\right)$ will be denoted by $\left(x_{1}, \ldots, x_{n}\right) / \approx$ and the set M^{n} / \approx will be denoted by $M^{(n)}$. The set $M^{(n)}$ is called a permutation product of M and it was mainly studied in [3].

If M is a topological space, then $M^{(n)}$ is also a topological space. The space $\left(R^{m}\right)^{(n)}$ $(n \geq 2)$ is a manifold only for $m=2$. If $m=2$, then $\left(R^{2}\right)^{(n)}=C^{(n)}$ is homeomorphic to C^{m}. Indeed, using the fact that the field C is algebraically closed, the mapping $\varphi: C^{(n)} \rightarrow$ C^{n} defined by

$$
\varphi\left(\left(z_{1}, \ldots, z_{n}\right) / \approx\right)=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)
$$

is a bijection, where $\sigma_{i}(1 \leq i \leq n)$ is the i -th symmetric function of z_{1}, \ldots, z_{n}. The mapping φ is also a homeomorphism. Moreover, if M is a 2 -dimensional manifold, then $M^{(n)}$ is a manifold. In [1] it is proven that if M is orientable, i.e. if M is a 1 -dimensional complex manifold, then $M^{(n)}$ is a complex manifold. If $\operatorname{dim} M \neq 2$, then $M^{(n)}$ is not a manifold.

Now let $\operatorname{dim} M=2$ and let us consider a subgroup G of the permutation group S_{n}. Then define a relation \approx in M^{n} by

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx\left(x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(n)}\right)
$$

if and only if $\tau \in G$. The factor space M^{n} / \approx will be denoted by M^{n} / G. In [2] it was given the following conjecture which is true for any $n \leq 4$.

Conjecture. Let $G \leq S_{n}$ and M be a 2-dimensional real manifold. Then M^{n} / G is a manifold if and only if $G=S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{r}}$ where $S_{m_{1}}, \ldots, S_{m_{r}}$ are permutation groups of a partition of $\{1,2, \ldots, n\}$ on r subsets with cardinalities m_{1}, \ldots, m_{r}.

In this paper the conjecture will be proved. We remark that in the special case when G is the cyclic group, then M^{n} / G is called a cyclic product of M and denoted by $M^{[n]}$. The cyclic product is not a manifold if $n>2[3]$ while if $n=2$, then it is a manifold which is identical to $M^{(2)}$. Note also that if $\operatorname{dim} M \geq 3$, then M^{n} / G is not a manifold whenever G is a cyclic group [3].

2. Proof of the conjecture

Let G be a subgroup of the permutation group S_{n} of the set of n elements $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ which is not of type $S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{k}}$ and let M^{n} / G be the corresponding factor-space. We shall prove that M^{n} / G is not a manifold.

The group G defines a partition of the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ as follows: if a is an element of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ then we define

$$
T_{a}=\{f(a) \mid f \text { is a permutation of } G\} .
$$

Of course, we have that T_{a} and T_{b} are either nonintersecting or equal. Hence they give a partition of the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ as claimed.

For these sets T_{a} we define subgroups

$$
G_{a}=\left\{f \mid f \in G \text { and } f(x)=x \text { for any } x \notin T_{a}\right\}
$$

and

$$
G_{a}^{\prime}=\left\{f \mid f \in G \text { and } f\left(T_{a}\right)=T_{a}\right\} .
$$

It is obvious that $G_{a}^{\prime}=G$.
Now we will define some notions and will prove some of their properties.
Definition 1. The cycle of a_{j} with respect to a given permutation f is the finite set $\left\{f^{s}\left(a_{j}\right) \mid s=1,2, \ldots\right\}$ which is denoted by $C\left(a_{j}, f\right)$. The degree of the cycle is the number of its elements.

Each element of the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ appears in exactly one cycle with respect to f and any two cycles are nonintersecting or they coincide. If the number of elements of the cycle is 1 , then it is called trivial.

Property 1. If p is a prime divisor of the degree of the cycle $C(a, f)$, i.e. if $|C(a, f)|=$ $p^{\alpha} m$ such that $(p, m)=1$, then the cycle contains subcycles of degrees p^{i} for $i=1,2, \ldots$, $\alpha-1$.

Proof. If $s=p^{\alpha-i} m$, then the cycle $C\left(a, f^{s}\right)$ is a subcycle of degree p^{i} of $C(a, f)$.
Property 2. If $C(a, f)$ and $C(b, f)$ are two nonintersecting cycles with respect to f with degrees p and $q,(p, q)=1$, then there exists $g \in G$ such that $C(a, g)=C(a, f), g=f^{i}$ for some $i \in N$ and $C(b, g)=\{b\}$ is trivial.

Proof. If we put $g=f^{q}$, then it is easy to verify that the previous requirements are satisfied.

Property 3. If the degree of $C\left(a_{i}, f\right)$ is $q>2$ and there exists a permutation h of $G_{a_{i}}$ such that $h(c)=d, h(d)=c$ and $h(x)=x$ for x different from c and d, where $c, d \in C\left(a_{i}, f\right)$ - (in other words, h is the transposition (cd) (thereby there exists a positive integer p such that $\left.f^{p}(c)=d\right)$) - and if $(p, q)=1$, then $\left\{\left.g\right|_{C\left(a_{i}, f\right)}: g \in G_{a_{i}}\right.$ and $g\left(C\left(a_{i}, f\right)\right) \subseteq$ $\left.C\left(a_{i}, f\right)\right\}=\left\{\left.g\right|_{C\left(a_{i}, f\right)}: g \in G_{a_{i}}\right\}$ and this is the group of all permutations of the cycle $C\left(a_{i}, f\right)$.

Proof. It is sufficient to prove that for each pair of two elements u and v of $C\left(a_{i}, f\right)$ there exists h_{1} of $G_{a_{i}}$ such that $h_{1}(u)=v$ and $h_{1}(v)=u$ and for any other element x of $C\left(a_{i}, f\right)$, $h_{1}(x)=x$. It is sufficient to prove that this subgroup contains all transpositions in order to be the group of all permutations. If $g=f^{p}$, then $C\left(a_{i}, f\right)=C\left(a_{i}, g\right)$. There exist $n_{1}, n_{2} \in Z_{q}, n_{1} \neq n_{2}$, such that $g^{n_{1}}(u)=d$ and $g^{n_{2}}(v)=d$. We can assume that $n_{1}<n_{2}$ since the opposite case can be discussed analogously. Let us define $g_{1}=(g \circ h)^{n_{2}-n_{1}-1} \circ g^{n_{1}}$. Then $g_{1}(v)=d, g_{1}(u)=c$ and for any x different from u and v it holds $g_{1}(x)=x$. Let us define $h_{1}=g_{1}^{q-1} \circ h \circ g_{1}=g_{1}^{-1} \circ h \circ g_{1}$, where the second equality holds because $g_{1}^{q}=i d$. Thus we obtain

$$
h_{1}(u)=g_{1}^{-1}\left(h\left(g_{1}(u)\right)\right)=g_{1}^{-1}(h(c))=v, \quad h_{1}(v)=g_{1}^{-1}\left(h\left(g_{1}(v)\right)\right)=g_{1}^{-1}(h(d))=u
$$

and

$$
h_{1}(x)=g_{1}^{-1}\left(h\left(g_{1}(x)\right)\right)=g_{1}^{-1}\left(g_{1}(x)\right)=x
$$

for any x different from u and v.
Property 4. If the degree $q(q>2)$ of $C\left(a_{i}, f\right)$ is prime number and if there exists a permutation h of $G_{a_{i}}$ such that $h(c)=d, h(d)=c$ and $h(x)=x$ for x different from c and d, where $c, d \in C\left(a_{i}, f\right)$, then $\left\{\left.g\right|_{C\left(a_{i}, f\right)}: g \in G_{a_{i}}\right\}$ is the group of all permutations.

Proof. There exists $p \in N, p<q$, such that $f^{p}(u)=v$. Because q is a prime and $p<q$, it follows that $(p, q)=1$. Now the proof follows from Property 3 .

Property 4'. If the degree of $C\left(a_{i}, f\right)$ is q and if there exists a permutation h of $G_{a_{i}}$ such that $h(c)=d, h(d)=c$ and $h(x)=x$ for x different from c and d where $c, d \in C\left(a_{i}, f\right)$ and
if $f(c)=d$ where c and d are neighbor with respect to the cycle $C\left(a_{i}, f\right)$, then $\left\{\left.g\right|_{C\left(a_{i}, f\right)}\right.$: $\left.g \in G_{a_{i}}\right\}$ is the group of all permutations on $C\left(a_{i}, f\right)$.

The proof is analogous to that of Property 4. In this case it is $p=1$. As a consequence of Properties 3, 4 and 4', we obtain:

Property 5. If $C(a, f)$ is a cycle with respect to f of degree $p>2$ and the transposition $(u v) \in G$ for $u, v \in C(a, f)$ and $(p, s)=p^{\prime}>1$, where s is positive integer such that $f^{s}(u)=v$, then $\left\{\left.g\right|_{C\left(a_{i}, f\right)}: g \in G_{a_{i}}\right\}$ contains all bijections of the subcycles $C\left(a_{i}, f^{p / p^{\prime}}\right)$, $a_{i} \in C(a, f)$, and those obtained by the previous ones by cyclic permutation with f. Furthermore, we have

$$
\left\{g \mid C\left(a_{i}, f^{p / p^{\prime}}\right): g \in G_{a_{i}}\right\}=\left\{g \mid C\left(a_{i}, f^{p / p^{\prime}}\right): g \in G_{a_{i}}, \quad g\left(C\left(a_{i}, f^{p / p^{\prime}}\right)\right) \subseteq C\left(a_{i}, f^{p / p^{\prime}}\right)\right\}
$$

Proof. The row of the cycle $C\left(a_{i}, f^{p / p^{\prime}}\right)$ is equal to $p / p^{\prime}=q$. Since $(s, q)=1$ and using Property 3, it follows that

$$
\left\{\left.g\right|_{C\left(a_{i}, f^{p / p^{\prime}}\right)}: g \in G_{a_{i}}\right\}=\left\{\left.g\right|_{C\left(a_{i}, f^{p / p^{\prime}}\right)}: g \in G_{a_{i}}, \quad g\left(C\left(a_{i}, f^{p / p^{\prime}}\right)\right) \subseteq C\left(a_{i}, f^{p / p^{\prime}}\right)\right\}
$$

which is the group of all permutations of the cycle (subcycle) $C\left(a_{i}, f^{p / p^{\prime}}\right)$. Each bijection from $\left\{\left.g\right|_{C\left(a_{i}, f^{p / p^{\prime}}\right)}: g \in G_{a_{i}}\right\}$ belongs also to $\left\{\left.g\right|_{C\left(a_{i}, f\right)}: g \in G_{a_{i}}\right\}$ and hence it follows that $\left\{\left.g\right|_{C\left(a_{i}, f\right)}: g \in G_{a_{i}}\right\}$ contains all the bijections of the set of elements of the cycle $C\left(a_{i}, f^{p / p^{\prime}}\right)$, which should be proven.

Note that it may happen to exist f such that $C(x, g)=C(x, f)$ but $f^{s} \neq g$ for any s.
Definition 2. If $C(x, g)=C(x, f)$ for any x and there exists s such that $\left.f^{s}\right|_{C(x, g)}=$ $\left.g\right|_{C(x, g)}$, then we say that f and g act similarly on their joint cycle $C(x, g)$.

The following question appears naturally. If the degree of the cycle of x with respect to g is minimal as in Property 6, is it possible to find f of G which does not act similarly with g to the cycle $C(x, g)$? Indeed, the following property holds.

Property 6. If $C(x, f)$ is a cycle which contains x, with the smallest possible degree q, i.e. it does not exist a cycle $C(x, g)$ for $g \in G$ of degree smaller than q and bigger than 2 , and if $C(x, f)=C(x, g)$, then there exists a positive integer s such that $\left.f^{s}\right|_{C(x, f)}=\left.g\right|_{C(x, f)}$, i.e. f and g act similarly on the cycle $C(x, f)$.

Remark. If $q=2$, then it should be $g=f$. In this case q is a prime number.
Proof. Suppose that g acts on $\{1,2, \ldots, q\}$ cyclically. Without loss of generality we can suppose that $x=1$ and $y=2$, i.e. $g(i)=i+1$ for $i<q$ and $g(q)=1$. Let $C(1, f)=C(1, g)$ and assume that f and g do not act similarly on this common cycle, i.e. there is no number s such that $f^{s}=g$. Let j be the smallest number from $\{1,2, \ldots, q\}$ such that $f(j)>g(j)$,
i.e. $f(1)=g(1), f(2)=g(2), \ldots, f(j-1)=g(j-1)$, and $f(j)>g(j)$. Therefore it holds $g^{q-f(j)}(j)=1$ and $q>f(j)-g(j)$. Let $h=g^{q-f(j)} \circ f^{j-1}$. Then it is very easy to verify that $h(1)=1$. Indeed, $h(1)=g^{q-f(j)} \circ f^{j-1}(1)=g^{q-f(j)} \circ g^{j-1}(1)=g^{q-f(j)}(j)=1$. Here we have used that $f^{j-1}(1)=j=g^{j-1}(1)$. From the fact that there is no s such that $f^{s}=g$, it follows that h is not identity mapping on $\{1,2, \ldots, q\}$. This means that there exists k such that $h(k) \neq k$. Hence the cycle $C(k, h)$ has degree smaller than q. This is a contradiction to the choice of q.

Property 6'. If $C\left(a_{i}, f\right)=C\left(a_{i}, g\right), i=1,2, \ldots, s$, are cycles of prime order q with the property $C\left(a_{i}, f\right) \cap C\left(a_{i}, g\right)=\emptyset$ for $i \neq j$, such that f and g act similarly over each cycle and if $f(x)=g(x)=x$ for any $x \notin C\left(a_{i}, f\right), i=1, \ldots, s$, then

$$
M^{n} /<f>=M^{n} /<g>=M^{n} /<f, g>\cong M^{n-q s} \times\left(M^{s}\right)^{(q)}
$$

where $\left(M^{s}\right)^{(q)}$ denotes the q-th cyclic product on M^{s}.
Proof. Since f and g act similarly, it follows that f can be generated from g and conversely, i.e. it holds

$$
<f>=<g>=<f, g>\cong Z_{q} .
$$

If we have in mind how f and g act on M^{n}, we just obtain that

$$
M^{n} /<f>=M^{n} /<g>\cong M^{n-q s} \times\left(M^{s}\right)^{(q)} .
$$

Property 7. If $C(a, f)$ is a cycle with respect to f with degree m, the transpositions ($u_{1} v_{1}$) and $\left(u_{2} v_{2}\right)$ belong to G such that $u_{1}, v_{1}, u_{2}, v_{2} \in C(a, f)$, and s_{1}, s_{2} are divisors of m such that $f^{s_{1}}\left(u_{1}\right)=v_{1}, f^{s_{2}}\left(u_{2}\right)=v_{2}$, then the following properties are satisfied:

1. If $s_{1}=s_{2}$, then $\left\langle\left. f\right|_{C(a, f)},\left(u_{1} v_{1}\right)>=<\left.f\right|_{C(a, f)},\left(u_{2} v_{2}\right)>\right.$.
2. If $\left(s_{1}, s_{2}\right)=1$, then $<\left.f\right|_{C(a, f)},\left(u_{1} v_{1}\right),\left(u_{2} v_{2}\right)>\cong S_{m}$.
3. If $\left(s_{1}, s_{2}\right)=s_{3}>1$, then $<\left.f\right|_{C(a, f)},\left(u_{1} v_{1}\right),\left(u_{2} v_{2}\right)>\cong<\left.f\right|_{C(a, f)},\left(u_{3} v_{3}\right)>$ where u_{3}, v_{3} are elements of the cycle $C(a, f)$ such that $f^{s_{3}}\left(u_{3}\right)=v_{3}$ and s_{3} is a divisor of m.

Proof. 1. Using the fact that there exist $t, s \in N$ such that $f^{t}\left(u_{1}\right)=u_{2}, f^{t}\left(v_{1}\right)=v_{2}$ and $f^{s}\left(u_{1}\right)=v_{1}$, we obtain that $\left(u_{2} v_{2}\right)=f^{t} \circ\left(u_{1} v_{1}\right)$. From the last equality it follows that $<\left.f\right|_{C(a, f)},\left(u_{1} v_{1}\right)>=<\left.f\right|_{C(a, f)},\left(u_{2} v_{2}\right)>$.
2. Under the previous assumptions there exist n_{1} and $n_{2} \in Z_{m}$ such that $n_{2} s_{2}=n_{1} s_{1}+1$ and hence $f^{n_{2} s_{2}}(a)=f\left(f^{n_{1} s_{1}}(a)\right)$, i.e. the points $f^{n_{2} s_{2}}(a)$ and $f^{n_{1} s_{1}}(a)$ are neighbors in the cycle $C(a, f)$. Moreover we will prove that the transpositions $\left(a f^{n_{2} s_{2}}(a)\right)$ and $\left(a f^{n_{1} s_{1}}(a)\right)$ belong to G. Indeed, there exists s such that $f^{s}(a)=u_{1}, f^{s_{1}}\left(f^{s}(a)\right)=f^{s_{1}}\left(u_{1}\right)=v_{1}=$ $f^{s}\left(f^{s_{1}}(a)\right)$ and hence we obtain that $\left(u_{1} v_{1}\right)=f^{s} \circ\left(a f^{s_{1}}(a)\right) \in G$. Since G is a group, it follows that $\left(a f^{s_{1}}(a)\right) \in G$. Note that the point a is an arbitrary point from the cycle $C(a, f)$ and hence $\left(f^{t}(a) f^{t}\left(f^{s_{1}}(a)\right)\right) \in G$. Finally, we obtain

$$
\begin{aligned}
\left(a f^{n_{1} s_{1}}(a)\right)= & \left(a f^{s_{1}}(a)\right) \circ\left(f^{s_{1}}(a) f^{2 s_{1}}(a)\right) \circ\left(f^{2 s_{1}}(a) f^{3 s_{1}}(a)\right) \circ \cdots \\
& \cdots \circ\left(f^{\left(n_{1}-1\right) s_{1}}(a) f^{n_{1} s_{1}}(a)\right) \circ\left(f^{\left(n_{1}-1\right) s_{1}}(a) f^{\left(n_{1}-2\right) s_{1}}(a)\right) \circ \cdots \\
& \cdots \circ\left(f^{2 s_{1}}(a) f^{s_{1}}(a)\right) \circ\left(f^{s_{1}}(a) a\right) \in G .
\end{aligned}
$$

Analogously, it verifies that $\left(a f^{n_{2} s_{2}}(a)\right) \in G$. Thus we have

$$
\left(f^{n_{2} s_{2}}(a) f^{n_{1} s_{1}}(a)\right)=\left(a f^{n_{2} s_{2}}(a)\right)\left(a f^{n_{1} s_{1}}(a)\right)\left(a f^{n_{2} s_{2}}(a)\right) \in G
$$

Now using the Property 4', we obtain that each bijection of the cycle $C(a, f)$ is generated. This completes the proof of 2 .
3. Analogously there exist n_{1} and $n_{2} \in Z_{m}$ such that $n_{1} s_{1}+s_{3}=n_{2} s_{2}$ and hence it follows that

$$
f^{n_{2} s_{2}}(a)=f^{s_{3}}\left(f^{n_{1} s_{1}}(a)\right) .
$$

Suppose that $f^{n_{2} s_{2}}(a)=a_{2}$ and $f^{n_{1} s_{1}}(a)=a_{1}$. The points a_{1} and a_{2} belong to $C(a, f)$, hence we have

$$
\left(a_{1} a_{2}\right)=\left(a a_{1}\right) \circ\left(a_{1} a_{2}\right) \circ\left(a a_{2}\right) \in G
$$

and $f^{s_{3}}\left(a_{2}\right)=a_{1}$. The transpositions $\left(a f^{s_{2}}(a)\right)$ and $\left(a f^{s_{1}}(a)\right)$ can be obtained by composing transpositions of the form $\left(b f^{s_{3}}(b)\right)$. Moreover, for the transposition $\left(a f^{s_{2}}(a)\right)$ it holds $s_{2}=p s_{3}$ for a positive integer p. Hence it holds that

$$
\begin{aligned}
\left(a f^{s_{2}}(a)\right)= & \left(a f^{s_{3}}(a)\right) \circ\left(f^{s_{3}}(a) f^{2 s_{3}}(a)\right) \circ \cdots \circ\left(f^{(p-1) s_{3}}(a) f^{p s_{3}}(a)\right) \circ \\
& \circ\left(f^{(p-1) s_{3}}(a) f^{(p-2) s_{3}}(a)\right) \circ\left(f^{(p-2) s_{3}}(a) f^{(p-3) s_{3}}(a)\right) \circ \cdots \circ\left(f^{s_{3}}(a) a\right)
\end{aligned}
$$

and analogously for $\left(a f^{s_{1}}(a)\right)$. This means that each bijection which can be generated by $\left.f\right|_{C(a, f)},\left(a f^{s_{2}}(a)\right)$ and $\left(a f^{s_{1}}(a)\right)$ can also be generated only by $\left.f\right|_{C(a, f)}$ and $\left(a f^{s_{3}}(a)\right)$. The converse holds, too. From $\left(a f^{s_{2}}(a)\right) \in G$ and from the fact that a and $f^{s_{i}}(a)$ are neighbors with respect to the cycle $C\left(a, f^{s_{i}}\right)$ according to Property 4', it follows that each bijection restricted on the cycle $C\left(a, f^{s_{i}}\right)$ belongs to G, and hence also the transposition ($a f^{n_{i} s_{i}}(a)$) belongs to G for $i=1,2$. By substituting $f^{n_{1} s_{1}}(a)$ instead of a we get

$$
\begin{gathered}
\left(f^{n_{1} s_{1}}(a) f^{n_{2} s_{2}}\left(f^{n_{1} s_{1}}(a)\right)\right) \in G, \\
\left(f^{n_{1} s_{1}}(a) f^{s_{3}}(a)\right) \in G, \\
\left(a, f^{s_{3}}(a)\right)=\left(a f^{n_{1} s_{1}}(a)\right) \circ\left(f^{n_{1} s_{1}}(a) f^{s_{3}}(a)\right) \circ\left(a f^{n_{1} s_{1}}(a)\right) \in G
\end{gathered}
$$

and hence 3. is proven.
Remark. From Property 7 we obtain the following conclusion. If G restricted on the cycle $C(a, f)$ does not contain all its bijections, then all bijections restricted on the cycle $C(a, f)$ obtained by G, can be obtained by f and the transposition (uv) (if such exists) for $u, v \in C(a, f)$ such that $s \mid p$ and $(s, p)>1$ is the smallest one with that property, where s is the smallest positive integer which satisfies $f^{s}(u)=v$.

Now let us return to the proof of the conjecture. Note that G acts transitively on T_{a} for any $a \in\left\{a_{1}, \ldots, a_{n}\right\}$. Moreover, since G is not a group of the form $S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{k}}$, at least one of the subgroups G_{a} or $G_{a}^{\prime \prime}$ is not of the form $S_{m_{i}}$, where $G_{a}^{\prime \prime}=\left.G\right|_{T_{a}}=\left\{\left.f\right|_{T_{a}}: f \in G\right\}$. Thus we have two cases:

1. There exists g such that there are at least two nonintersecting minimal cycles $C(a, g)$ and $C(b, g)$ with the same degree q (here "minimal" is meant in the sense of Property 6 even if the degree can be 2 in this case), on which g acts simultaneously, and thereby there is no $h \in G$ such that $h(x)=x$ for any $x \notin C(a, g)$, and $h(x) \neq x$ for any $x \in C(a, g)$. Indeed, h moves only the points of the cycle $C(a, g)$ and thereby the cycle $C(a, h)$ is a subcycle of $C(a, g)$.
2. There is no $g \in G$ with the previous property.

In both cases we will prove that M^{n} / G is not a manifold, where M is a 2 -dimensional manifold.
Case 1.
Assume that the degree of the cycles $C(a, g)$ and $C(b, g)$ is 2 . There exist u, v, x, y such that the composition $(u v)(x y)$ enters in the decomposition of g but the transpositions (uv) and $(x y)$ are not elements of G. Let g be chosen such that the number of its cycles of degree 2 over which g acts simultaneously is $r>1$. The number r will be called pairwise degree of g. Let g be chosen with the smallest possible value of r.

If we choose a point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in M^{n}$ such that the coordinates corresponding to the same cycle of degree 2 of g are equal, i.e. $x_{g(i)}=x_{i}$ for all indices i with the property $g^{2}(i)=i$, then the points of different cycles are different and the remaining points are completely different. Here g is a bijection on the index set $\{1,2, \ldots, n\}$.

The set $G^{g}=\{f \in G \mid f$ acts invariantly on the point $x\}=\{f \in G \mid f$ acts invariantly on any cycle of $g\}$ is a group. Therefore, the minimality of r implies that if g and f have the same pairwise degree r, then $f=g$. Hence we obtain that $G^{g}=\{i d, g\}$.

Now we note that the tangent space at the point corresponding to x in the factor space is homeomorphic to

$$
\left(R^{2}\right)^{n} / G^{g} \cong\left(\left(R^{2}\right)^{r}\right)^{[2]} \times R^{2} \times \cdots \times R^{2}
$$

which is not homeomorphic to $R^{2 n}$ and hence the space M^{n} / G is not a manifold.
If the cycles $C(a, g)$ and $C(b, g)$ have degree $q>2$ with the previous property and if we have in mind Properties 1 and 2, then $C(a, g)$ and $C(b, g)$ can be chosen such that q is a prime number. Further, from Property 4 we can conclude that there is no subcycle of degree 2, i.e. transposition for none of the previous cycles. Otherwise, Property 4 would imply that any bijection on the corresponding cycle could be obtained and hence g would not satisfy the conditions from 1, i.e. there does exist h as in 1.

Further, let us assume that g is chosen such that there exists the smallest possible number $r>1$ for nonintersecting cycles on which g acts simultaneously as above.

We choose a point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in M^{n}$ such that all coordinates corresponding to the same cycle of the previous r cycles of g are equal. There the points of different cycles are different and the remaining points are completely different. In this case the tangent space at the point $x \approx \in M^{n} / G$ which corresponds to x is homeomorphic to $\left(R^{2}\right)^{n} / G^{g}$, where $G^{g}=\left\{f \mid f\left(C\left(x^{\prime}, g\right)\right)=C\left(x^{\prime}, g\right)\right.$ for any cycle $C\left(x^{\prime}, g\right)$ of $\left.g\right\}$. By the minimality of q and r and from Property 6 , it follows that $G^{g}=\langle g\rangle=Z_{r}$, since any $f \in G^{g}$ acts similarly to g on any cycle of g, i.e. over any such cycle $f^{s}=g$ restricted on it, for some positive integer s. Thus we get that

$$
\left(R^{2}\right)^{n} / G^{g} \cong\left(\left(R^{2}\right)^{r}\right)^{[q]} \times R^{2} \times \cdots \times R^{2}
$$

where R^{2} appears $n-q r$ times. This space is not homeomorphic to $R^{2 n}$ and thus we obtain that M^{n} / G is not a manifold.

Case 2.

In this case for any cycle $C(x, g)$ there exists $f \in G$ such that $C(x, g)=C(x, f)$ and thereby $f(y)=y$ for any $y \notin C(x, f)$, i.e. any cycle can be considered separately and the cycle $C(x, f)$ is called unical. Because of this argument we obtain that $G_{a}=G$ for any a. Further we will need the following property.

Property 8. Under the assumptions in case 2, if for any unical cycle obtained from G any bijection on that cycle is contained in G, then $G_{a}=G \cong S_{m_{i}}$, where $m_{i}=\left|T_{a}\right|$.

Proof. Since G acts transitively on T_{a}, it follows that for any $u, v \in T_{a}$ there exist f and $g \in G$ such that $g(u)=v$ and $C(u, g)=C(u, f)$, and thereby the cycle $C(u, f)$ is unical. But since $v \in C(u, f)$, there exists a positive integer s such that $f^{s}(u)=v$. According to the assumption that any bijection on the cycle $C(a, f)$ belongs to G, we obtain that also the transposition $(u v)$ belongs to G. Since u and v are arbitrary elements of the set T_{a}, it follows that any bijection in T_{a} can be generated because f acts trivially on the elements not in T_{a}.

Thus there exists at least one cycle $C(a, f)$ as above for which not all transpositions $(u v) ; u, v \in C(a, f)$, belong to G. We choose $G(a, f)$ with degree $p>2$ which is minimal with this property. Note that in this case p may not be prime. According to Properties 3 and 5 , there are two possibilities:
a) The cycle $C(a, f)$ does not contain u, v such that the transposition (uv) belongs to G.
b) Suppose the transposition (uv) belongs to G for some $u, v \in C(a, f)$. If s is the smallest positive integer such that $f^{s}(u)=v$, then $(p, s)=p_{1}>1$.
We consider now both of these possibilities.
a) From the minimality of the degree of the cycle $C(a, f)$ and from Property 6 , we obtain that for any $g \in G$ such that $C(a, f)=C(a, g)$, there is a positive integer s such that $g=f^{s}$, i.e. f and g act similarly on $C(a, f)$.

We choose a point $x=\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$ such that all coordinates corresponding to the previous cycle of f are equal. There the points of different cycles are different and the remaining points are completely different.

In this case the tangent space at the point $x^{\approx} \in M^{n} / G$ which corresponds to x is homeomorphic to $\left(R^{2}\right)^{n} / G^{f}$, where $G^{f}=\{g \mid g(C(a, f))=C(a, f)\}$. Using Property 6 and the minimality of p, it follows that $G^{f}=\langle f\rangle=Z_{p}$, which implies that M^{n} / G^{f} is homeomorphic to $\left(R^{2}\right)^{[p]} \times R^{2} \times \cdots \times R^{2}$. Since this space is not homeomorphic to $R^{2 n}$ for $p>2$, the factor space M^{n} / G is not a manifold.
b) In this case since G is not of the form $S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{k}}$ it follows that there exists a cycle $C(a, f)$ such that f contains only the cycle $C(a, f)$ as non-trivial and thereby G does not contain all permutations of that cycle. According to Property 7, there exists a transposition $(u v) \in G, u, v \in C(a, f)$ such that for any $g \in G$ such that $g(C(a, f))=$ $C(a, f)$ is generated by f and (uv), and thereby $f^{s}(u)=v$, for which $(s, m)=p_{1}>1$ and $p_{1}<p$. Thus $\left.G\right|_{C(a, f)}$ is isomorphic to $<f,(u v)>$.

Thus we consider a point $x=\left(x_{1}, \ldots, x_{n}\right) \in M^{n}$ where the coordinates corresponding to the points of the cycle $C(a, f)$ are equal. There the points of different cycles are different and the remaining points are completely different. Then the tangent space over the corresponding point of M^{n} / G is homeomorphic to $\left(R^{2}\right)^{n} / G^{f}$, where $G^{f}=\left.\{g \in G \mid g(C(a, f))=C(a, f)\} \cong G\right|_{C(a, f)} \cong<f,(u v)>$. But $\left(R^{2}\right)^{n} / G^{f}$ is homeomorphic to $\left(\left(R^{2}\right)^{\left(p_{1}\right)}\right)^{\left[p / p_{1}\right]} \times R^{2} \times \cdots \times R^{2}$. Since $p_{1}>1$ and $p / p_{1}>1$, this space is not a manifold. Thus M^{n} / G is not a manifold.

References

[1] Trenčevski, K.: Permutation products of 1-dimensional complex manifolds. Contributions, Mac. Acad. Sci. Arts. XX (1999), in press.
[2] Trenčevski, K.; Kera, S.: One conjecture concerning the permutation products on manifolds. Mathematica Balkanica 12 (1998), 425-429.
[3] Wagner, C. H.: Symmetric, cyclic and permutation products of manifolds. Dissert. Math. (Rozprawy Mat.) 182 (1980), 3-48.

Received October 25, 1999; revised version September 12, 2000

