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Abstract. In [5] the authors presented a family F = {ck | k ∈ R} of conics. The
conics ck are gained by offsetting from a given conic c0 with proportional distance
functions kδ(t). We investigate certain properties of F and give the correct version
of a result claimed in [5]: The distance function is unique (up to a constant factor)
only if c0 is not a parabola.
Furthermore we deal with the surfaces that are obtained by giving each conic ck ∈ F
the z-coordinate λk with a fixed real λ. We find special metric properties of these
surfaces and show that they already appeared in other context.
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1. Introduction

In this paper we deal with two geometric objects: A family of conics on the one hand and a
class of special ruled surfaces of conic sections on the other hand. Both of them are closely
related and properties of one object reflect as properties of the other.
Following an idea from [5] we derive a family F of conics through proportional offsetting

from a given conic c0 : X(t) . . .x(t). The distance functions are given by λ%(t)
1/3 where %(t)

denotes the radius of curvature of c0 in X(t). This generation leads to a 3D-interpretation
of F – the conics cλ ∈ F (we will call them distance conics) may be regarded as the top
view of the conics on a ruled surface. In Section 2 we use this connection to prove results
on the envelope of the distance conics and on the uniqueness of the distance function if c0 is
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not a parabola. In addition we find that the conics are projectively linked by the tangents
of the evolute of c0. Despite their connection to many geometric problems (some of them
will appear in this paper), families of projectively linked conics have not been studied too
extensively up to now.
In Section 3 we will investigate the ruled surfaces Φe and Φh of the elliptic and hyperbolic

case. They are normal surfaces of two quadrics of revolution along a common plane section
parallel to the axes. In addition to their attractive shape and ruled character (which makes
them interesting for architectural usage, compare [5]), they have geometric applications as
well. Only recently they appeared in a paper on the geometry of refraction ([4]).
Section 4 deals with the surface Φp of the parabolic case. It is not the normal surface of

a quadric along a plane section but has special properties concerning the line of striction. Φp
is an example of Steiner’s Roman surface with a two parameter manifold of parabolas on it.
It is a conoid and affinely equivalent to a surface studied in [10].
Returning to families of conics we finally find that the distance function is not unique

in the parabolic case. There exists a one parameter family of non-proportional distance
functions that can be used for the generation of families of distance conics as desribed above.

2. A family F of conics and a ruled surface Φ

2.1. Creating conics by proportional offsetting

Let c0 : X(t) . . .x(t) be a parametrized conic in the Euclidean plane E2. Being given an
arbitrary distance function δ(t) of the curve parameter we can construct the curve at distance
δ(t)

cδ(t) : Y (t) . . .y(t) = x(t) + δ(t)n(t).

In this formula n(t) denotes the unit normal vector of c0 in X(t). If δ(t) ≡ d is constant,
cδ(t) is the ordinary offset curve at distance d.
Of course, any plane curve can be parametrized (at least locally) in this way. One has to

make further assumptions on δ(t) in order to get an object of geometric interest. In [5] the
authors asked for a function δ(t) with the property that for any real k the curve at distance
kδ(t) is a conic. There, they claimed the following result (compare Figure 1):1

Being given an arbitrary conic c0 there exists (up to a constant factor) exactly
one function δ(t) such that for any real k the curve ck at distance kδ(t) is a conic
as well. If %(t) is the radius of curvature of c0 in X(t) one may use δ(t) = %(t)

1/3.

They provided, however, no detailed proof for the uniqueness of the distance function. Only
an outline for the elliptic case was given. Their proof involved the usage of a computer
algebra system and was too long to be published. Apparently the authors missed the fact
that the offset function is not unique if c0 is a parabola.
We will give a simple proof for the elliptic and hyperbolic case in Subsection 2.3. In

Subsection 4.3 we will investigate the parabolic case and describe a geometric method of
constructing all distance functions with the requested property.

1We used the software provided in [3] to produce the pictures in this paper.
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Figure 1: A single distance conic ck of c0 (left) and the family F of distance conics (right).

Before doing so, we investigate the family F := {ck | k ∈ R} of distance conics to
an arbitrary base conic c0. The distance function used to generate ck shall be k%(t)

1/3 as
proposed in [5]. For the time being only the members of this family F will be called distance
conics. Later on (in Subsection 4.3), we will deal with other families of conics gained through
proportional offsetting as well.
A conic’s evolute has as many real points at infinity as the conic itself. Each point at

infinity corresponds to a pole of the function %(t). Hence, all regular distance conics are of
the same type as c0. In general, they do not belong to a pencil of conics. An exception
is the circular case where F is a set of concentric circles. We will exclude this from our
considerations until Subsection 4.3.
If c0 is not a parabola we can easily express the semiaxes ak, bk of ck in terms of the

semiaxes a, b of c0 ([5]):

ak = a+
kb

w
, bk = b+ ε

ka

w
, (1)

where w = (ab)1/3 and ε = ±1 in the elliptic and hyperbolic case, respectively. (1) shows
that the two distance conics corresponding to

k1 := −
aw

b
and k2 := −ε

bw

a

degenerate to line segments. In the elliptic case these segments are finite, in the hyperbolic
case they are infinite.
Now to the parabolic case. In an appropriate Cartesian coordinate system c0 can always

be described by the equation y = ax2. Then the conic section ck is given by y = pkx
2 + qk,

where

pk =
a

(1 + kr2)2
, qk = −

k

r
and r =

3
√
2a. (2)

Here, the single degenerating distance conic corresponds to k = −r−2. It is easy to see that
in any of the three cases c0 is the only conic that yields F as its family of distance conics.
I.e., different base conics have different families of distance conics.
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On the right hand side of Figure 1 one can see a conic c0, its evolute e and the corre-
sponding family F of distance conics. Apparently e is the envelope of all conics ck and we
will soon give a proof for this. But first we need to know a little more about the family F of
distance conics and an interpretation in 3-space. We could use the formulas (1) and (2) to
find the envelope of F by standard methods. Our proof, however, will turn out to be much
easier.

2.2. Associated ruled surfaces of conic sections

The possibility of creating a family of conic sections by offsetting with proportional distance
functions is the key for a 3D-interpretation of F . We choose a Cartesian coordinate system
{O;x, y, z} where c0 is defined by z = 0 and

x2

a2
+
y2

b2
= 1,

x2

a2
−
y2

b2
= 1 or y = ax2

in the elliptic, hyperbolic or parabolic case, respectively. By assigning the z-coordinate λk
(λ ∈ R \ {0}) to each distance conic we create a surface Φ of conic sections. In [5] this
surface has been presented and visualized for all three types of base conics. But still, Φ has
many remarkable properties that were not mentioned there and will be contents of this paper.
Images of Φ for the elliptic and hyperbolic case may be found in Section 3. The surface of
parabolic sections is displayed in Section 4.
Obiously, by the way it has been defined, Φ is not only a surface of conics but a ruled

surface as well. The top view of the generating lines just yields the normals of c0. Thus,
according to [1], Φ is algebraic of order n ≤ 4. If c0 is an ellipse or a hyperbola it has two
double lines

d1 . . . x = 0, z = λk1 and d2 . . . y = 0, z = λk2

that stem from the two degenerating conics. As a ruled surface of order n ≤ 3 never has two
double lines ([6]) we get n = 4 in these cases. In the parabolic case we have n = 3 as we shall
see in Section 4. Now we prove the theorem on the hull curve of F making essential use of
the presented 3D-interpretation (compare Figure 1):

Theorem 1. The evolute e of c0 is an envelope of the family F of distance conics.

Proof. Projecting Φ orthogonally on the [x, y]-plane yields a contour line l1 ⊂ Φ. Its projec-
tion l′1 on [x, y] consists of the hull curve e of the projected generating lines of Φ plus possible
components that result from singular surface points. e is the evolute of c0 and – at the same
time – the envelope of the projected conics of Φ, i.e., the conics of F .

Theorem 1 is only a special case of a more general theorem.

Theorem 2. Being given a differentiable plane curve d : Y (t) . . .y(t) and an arbitrary func-
tion ε(t) we construct a set {dk | k ∈ R} of curves at distance kε(t). Then the evolute of d
is envelope of all curves dk.

Proof. The proof is completely analogous to the proof of Theorem 1. The relevant property
of the curves dk is the possibility of building a ruled surface in space by assigning the z-
coordinate λk to dk.
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2.3. Uniqueness of the distance function in the elliptic and hyperbolic case

We first present some basic facts on the class curve or ruled surface generated by two projec-
tively linked conic sections (compare [6, 7]). Let c and d be two conics in a common plane
that are projectively linked by the map π : c → d. We regard the set c∗ of lines passing
through corresponding points C ∈ c and π(C). If c∗ happens to be a pencil of lines we
require that its vertex S lies in c ∩ d.2 Now the following statements are equivalent:

• c∗ is a rational curve of class γ (γ = 1, 2, 3, 4).

• There exist exactly 4− γ fixpoints of π.

• There exists a (5− γ)-parameter manifold of conics that are projectively linked by the
tangents of c∗ and, thus, may be used to generate c∗ instead of c or d.

If c and d are conics in 3-space they do not generate a class curve but a ruled surface Ψ. We
can, however, state three equivalent points that read very similar:

• Ψ is an algebraic surface of order γ (γ = 2, 3, 4).

• There exist exactly 4− γ fixpoints of π.

• On Ψ we find a (5 − γ)-parameter manifold of conics that are projectively linked by
the generators of Ψ and, thus, may be used to generate Ψ instead of c and d.

It is noteworthy that any ruled surface of conic sections can be generated by two projectively
linked conics. This was stated in [1] for the first time. For the proof of the following theorem
it will be important to observe that any two conics on a ruled surface of conic sections are
projectively linked by the generators.

Theorem 3. Being given an arbitrary ellipse or hyperbola c0 there exists (up to a constant
factor) exactly one function δ(t) such that for any real k the general offset curve ck with
distance function δk(t) := kδ(t) is a conic as well. If %(t) is the radius of curvature of c0 in
X(t) one may use δ(t) = %(t)1/3.

Proof. [5] garantuees that the curve ck at distance k%(t)
1/3 is a conic again. In order to

prove the uniqueness we take another function δ̃(t) that, too, for any k ∈ R yields a conic
c̃k as curve at distance kδ̃(t). Then we associate ruled surfaces Φ and Φ̃ with the families
F := {ck | k ∈ R} and F̃ := {c̃k | k ∈ R}, respectively. The conics on Φ and Φ̃ are now
projectively linked by the generators of these surfaces. Thus, each two conics from F and/or
F̃ are projectively linked by the normals of c0. According to Theorem 2 any two of these
conics generate the evolute e of the base conic c0.
A conic c̃ ∈ F̃ \F can now be used to construct a two parameter manifold of conics with

this property. Any conic c∗ ∈ F is projectively linked to c̃ and, thus, determines a ruled
surface Φ∗. The top view of the conics on Φ∗ yields a one parameter family of generating
conics different from F . This is, however, not possible in the elliptic or hyperbolic case as e
is of class 4. Therefore we get F = F̃ and δ̃(t) = k%(t)1/3 with some constant k ∈ R.

The proof of Theorem 3 is not valid in the parabolic or circular case. The evolutes of these
curves are of class 3 or 1, respectively, and the existence of a two parameter set of generating

2If S /∈ c ∩ d we get a case that is of no relevance in this context. It will, however, show up again in
Subsection 4.3.
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conics is no contradiction. We will solve the problem for these cases in Subsection 4.3. The
following corollary follows from the proof of Theorem 3 and is valid in any case:

Corollary 1. The conics of F are projectively linked by the normals of c0.

For further investigations we need parameter representations of Φ. We will therefore treat
the three cases (elliptic, hyperbolic and parabolic) separately. In order to distinguish be-
tween them, we will henceforth denote the ruled surface of conic sections by Φe (elliptic), Φh
(hyperbolic) and Φp (parabolic).

3. The surfaces Φe and Φh of elliptic and hyperbolic sections

3.1. The normal surface through the base conic

From (1) it follows that Φe can be parametrized according to

Φe : X(t, u) . . .X(t, u) = (1− u)d1(t) + ud2(t). (3)

In this formula d1 and d2 are parameter representations of the double lines d1 and d2 of Φe:

d1 : D1(t) . . .d1(t) =
1

b

(
0, (b2 − a2) sin t,−λaw

)T
,

d2 : D2(t) . . .d2(t) =
1

a

(
(a2 − b2) cos t, 0,−λbw

)T
.

The u-parameter lines of (3) are the generators g(t) of Φe, the t-parameter lines are the conics
on Φe. They are situated in the planes through the line at infinity of the [x, y]-plane which is
a double line of the surface. The base conic c0 lies in [x, y] and belongs to u = a

2(a2− b2)−1.
Analogous formulas and statements are true for Φh. We will, however, not display them here.
They can be obtained by replacing the circular functions sin(t) and cos(t) by their hyperbolic
relatives sinh(t) and cosh(t), respectively, and changing the sign of certain terms. In Figure
2 both surfaces are to be seen.

Figure 2: The ruled surfaces Φe and Φh.

c0 is a special conic in the family F of distance conics in the way that it is characteristic
of F . No other conic produces the same family of distance conics. So we might expect certain
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special properties of c0 as conic on Φe as well. The investigations to follow will show that Φe
has already been studied in earlier works and in other context. Besides, it will be the basis
for a very important application of Φe in geometrical optics.
By the scaling transformation x 7→ ab−1x or y 7→ ba−1y we can map D1(t) and D2(t) to

points of constant distance

d =
| a2 − b2 |

ab

√
λ2w2 + a2 or d =

| a2 − b2 |

ab

√
λ2w2 + b2,

respectively. Thus, Φe may be transformed to a ruled surface Φ
∗
e that consists of all straight

lines that intersect two perpendicular straight lines d1 and d2 in points of constant distance.
This surface was presented in [2] where it was called Reiterfläche (rider surface). Note that
there exists no family of distance conics that can be associated to the rider surface. In a top
view the conics of Φ∗e envelope an astroid that can never be the evolute of a conic.

Now we want to solve the following task: Find a point S ∈ z and a conic c: X(t) . . .X(t, u0)
of Φe such that each generating line g(t) of Φe is
1. perpendicular to the straight line [S,X(t)].

2. perpendicular to the tangent of c in X(t).

In other words: Find a cone Γ of second order with apex on z such that Φe is the normal
surface of Γ along the plane section c. It is easy to answer this question algebraically. There
exists a unique point S and a unique conic c on Φp satisfying the first condition:

S
(
0, 0, w2λ−1

)T
, u0 =

a2

a2 − b2
.

But, as c is just the base conic c0, it meets the second condition as well. Thus we have

Theorem 4. Φe is the normal surface along c0 of the cone Γ with center S.

Surfaces of that kind have been studied in a more general context in [6] and in some earlier
publications as well. However, because of its symmetry (the plane section c0 shares two planes
of symmetry with Γ), our case is rather special. E. g., the following remarkable theorem (it
follows from some considerations in [6]) is true:

The line of striction on Φe is the contour with respect to the projection center S.

3.2. Two quadrics of revolution through the base conic

Of course, Φe is not only normal surface of Γ but of any quadric being tangent to Γ along
c0. These quadrics belong to a pencil Q. The implicit equation of any member of Q can be
written as

αG(x, y, z) + βH(z) = 0,

where

G(x, y, z) :=
x2

a2
+
y2

b2
−
(w2 − λz)2

w4
and H(z) := z2
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Figure 3: Φe, its normal cone Γ and the ellipsoids of revolution Q1, Q2.

are the implicit equations of Γ and [x, y] as double plane, respectively. α :β is a homoge-
neous parameter of the pencil Q. Two quadrics Q1 and Q2 are of special interest (compare
Subsection 3.3). They belong to

α : β = a2w4 : w4 + a2λ2 and α : β = b2w4 : w4 + b2λ2

and are ellipsoids of revolution with axes d1 and d2, respectively.

Corollary 2. Φe is the normal surface of two ellipsoids of revolution with axes d1 and d2,
respectively, along c0.

Figure 3 shows Φe together with its normal cone Γ and two quarters of the ellipsoids of
revolution Q1 and Q2.

3.3. Φe, Φh and refraction on a plane

Besides the architectural suggestions made in [5] both surfaces, Φe and Φh, have an important
application in the geometric theory of refraction that shall be explained here (compare [4]).3

We will shortly outline some basics on refraction in the plane case.
Let σ be a plane (the refracting plane) and r a positive real (the index of refraction).

A straight line b1 intersecting σ in a point B is now refracted to a straight line b2 = R(b1)
according to Snell’s law

sinα1 = r sinα2 (4)

where αi denotes the angle between bi and the normal n of σ (Figure 4). Now we choose a
point E (the eye point) and reflect all rays through E on σ. It is not hard to prove that the
congruence of all reflected rays is the normal congruence of a quadric of revolution Q. To be

3The author would like to express his gratitude to M. Husty for pointing out this connection.
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Figure 4: Snell’s law and the “refrax” R(X) of a space point X.

more precise, Q is an ellipsoid if r < 1 and a hyperboloid if r > 1.4 In both cases the axis of
revolution is the normal of σ through E and this point a focal point of Q. The half length
of the axes of Q can easily be expressed in terms of e (the distance of E and σ) and r. Now
we can define a map

R : E3 → σ, X 7→ R(X) = Y

that assigns to each point X ∈ E3 the point Y ∈ σ with R([E, Y ]) = [X, Y ], i.e., the point
we practically try to look at when we want to see X through the refracting plane σ (Figure
4).5 This map is important in computer graphics for the direct and efficient computation of
refraction images. Furthermore, it can be applied to create curved perspectives as well.
The counter image Ψ := R−1(s) of a straight line s ⊂ σ is a ruled surface that can be

used to solve certain problems of theoretical and practical relevance. E. g., it helps to answer
questions on the R-image of an algebraic curve a of order n (in general R(a) is an algebraic
curve of order 4n) and to handle problems with standard filling algorithms for polygons
in computer graphics (the R-image of a polygon P may have up to two overlappings; the
criterion for this is the number of generators of Ψ that intersect P ).
Probably you already guessed that Ψ = Φe or Ψ = Φh and, of course, you are right. For

a change we will deal with the hyperbolic case in this subsection. We will use a Euclidean
coordinate system where σ is the [x, y]-plane, E lies on the z-axis and the straight line s is
described by z = 0, y = sy. Then all reflected rays are perpendicular to a hyperboloid H of
revolution

H: H(u, v) . . .H(u, v) =




a coshu sin v
a coshu cos v
b sinhu



 . (5)

Now we compute the normals of H that intersect s. The characteristic condition for this is

coshu cos v =
asy

a2 − b2
.

4If r = 1 the refraction is actually just a reflection and Q degenerates.
5Actually R is not well defined by this condition as there may be up to four real solutions. There exists,

however, exactly one point that is relevant for practical purposes and it can easily be characterized ([4]).
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Figure 5: The counter image Φh = R
−1(s) of a straight line s.

Together with (5) this yields

The counter image Ψ of a straight line s is the normal surface of a hyperboloid
H of revolution along a plane section parallel to the axis of H. Hence, it is an
example of the ruled surface Φh.

Figure 5 shows the situation. The double lines of Φh are the z-axis and the straight line
s, the eye point E is focal point of H. For practical applications only one sheet of Φh is
relevant. But taking into account that, from the mathematical point of view, equation (4)
has two solutions in [−π

2
, π
2
] we get the whole surface Φh.

4. The surface Φp of parabolic sections

4.1. Basic properties

The parameter representation of the surface Φp of parabolic sections given by [5] can easily
be derived from (2). With the abbreviation r = (2a)1/3 it reads

Φp : X(t, u) . . .X(t, u) =




t+ tur2

at2 − ur−1

λu



 . (6)

The t-lines are parabolas, the u-lines are generators g(t) of the surface. The base parabola
c0 belongs to u = 0. Φp has the double line

d . . . x = 0, z = −λr−2



H.-P. Schröcker: A Family of Conics and Three Special Ruled Surfaces 541

and is symmetric with respect to [y, z]. The [y, z]-plane intersects Φp in the straight line

s . . . x = 0, ry + z = 0

and the double line d. It is easy to see that Φp is a conoidal surface. All its generating lines
are parallel to the plane ry + z = 0. The parametrization (6) has the characteristic shape of
the Weierstrass-representation of Steiner’s Roman Surface ([8, 11]): The homogeneous coor-
dinates x0 :x1 :x2 :x3 of the surface points are quadratic polynomials of the two parameters
t and u. In our case, already the Euclidean coordinates fulfil this condition. The Roman
Surface and any of its tangent planes have two conics in common. Thus, there exists a two
parameter manifold of conics on Φp. Its algebraic order must therefore be three.

6

A surface very similar to Φp has already been investigated more than 30 years ago in [10].
Using an affine coordinate system with origin S := s∩ d and coordinate axes parallel to x, y
and s we can parametrize Φp as

Φ∗p : X
∗(t, u) . . .X∗(t, u) =




tu
t2

u



 . (7)

This is – up to a permutation of the coordinates – identical to a parameter representation
that was used in [10] for the investigation of a certain ruled surface of order three. There,
the author studied affine properties of Ψ (that, of course, hold for Φp as well). So he could
afford choosing the normalized parameter representation (7). Φp has, however, an interesting
metric property that is lost by transforming it to Ψ.

4.2. The line of striction

Some computation following the example of Section 3 shows that Φp is not the normal surface
of any cone of second order along a plane section. To be more detailed: The conics (parabolas)
on Φp are defined by relations of the kind u = αt+ β. Evaluating the condition that SX(t)
and g(t) are perpendicular immediately yields α = 0 and β = −r(4aλ)−1 which defines a
unique parabola cp ⊂ Φp. The normals of Φp along cp are, however, not the generators of a
cone or cylinder.

Instead we will have a closer look at the line of striction l : L(t) . . . l(t) of Φp. Φp is a
conoid, so l is the contour for the normal projection on [x, s]. As a consequence, all tangent
planes of Φp along l are parallel to v := (0, r, 1)

T . Their hull surface is a cylinder that will
be denoted by ζs in the following. The line of striction can be computed from (6). It has the
polynomial representation

l: L(t) . . . l(t) =
1

2a(1 + r2)




−4a3t3

2a2t2(r2 + 3) + r2 + 1
−4a2rt2 − 2a− r



 .

6A ruled surface of conics is of order three iff there is a two parameter family of conics on it ([6]). Of
course, all conics on Φp are parabolas.
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Figure 6: The surface Φp and the cylinder ζs.

Each generating line of ζs intersects Φp in three points. Two of them coincide in a point on
l, the third one lies on a curve k with parameter representation

k : K(t) . . .k(t) =
1

4ar(r + 2a)




2a3t3r2

r2[2r2(2a2t2 + 1) + 3a2t2 + 2]
−2a(2r2 − a2t2 + 2)





It is easy to verify that l and k are plane curves. As we have l̇(0) = k̇(0) = o, the points L(0)
and K(0) are cusps of l and k. Thus, these curves are cubic parabolas (evolutes of parabolas).
As v is orthogonal to s we can state (compare Figure 6)

Theorem 5. The line of striction l of Φp is a plane cubic parabola. It is the contour for the
normal projection on the plane [x, s]. The projection rays through l intersect Φp in another
plane cubic parabola k.

4.3. Distance conics to parabola and circle

We already mentioned the result stated in [5]: The general offset curve of a base conic c0 is
a conic if the distance function δ(t) is of the shape δ(t) = k%1/3(t) where %(t) is the radius of
curvature at X(t) and k an arbitrary real. In Theorem 3 we gave a proof for the uniqueness
(up to a constant factor) of the distance function if c0 is not a parabola. This proof would not
work in the parabolic case, however. In fact, the distance function is not unique as we will
see. We already know some basic facts (compare Theorem 2 and the proof of Theorem 3):
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• There exists a two parameter manifold P of parabolas that are projectively linked by
the tangents of the evolute e of c0.

7

• Only these parabolas can be members of families of distance conics with proportional
distance functions.

• All parabolas of P can be parametrized by substituting u = αt+β in (6) and cancelling
the z-coordinate. In other words: They are just the top view of the parabolas on Φp.

Because of the last point, any parabola p = p(α, β) from P corresponds to a straight line
p∗ . . . u = αt + β in the [t, u]-parameter plane. The straight lines t = const. belong to the
generators of Φp. Being given an arbitrary parabola p(α, β) and a real k ∈ R we build the
linear combination

ck : Xk(t) . . . (1− k)X(t, 0) + kX(t, αt+ β) (8)

(8) is the parameter representation of a parabola ck of P . Furthermore, ck is the curve at
distance δ(t) from c0 where

δ(t) =
∣∣∣X(t, αt+ β)−X(t, 0)

∣∣∣ . (9)

Thus, we found a one parameter set F of families of conics with the requested property (see
Figure 7). Because of Theorem 2 the hull curve of any of these families is the evolute e of
c0 again. There exists exactly one parameter value t0 with X(t0, 0) = X(t0, αt0 + β), i.e.,
t0 yields the same point P on c0 and p(α, β). All parabolas of the family defined by c0 and
p(α, β) pass through P . Two families F1,F2 ∈ F have only the base parabola c0 in common.
Thus, F is maximal and we get

Theorem 6. Being given a parabola c0 there exists a one parameter family of distance func-
tions (9) that can be used to create different families of distance conics (8).

The parabolas of a family F1 ∈ F correspond to a family F∗1 of parabolas on the surface Φp.
There, the parabolas are located in planes passing through a fixed point P ∈ c0 and being
tangent to Φp. We denote this set of tangent planes by τ(P ). They envelope a quadratic
cone Γ and all generators of Φp are tangents of Γ. As Φp is a conoid, the planes of τ(P )
intersect any two generators of Φp in points corresponding in an affine transformation.
In the [t, u]-parameter plane the families of F correspond to the pencils of lines with

vertices on the straight line s0 . . . t = 0 that itself corresponds to the base parabola c0. The
distance function δ(t) = %(t)1/3 yields the pencil of lines parallel to s0. This distance function
– the choice of [5] – is characterized by the existence of a singular distance conic – not only
in the parabolic but also in the elliptic and hyperbolic case.
Theorem 6 is only possible because a parabola’s evolute is of class 3 only. But there is

another conic with an evolute of class γ ≤ 4: the circle. Its evolute e degenerates to a single
point and is of class 1. The proof of Theorem 3 is, thus, not valid for a circle.8 To complete

7Certain parabolas may degenerate to straight lines. This has, however, no effects on the reasoning to
follow.
8Remember that we excluded this case at the very beginning of this paper.
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Figure 7: A parabola c0, its evolute e and a set of proportional offset parabolas.

the picture we will investigate this case right here. This can be done by straightforward
computation. We parametrize c0 according to

c0 : X(t) . . .x(t) =

(
r cos t
r sin t

)

. (10)

As the apex O of the degenerated evolute e does not lie on c0 there exists a three parameter
manifold C of conics that are projectively linked by the tangents of e.9 An arbitrary conic
c ∈ C can be parametrized according to

c: Y (t) . . .y(t) =
1

r(a cos t+ b sin t) + c

(
r cos t
r sin t

)

with three reals a, b and c. Now we solve the vector equation y(t) = x(t) + kr−1f(t)x(t) for
the function f(t) and find

f(t) = −
r2(a cos t+ b sin t) + r(c− 1)

kr(a cos t+ b sin t) + kc
.

Varying k yields a proportional function f(t) only if a = b = 0 and we get the trivial family
of concentric circles as the only solution to the problem. Theorem 3 is therefore valid for the
circular case as well.

5. Conclusion and future work

In this paper we solved the question of finding all families of proportional distance conics to
a given conic. In contrast to claims in [5] there exists more than one family of that kind in
the parabolic case. These families are closely linked to certain ruled surfaces of conic sections
that have remarkable geometric properties and applications. Perhaps there will be found

9See [7]; all conics may be found as the top view of the plane sections of an arbitrary cone of revolution
with axis z.
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more then we gave in the above text. Of special interest seems the relation of Φe and Φh to
the surfaces presented in [2].
Throughout the text we dealt with families of conic sections that are projectively linked

by straight lines (the tangents of a rational curve of class γ ≤ 4 or the generators of a ruled
surface of conic sections). Many results (e. g., those of Subsections 2.3 and 4.3) on these
families can be obtained by investigating linear combinations of two rational parametrizations
that realize the projective mapping by identical parameter values.
It is possible to combine more than two parameter representations and create moredi-

mensional rational systems of conics (see [7]). They have the structure of a projectiv space
and can be applied to many geometric problems. In contrast to the theory of pencils of conics
there exists no theory of rational systems of conics yet. Hopefully, this paper has shown their
usefullness and will promote their further investigation.
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