Moufang Buildings and Twin Buildings

To André Vermeulen

Valery Vermeulen

Universiteit Gent, Vakgroep Zuivere Wiskunde en Computeralgebra Galglaan 2, B-9000 Gent, Belgium

1. Introduction

The "Moufang Condition" for spherical buildings was introduced by J. Tits in the appendix of [9], as a tool to give more structure to the classification of spherical buildings of rank at least three (which are automatically "Moufang"). More recently, also the spherical buildings of rank 2 satisfying the Moufang Condition are classified [13]. Hence one could say that, on the geometric level, spherical buildings axiomatize the situation of a simple group of Lie type, while on the group-theoretic level, the Moufang Condition characterizes the groups themselves as automorphism groups. A few years ago, a similar phenomenon occured after the discovery of Kac-Moody algebras and Kac-Moody groups. In [11] Tits gave a group theoretical definition of a "Moufang Condition" intrinsically generalizing the notion of "Moufang spherical building". This definition was formally translated into geometrical language by Ronan in his book [7]. The main motivation was an attempt to characterize the Kac-Moody groups as automorphism groups of certain buildings (namely, the Moufang buildings). However, this equivalence is not yet established. On the geometric level, Ronan and Tits introduced the so-called "twin buildings" (see [12]), and these axiomatize the situation of a Kac-Moody group geometrically. Again, the equivalence of (simple) Kac-Moody groups and twin buildings (possibly under some additional hypotheses) has not been established yet. However, the work of Tits (see [11], [12], [9]), Mühlherr (see [4], [5], [6]) and Ronan points in the direction that a classification of 2-spherical twin buildings (i.e., twin buildings with a diagram containing no edges labelled ∞) is feasible. Moreover, Mühlherr and Ronan show in [3] that, under some mild restrictions, both combinatorial buildings of a 2-spherical twin building satisfy the Moufang Condition. Hence, in view of the analog for the spherical case, and in view of a possible classification of Moufang buildings (still under some additional,

0138-4821/93 2.50 © 2001 Heldermann Verlag

natural, conditions), the question of whether every Moufang building corresponds to a twin building is very interesting. In fact, Proposition 4 of [12] says that this is indeed the case. For a proof of that proposition, Tits refers the reader to the paper [11] without any additional specification or hint. The paper [11] indeed contains a rough outline of a possible proof of the proposition, and with some effort, one can reconstruct in detail the arguments and (non-trivial technical) computations. However, in the present paper, we want to present a proof of Tits' proposition partly following his ideas, but mainly using alternative geometric arguments. In my opinion this gives better insight into the geometry of twin buildings and the relation with groups, as a generalization of the connection between geometries and groups in the theory of (semi-simple) algebraic groups.

The paper is organized as follows. In Section 2 we give some definitions and facts to introduce the setting for the Moufang building Δ . In Section 3 we construct a chamber system \mathcal{C}^- using the groups which come from the Moufang structure on Δ . At the end of this section a covering κ between \mathcal{C}^- and Δ is defined. Using universal properties of Δ this implies that κ is an isomorphism. In the last section we give a proof that Δ is the half of a twin building.

Acknowledgment. I am very grateful to Bernhard Mühlherr for some helpful discussions on the subject of the paper.

2. Preliminaries

By a Coxeter matrix M over the finite index set I we will mean a symmetric matrix $M = (m_{ij})_{i,j\in I}$ with entries in $\mathbb{N} \cup \infty$ such that $m_{ii} \geq 1$ and $m_{ij} \geq 2$ if $i \neq j$. With every such Coxeter matrix one can associate a group W with presentation

$$W = \langle s_i | (s_i s_j)^{m_{ij}} \rangle.$$

This is the Coxeter group or Weyl group of type M. We sometimes write (W, S) instead of W where $S = \{s_i | i \in I\}$. This couple is called a Coxeter system of type M. This notation is used when we have a particular set S of generators of W in mind. The length of an element $w \in W$ with respect to this generating set is denoted by l(w). An expression $w = s_{i_1} \dots s_{i_m}$ with l(w) = m is called *reduced* or *minimal*.

Definition 1. Let M be a Coxeter matrix and (W, S) a Coxeter system of type M. A building of type M is a quadruple (Δ, W, S, d) with Δ a set whose elements are called chambers, (W, S) the given Coxeter system and d a distance function going from $\Delta \times \Delta$ to W satisfying 3 axioms:

Bu1 w = 1 if and only if x = y.

Bu2 If $z \in \Delta$ is a chamber such that d(y, z) = s with $s \in S$ then d(x, z) = w or ws. Moreover if l(ws) > l(w) then d(x, z) = ws.

Bu3 If $s \in S$ then there exists a chamber z of Δ such that d(x, z) = ws.

This definition was taken from [12]. When there is no confusion possible, or when (W, S) is not important a building (Δ, W, S, d) will also briefly be written as (Δ, d) or as Δ .

An obvious example of a building of type M is given by the Coxeter group itself. Chambers are elements of W and distance between two chambers x and y is defined as $x^{-1}y$. In the sequel we sometimes view the Coxeter group either as group or as a building. Which approach is used will be clear from the context unless stated otherwise.

If the associated Coxeter group is finite, then the building Δ is called a spherical building. For more information about spherical buildings we refer to [9], where they are classified in case $|S| \geq 3$. As a generalisation of the idea of spherical building the concept of twin buildings was introduced by M.Ronan and J.Tits. The paper [12] can be seen as a standard reference on this subject. We give the definition of [12] of a twin building.

Definition 2. For a certain Coxeter matrix and associated Weyl group (W, S) a twinned pair of buildings or a twin building of type M is a pair of buildings (Δ_+, W, S, d_+) and (Δ_-, W, S, d_-) with a codistance function d^* going from $\Delta_+ \times \Delta_- \sqcup \Delta_- \times \Delta_+$ to W satisfying $(\epsilon \in \{-1, 1\}, x \in \Delta_{\epsilon}, y \in \Delta_{-\epsilon} \text{ and } d^*(x, y) = w)$: **Tw1** $d^*(y, x) = w^{-1}$.

Tw2 If $z \in \Delta_{-\epsilon}$ is such that $d_{-\epsilon}(y, z) = s \in S$ and l(ws) < l(w) then $d^*(x, z) = ws$. **Tw3** For every $s \in S$ there exists at least one chamber $z \in \Delta_{-\epsilon}$ with $d^*(x, z) = ws$.

Apart from the geometrical description of buildings there is also a nice group theoretical counterpart. This is the notion of a BN-pair or Tits system.

Definition 3. Let G be a group with two subgroups B and N. Then (G, B, N, S) forms a BN-pair or Tits system if the following axioms are satisfied: **BN0** $\langle B, N \rangle = G$. **BN1** $H = B \cap N \leq N$ and N/H is a Coxeter group with generating set

 $S = \{s_i | i \in I\}.$

BN2 $BsBwB \subset BswB \cup BwB$ whenever $w \in W$ and $s \in S$. **BN3** $sBs \neq B$ for $s \in S$.

More information about BN-pairs can be found in [9].

Remains to define what a Moufang building is. To do this we follow the approach in Paragraph 4 of Chapter 6 in [7]. First we need some additional notions like panel, apartment and root. Let (Δ, W, S, d) be a building then two chambers x and y are called *s*-adjacent for $s \in S$ whenever d(x, y) = s or x = y. An *s*-panel P is a maximal set of mutually *s*-adjacent chambers. When we don't have a specific s in mind an *s*-panel will also be called a *panel*.

To relate buildings one needs a notion of morphisms.

Definition 4. Given two buildings (Δ, W, S, d) and (Δ', W, S, d') of the same type a morphism from (Δ, W, S, d) to (Δ', W, S, d') is a mapping θ going from Δ to Δ' such that if x and y are s-adjacent then $\theta(x)$ and $\theta(y)$ are also s-adjacent where $x, y \in \Delta$. An isomorphism is also called an isometry.

A nice example of an isometry of the Coxeter group onto itself is given by left multiplication with a fixed element.

Definition 5. Given a Coxeter group viewed as a building then for an element $s \in S$ the fundamental root defined by s is the set $\alpha_s = \{w \in W | l(sw) > l(w)\}$. All other roots in W are subsets of the form $w(\alpha_s)$ for some $w \in W$. The opposite root of a root α is the root $-\alpha$ having an empty intersection with α . For every root α the boundary of α denoted by $\partial \alpha$, is the set of panels that have non-empty intersection with both α and $-\alpha$. Roots are called positive or negative according whether they contain 1 or not. If a root α is positive, this is denoted by $\alpha > 0$. Similarly $\alpha < 0$ means that the root α is a negative root. The set of all roots in W is denoted by Ψ .

We fix some notation. If $s_i, i \in I$ denotes a fundamental reflection then the root associated with s_i is written as α_i .

Definition 6. An apartment Σ in a building Δ is an isometric copy of the Coxeter group W viewed as a building in Δ . A root in a building Δ is defined as an isometric copy of a root α in W. The boundary of a root in Δ , and the notion of positive and negative roots are defined in a similar way.

It can be proven that apartments always exist in buildings and that they characterize the geometry (cf. Theorem 3.11 of [7]).

Definition 7. Two roots α and β in W are called prenilpotent if and only if $\alpha \cap \beta \neq \emptyset$ and $(-\alpha) \cap (-\beta) \neq \emptyset$. If two roots α and β in W are prenilpotent then the interval $[\alpha, \beta]$ is defined as the set

 $\{\gamma \in \Psi \mid \alpha \cap \beta \subset \gamma \text{ and } (-\alpha) \cap (-\beta) \subset (-\gamma)\}.$

The notation (α, β) , with α, β a prenilpotent pair of roots, stands for $[\alpha, \beta] \setminus \{\alpha, \beta\}$.

Starting with a building (Δ, W, S, d) of a certain type M and the set Φ of all roots in a fixed apartment Σ_0 (called the standard apartment) of Δ we call the building Moufang if there exists a set of automorphism groups $(U_{\alpha})_{\alpha \in \Phi}$ also called root groups such that:

Mo1 Every element $u \in U_{\alpha}$ fixes all chambers of α . If π is a panel on $\partial \alpha$ and c is the chamber of π lying in α then U_{α} fixes c and acts regularly on all the chambers of $\pi \setminus \{c\}$.

Mo2 If $\{\alpha, \beta\}$ is a pair of prenilpotent distinct roots then

$$[U_{\alpha}, U_{\beta}] \subset U_{(\alpha, \beta)}.$$

Mo3 For each $u_{\alpha} \in U_{\alpha} \setminus \{1\}$ there exists an element $m(u_{\alpha}) \in U_{-\alpha}u_{\alpha}U_{-\alpha}$ stabilizing Σ . **Mo4** If $n = m(u_{\alpha})$ then for every root β we have $nU_{\beta}n^{-1} = U_{s_{\alpha}(\beta)}$.

Given a Moufang building Δ with root groups $(U_{\alpha})_{\alpha \in \Phi}$, we define the group $G = \langle U_{\alpha} \rangle_{\alpha \in \Phi}$, N the group generated by all $m(u_{\gamma})$ with $u_{\gamma} \in U_{\gamma}$ for a root γ in Φ . The standard chamber c_+ is defined as the image of 1 under the isometry going from the Coxeter group W to the standard apartment Σ_0 . It follows from the construction that c_+ is the intersection of all positive roots in Σ_0 . The subgroup of elements of N that fix Σ_0 is denoted by H, the torus in the classical sense. It is easy to check that $H \subset N_G(U_{\alpha})$ for all root groups U_{α} . The group B_+ stands for $\langle H, U_{\alpha} \rangle_{\alpha > 0}$, $B_- = \langle H, U_{\alpha} \rangle_{\alpha < 0}$ and $B_{\alpha} = \langle H, U_{\alpha} \rangle$ for every $\alpha \in \Phi$. The group B_+ also has a geometrical meaning: it is the full stabilizer in G of the standard chamber c_+ in Δ and N is the stabilizer of the apartment Σ_0 in G. The first fact is not obvious to show. It follows mainly from Lemma 4 in Section 5 of [11]. In fact this lemma yields that $G = \cup (B_+ w B_+)_{w \in W}$. With this setup we thus get a system $(G, (U_\alpha)_{\alpha \in \Phi})$ of groups. In the paper [11] J.Tits considers similar systems satisfying 5 axioms, namely (RD1) till (RD5). It is not hard to check that $(G, (U_\alpha)_{\alpha \in \Phi})$ satisfies (RD1), (RD2), (RD3) and (RD4). However axiom (RD5) cannot be proved by elementary techniques. It states that $\forall i \in I$ and $\alpha_i \in \Phi$ with $\alpha_i > 0$, $B_{\alpha_i} \not\subset B_-$ and $B_{-\alpha_i} \not\subset B_+$. That $B_{-\alpha_i} \not\subset B_+$ then every $u_{-\alpha_i} \in U_{-\alpha_i}$ would fix c_+ contradicting the regular action of $U_{-\alpha_i}$. To exclude that B_{α_i} is contained in B_- one cannot use the same argument as for the other case. The difference here is that $B_$ has no interpretation in terms of the building geometry. For this we will have to look deeper into the structure of Δ . Moreover the following results are true. For proofs we refer to [11].

Theorem 1. Given a Moufang building (Δ, W, S, d) of type M (with notations as above) then there is a unique homorphism $\nu : N \mapsto W$ such that for $n \in N$ and $\alpha \in \Phi$

$$nB_{\alpha}n^{-1} = B_{\nu(n)(\alpha)}.$$

The kernel of ν is H. This implies that $N/H \cong W$ and N/H is generated by a set $\tilde{s}_i H$ where $\{\tilde{s}_i\}$ is a set of $m(u_{\alpha_i})$ with $u_{\alpha_i} \neq 1$ and $\{\alpha_i \mid i \in I\}$ a fundamental root system in Φ .

Proof. This is a restatement of Lemma 3(i),(iii) in Paragraph 5 of [11]. The only thing one has to check are axioms (RD2), (RD3) and (RD4) of loc. cit. for the system $(G, (B_{\alpha})_{\alpha \in \Phi})$.

In what follows we will also consider elements of w as they were in the group G and write for example $wB_{\alpha}w^{-1} = B_{w(\alpha)}$ if there is no confusion. If we consider w as being an element of G we have a representative of w in N/H in mind.

Theorem 2. Given a Moufang building (Δ, W, S, d) of type M (with notations as above) then G acts transitively on Δ and the system (G, B_+, N, S) forms a BN-pair where S is a set of generators of the group N/H.

Proof. One checks that axiom (RD1) of RD-systems (cf. Paragraph 5 in [11]) is satisfied for $(G, (B_{\alpha})_{\alpha \in \Phi})$ and that $B_{-\alpha} \subseteq B_+$ for all $\alpha > 0$. Then the proof of Lemma 4 in Paragraph 5 of loc. cit. is still valid. Following the strategy of Proposition 4(i) of loc. cit. one deduces that (G, B_+, N, S) is a BN-pair. \Box

We also mention the following property which we will use later on.

Lemma 1. Given a Moufang building (Δ, W, S, d) as above then for every $i \in I$ the group B_{α_i} with $\alpha_i > 0$ has two double cosets in the group it generates with $B_{-\alpha_i}$, these are B_{α_i} and $B_{\alpha_i}s_iB_{\alpha_i}$. Hence we can write

$$\langle B_{\alpha_i}, B_{-\alpha_i} \rangle = B_{\alpha_i} \cup B_{\alpha_i} s_i B_{\alpha_i}.$$

Proof. If $u_{-\alpha_i} \in B_{-\alpha_i}$ and $u_{-\alpha_i} \notin H$ then there exist elements u_{α_i} and u'_{α_i} in U_{α_i} such that $m(u_{-\alpha_i}) = u_{\alpha_i}u_{-\alpha_i}u'_{\alpha_i}$. From the properties of the Moufang building Δ it follows that $u_{\alpha_i}u_{-\alpha_i}u'_{\alpha_i}s_i^{-1} \in H$, hence $u_{-\alpha_i} \in B_{\alpha_i}s_iB_{\alpha_i}$. This proves the claim. \Box

3. The chamber system C^-

In this paragraph we construct a chamber system \mathcal{C}^- using the groups. First we need some lemmas.

Lemma 2. Given a negative root α_i with $i \in I$ then

$$B_{\alpha}B_{\alpha_i}\tilde{s}_iB_- \subset B_{\alpha_i}\tilde{s}_iB_-$$

for every negative root $\alpha \in \Phi$.

Proof. For the proof we refer to Lemma 4 in Section 5 of [11]. One replaces all positive roots by negative roots. \Box

Lemma 3. Let $w \in W$ (with (W, S) a Weyl group), and $s_{i_1} \ldots s_{i_m}$ a reduced expression of w. Set for $j \in \{1, \ldots, m\}$ $w_j = s_{i_1} \ldots s_{i_j}$, $w_0 = 1$ and $\beta_j = w_{j-1}(\alpha_j)$ then $\{\beta_1, \ldots, \beta_m\}$ is the set of all positive roots sent by w^{-1} to a negative root.

Proof. This lemma is a restatement of Proposition 3(i) of [11], Section 5. The proof can be found there.

Lemma 4. Given any $w \in W$ and a reduced expression $s_{i_1} \dots s_{i_m}$ of w then the set

$$U_{-\beta_1}\ldots U_{-\beta_m}$$

is a group U_{-w} only depending on w. The group B_{-w} satisfies $B_{-w}wB_{-} = B_{-}wB_{-}$.

Proof. The statement of this lemma is analogous to the statement of Proposition 3(ii), (iv) in Section 5 of [11]. The only difference is that the groups here are parametrized by negative roots. One can easily check that the proof given in loc. cit. remains partially valid if positive roots are replaced by negative roots. \Box

Using the groups U_{-w} we construct the following chamber system \mathcal{C}^- . Let $U_- = \langle U_{-\alpha} \rangle_{\alpha > 0}$. For a given $w \in W$ the group U_{-w} defines a coset structure on U_- . We define \mathcal{C}_w^- as the set of all right cosets of U_{-w} in U_- . The set of chambers of \mathcal{C}^- is the disjoint union $\sqcup \mathcal{C}_w^-$. As we want the chamber system \mathcal{C}^- to be defined over the set I we have to define an *i*-adjacency relation for every $i \in I$. To do this we first fix some terminology which is introduced in [11] in Section 5.11.

Given $J \subseteq I$ such that $W_J = \langle s_i | i \in J \rangle$ is finite and an element $w \in W$, then w is called right *J*-anti-reduced if $l(w) = max\{l(u)|u \in wW_J\}$. For $w \in W$ and $i \in I$, w^i stands for the unique right $\{i\}$ -anti-reduced element in the *i*-panel in W containing w. For adjacency we state the following rule:

Two chambers xU_{-w} and yU_{-v} are *i*-adjacent if and only if

$$(1) \ w^i = v^i,$$

(2) $xU_{-w^i} = yU_{-w^i}$.

It is easily checked that C^- equipped with this adjacency relation is indeed a chamber system over I in the sense of [7], Chapter 1.

We also remark that the group U_{-} acts on the chamber system \mathcal{C}_{-} by left multiplication. It is easily checked that under this action *i*-adjacent chambers are sent to *i*-adjacent chambers. This means that the group U_{-} acts as a group of type preserving automorphisms of the chamber system \mathcal{C}^{-} .

The next step is to construct a chamber systems morphism between \mathcal{C}^- and (Δ, W, S, d) .

Lemma 5. The map κ between C^- and (Δ, W, S, d) that sends xU_w to $xw(c_+)$ is a type preserving morphism between the chamber systems C^- and (Δ, W, S, d) (i.e. it sends i-adjacent chambers to i-adjacent chambers).

Proof. We have to check that κ is well defined and that if xU_{-w} and yU_{-v} are *i*-adjacent, then also $\kappa(xU_{-w})$ and $\kappa(yU_{-v})$ are *i*-adjacent. To see this we rely on the following property:

$$U_{-w} \subset Stab_G(w(c_+)). \tag{(*)}$$

Let's first check this property. By Theorem 1 and Lemma 2 the group $w^{-1}U_{-w}w$ is contained in B_+ . As $Stab_G(c_+) = B_+$ formula (*) is clear. Because of property (*) the map κ is well defined, i.e. if $xU_{-w} = x'U_{-w}$ then $x(w(c_+)) = x'(w(c_+))$.

Suppose that xU_{-w} and yU_{-v} are *i*-adjacent, i.e. $w^i = v^i$ and $xU_{-w^i} = yU_{-w^i}$. From $w^i = v^i$ it follows that $w(c_+)$ and $v(c_+)$ are *i*-adjacent and belong to the *i*-panel containing w^i . From $y^{-1}x \in U_{-w^i}$ we deduce that $y^{-1}x$ stabilizes $w^i(c_+)$, hence also stabilizes the *i*-panel through $w^i(c_+)$. This means that $y^{-1}x(w(c_+))$ and $v(c_+)$ are *i*-adjacent, hence also $x(w(c_+))$ and $y(v(c_+))$ are *i*-adjacent. This completes the proof of the lemma. \Box

4. Properties of κ

In this paragraph we show that κ is a 2-covering from \mathcal{C}^- onto (Δ, W, S, d) . We start by showing that κ is surjective. For this we need an additional property of Moufang buildings.

Proposition 1. Given a Moufang building (Δ, W, S, d) with standard apartment Σ_0 , then the orbit of Σ_0 (as a set of chambers) under B_- is the full building Δ , i.e. $B_-(\Sigma_0) = \Delta$.

Proof. The proposition follows from the decomposition $G = B_-WB_+$ regarded the fact that $\{w(c_+)|w \in W\} = \Sigma_0$. First we show that $G = \cup (B_-wB_-)_{w \in W}$.

Using Lemma 4 we write:

$$B_-s_iB_-wB_- = B_-s_iB_{-w}wB_-.$$

Two cases occur: (1) $l(s_iw) > l(w)$. Then $s_iB_{-w}s_i \subset B_-$ and

$$B_{-}s_{i}B_{-}wB_{-} = B_{-}(s_{i}B_{-}ws_{i})s_{i}wB_{-} = B_{-}s_{i}wB_{-}.$$

(2) $l(s_i w) < l(w)$. Hence

$$B_{-}s_{i}B_{-}wB_{-} = B_{-}s_{i}B_{-}s_{i}s_{i}wB_{-}$$

$$\subset \{B_{-}s_{i}B_{-}, B_{-}\}s_{i}wB_{-}$$

$$\subset B_{-}wB_{-} \cup B_{-}s_{i}wB_{-}.$$

From this one deduces that $\cup (B_-wB_-)_{w\in W} = G$.

Then we show that for every $w \in W$ and $s_i \in S$

$$B_{-}s_{i}B_{-}wB_{+} \subseteq B_{-}swB_{+} \cup B_{-}wB_{+}.$$

As above again two cases can occur:

(1) $l(s_i w) < l(w)$.

This means that the root $w^{-1}(\alpha_i)$ is negative, hence

$$B_{-}s_{i}B_{-}wB_{+} = B_{-}s_{i}B_{-\alpha_{i}}wB_{+}$$
$$= B_{-}s_{i}w(w^{-1}B_{-\alpha_{i}}w)B_{+}$$
$$= B_{-}s_{i}wB_{+}.$$

(2) $l(s_i w) > l(w)$.

Then we use the above equation and calculate:

$$B_{-}s_{i}B_{-}wB_{+} = B_{-}s_{i}B_{-}s_{i}s_{i}wB_{+}$$

$$\subset B_{-}\{1, s_{i}\}B_{-}s_{i}wB_{+}$$

$$= B_{-}s_{i}wB_{+} \cup B_{-}wB_{+}$$

It follows that $B_-WB_+ = G$.

Corollary 1. The morphism κ is surjective.

Proof. Consider an arbitrary chamber a in Δ . Then by Proposition 1 we have $a = b_-v(c_+)$ for some $b_- \in B_-$ and $v \in W$. As for every root α , $H \subset Stab_G(U_\alpha)$ we can write b_- as u_-h for $u_- \in U_-$ and $h \in H$. Because H fixes every chamber of Σ_0 we can write $a = u_-v(c_+)$. If we consider the element u_-U_{-v} of \mathcal{C}^- then clearly $\kappa(u_-U_{-v}) = a$.

The only problem that remains to prove is that κ is a 2-covering.

Theorem 3. The map κ is 2-covering from C^- to Δ , i.e. it sends spherical rank 2 residues isomorphically onto spherical rank 2 residues.

Proof. To prove this we remark that the action of U_- on \mathcal{C}_- and Δ is compatible with κ , i.e. for all $xU_{-w} \in \mathcal{C}_-$ and $u_- \in U_-$ we have $\kappa(u_-xU_{-w}) = u_-\kappa(xU_{-w})$. In order to prove that κ is a 2-covering, it will then be enough to show that κ induces an isomorphism between every $\{i, j\}$ residue containing a chamber U_{-w} , with w an $\{i, j\}$ -anti-reduced element in W, and its image in Δ . To see this we remark that every rank 2 residue in \mathcal{C}_- always contains

348

1		

a chamber xU_{-w} where w is $\{i, j\}$ -anti-reduced and $x \in U_-$. The morphism determined by x^{-1} will then send the given rank 2 residue to another rank 2 residue that contains U_{-w} .

Fix a certain rank 2 residue in \mathcal{C}_{-} of spherical type $\{i, j\}$ (hence $m_{ij} < \infty$). Call this residue R_{-}^{ij} . Suppose that R_{-}^{ij} contains a chamber U_{-w} with w $\{i, j\}$ -anti-reduced. As $U_{-w} \in R_{-}^{ij}$, we see that $w(c_{+}) \in \kappa(R_{-}^{ij})$. If we denote by R^{ij} the $\{i, j\}$ -residue in Δ which contains $w(c_{+})$ then we have to show that κ induces an isomorphism between R_{-}^{ij} and R^{ij} .

(1) The map κ induces a surjection between R^{ij}_{-} and R^{ij} .

This will follow from the fact that κ induces a surjection between rank 1 residues. Consider a fixed $i \in I$ and a chamber a in Δ . Using Proposition 1 and the action of U_{-} on Δ we can assume that $a = v(c_{+}), v \in W$. Then every chamber of the *i*-residue containing a can be written under the form $v(u_{\alpha_i}s_i(c_{+}))$ with $u_{\alpha_i} \in U_{\alpha_i}$ and $\alpha_i > 0$.

Two cases occur:

(i) $l(vs_i) < l(v)$.

Then $vu_{\alpha_i} = vu_{\alpha_i}v^{-1}v$ with $vu_{\alpha_i}v^{-1} \in U_{v(\alpha_i)}$. Granted the condition on v, one has $U_{v(\alpha_i)} \subset U_{-v^i}$. If we consider in \mathcal{C}^- the chamber $vu_{\alpha_i}v^{-1}U_{-vs_i}$, then this chamber is *i*-adjacent to U_{-v} and $\kappa(vu_{\alpha_i}v^{-1}U_{-v}) = a$.

(ii) $l(vs_i) > l(v)$.

Using Lemma 1, one starts by rewriting u_{α_i} as $u_{-\alpha_i}s_ib_{-\alpha_i}$ with $u_{-\alpha_i} \in U_{-\alpha_i}$ and $b_{-\alpha_i} \in B_{-\alpha_i}$. As we also know that $s_ib_{-\alpha_i}s_i \subset B_{\alpha_i}$ the chamber a coincides with $vu_{-\alpha_i}(c_+)$. Because of the condition on v we have that $vu_{-\alpha_i}v^{-1} \in U_{-v(\alpha_i)} \subset U_{-v^i}$. Hence the chamber $vu_{-\alpha_i}v^{-1}U_{-vs_i}$ is *i*-adjacent to U_{-v} and $\kappa(vu_{-\alpha_i}v^{-1}U_{-vs_i}) = a$.

This completes the proof that κ induces a surjection between rank 1 residues in \mathcal{C}^- and Δ . Because rank 2 residues are connected it is clear that κ induces a surjection of R^{ij}_{-} onto R^{ij} . (2) The morphism κ induces an injection of $R^{i,j}_{-}$ into R^{ij} .

Suppose that we have two chambers $u'_{-w'}$ and $u''_{-w''}$ in R^{ij}_{-} such that $\kappa(u'_{-w'}) = \kappa(u''_{-w''})$. This means that $u'_{-w'}(c_+) = u''_{-w''}(c_+)$ and both w' and w'' belong to the $\{i, j\}$ -residue in W determined by w. Because of the conditions on w it is easy to check that both u'_{-} and u''_{-} belong to U_{-w} . We rewrite the above equality as

$$(w^{-1}u'_{-}w)w^{-1}w'(c_{+}) = (w^{-1}u''_{-}w)w^{-1}w''(c_{+}).$$

As both u'_{-} and u''_{-} belong to U_{-w} the elements $w^{-1}u'_{-}w$ and $w^{-1}u''_{-}w$ belong to B_{+} . Call the first one b'_{+} and the second one b''_{+} , then we find

$$b'_{+}w^{-1}w'(c_{+}) = b''_{+}w^{-1}w''(c_{+}).$$

But this implies by the Bruhat decomposition of the group G (as we have a BN-pair in G) that $w^{-1}w' = w^{-1}w''$, yielding w' = w''.

There remains to show that $u'_{-}U_{-w'} = u''_{-}U_{-w''}$.

From the equality $u'_w'(c_+) = u''_w'(c_+)$ one deduces that $w'^{-1}u'_{-}u'_w' \in B_+$. The element $u''_{-}u'_{-}u'_{-}$ is contained in U_{-w} and we call it u_{-w} . Then u_{-w} satisfies $w'^{-1}u_{-w}w' \in B_+$. Consider the set of positive roots sent by w^{-1} into negative roots, namely $\{\gamma_1, \ldots, \gamma_n\}$. Because of the properties of w we can divide this set into two subsets (after possibly reordering) $\{\gamma_1, \ldots, \gamma_{l-1}\} \sqcup \{\gamma_l, \ldots, \gamma_n\}$. Here $\{\gamma_1, \ldots, \gamma_{l-1}\}$ is the set of positive roots sent by w' to a

negative root and $\{\gamma_l, \ldots, \gamma_n\}$ is the set of remaining roots. With this notation in mind we write u_{-w} as $u_{-w'}u_{-r}$ with $u_{-w'} \in U_{-w'}$ and $u_{-r} = u_{-\gamma_l} \ldots u_{-\gamma_n}$. We rewrite the formula $w'^{-1}u_{-w}w' \in B_+$ as

$$w'^{-1}u_{-r}w' = w'^{-1}u_{-w'}^{-1}w'\tilde{b}_+$$

for a $\tilde{b}_+ \in B_+$. The element $w'^{-1}u_{-r}w'$ apparently belongs to B_+ . Suppose that $w = w'\underbrace{s_j s_i \dots s_j}_{m \text{ terms}}$ with l(w) = l(w') + m. Then

$$w'^{-1}\{\gamma_l,\ldots,\gamma_n\} = \{\alpha_j,s_j(\alpha_i),\ldots,s_js_i\ldots s_i(\alpha_j)\}.$$

Hence we can write $w'^{-1}u_{-r}w'$ as $u_{-\alpha_j}u_{-s_j(\alpha_i)}\ldots u_{-s_js_i\ldots s_i(\alpha_j)}$ yielding that $w^{-1}u_{-r}w' \in U_- \cap B_+$. Now we look at the rank 2 building Γ_{ij} determined by $B_{\alpha_i}, B_{-\alpha_i}, B_{\alpha_j}$ and $B_{-\alpha_j}$ (i.e. the rank 2 building we get by considering the group $\langle B_{\alpha_i}, B_{\alpha_j}, B_{-\alpha_i}, B_{-\alpha_j} \rangle$ and the induced BN-pair in it). It follows that $w'^{-1}u_{-r}w'$ is inside the group generated by these four groups. But $w'^{-1}u_{-r}w'$ fixes the fundamental chamber c_+^{ij} in this polygon. Hence this element is inside $U_-^{ij} \cap B_+^{ij}$ where the groups B_+^{ij} and B_-^{ij} are similarly as above. The proof that κ is a 2-covering will be done if we show the following lemma.

Lemma 6. If we are given a spherical rank 2 building with Weylgroup $\langle s_1, s_2 | (s_1 s_2)^{m_{12}} \rangle$ then

$$B_+ \cap B_- = H.$$

Proof. If we consider a spherical rank 2 Moufang building, the groups B_+ and B_- both have a geometric meaning. Indeed, in the standard apartment Σ there will be two chambers c_+ and c_- such that the $l(d(c_+, c_-))$ is maximal in the Weylgroup. The group B_+ will then be the stabilizer of c_+ in G, B_- will be the stabilizer of c_- and H will be the stabilizer of the standard apartment in G. This implies in particular that $B_- \cap B_+ \subseteq H$ and as $H \subseteq B_+ \cap B_$ we have

$$H = B_+ \cap B_-.$$

This lemma implies that $w'u_{-r}w'^{-1}$ lies in H. Moreover by properties of spherical Moufang buildings explained in [7] on pages 75 and 76 it follows that $u_r^{-1} = 1$. This yields $u_- \in U_{-w'}$ or $u''_{-1}u'_{-} \in U_{-w'}$, hence $u''_{-U-w'} = u'_{-W'}u_{-w'}$ what we wanted to show. This completes the proof of Theorem 3.

As already mentioned the group U_- acts on both \mathcal{C}^- and Δ in a way compatible with κ . This implies that $Stab_{U_-}(a) = Stab_{U_-}(\kappa(a))$ with $a \in \mathcal{C}^-$. If we do this for c_+ then $\kappa(1) = c_+$ and $Stab_{U_-}(1) = 1$ and $Stab_{U_-}(c_+) = U_- \cap B_+$. This gives us $U_- \cap B_+ = \{1\}$, which is a very strong condition. Consider $B_- \cap B_+$. Every element in this intersection can be written as hu_- for $h \in H$ and $u_- \in U_-$. But then $u_- = 1$ and the element is contained in H. As also $H \subseteq B_- \cap B_+$ we find

$$B_{-} \cap B_{+} = H.$$

Using the universal properties of buildings we get the following corollary.

Corollary 2. The chamber system C^- is a building of type M isomorphic to (Δ, W, S, d) under κ . *Proof.* This follows from the results in [10]. It is shown in this paper that every building is a universal object with respect to 2-coverings. This means that if we cover a building by a chamber system, then this covering is necessarily an isomorphism. \Box

Corollary 3. The pair (G, B_{-}, N, S) is a BN-pair.

Proof. The proof is similar to the proof of Theorem 2 as $B_{\alpha} \not\subset B_{-}, \forall \alpha > 0.$

5. The relation \mathcal{O}

We start from a Moufang building (Δ, W, S, d) . The set of all roots in W is given by $\Phi = \{\alpha\}$. The rootgroups are denoted by U_{α} . We use notation as before. Then we know that there are two BN-pairs involved, (G, B_+, N, S) and (G, B_-, N, S) . The first BN-pair yields a building (Δ_+, W, S, d_+) isomorphic to (Δ, W, S, d) . From the second the building (Δ_-, W, S, d_-) is constructed. As the chambers of Δ_+ and Δ_- correspond to cosets of B_+ respectively B_- the group G acts in a natural way on both buildings. Let c_+ and c_- be the chambers of Δ_+ and Δ_- corresponding to B_+ and B_- . We define the relation $\mathcal{O} \subset \Delta_+ \times \Delta_- \cup \Delta_- \times \Delta_+$ by the following rules:

$$((x_+, y_-) \in \Delta_+ \times \Delta_-, (y_-, x_+) \in \Delta_- \times \Delta_+)$$

$$\begin{array}{c} (x_+,y_-) \in \mathcal{O} \\ \updownarrow \\ \exists g \in G \text{ such that } (g(x_+),g(y_-)) = (c_+,c_-) \\ (y_-,x_+) \in \mathcal{O} \\ \updownarrow \\ (x_+,y_-) \in \mathcal{O} \end{array}$$

We describe the relation \mathcal{O} for rank 2 Moufang buildings.

Theorem 4. Suppose that (Δ, W, S, d) is a rank 2 Moufang building of spherical type then the relation \mathcal{O} defines a twinning between Δ_+ and Δ_- .

Proof. As the building Δ is of spherical type there exists a unique element w_0 in W such that $l(w_0) > l(w) \ \forall w \in W$. We make the following construction. Set $(\Delta_1, W, S, d_1) = (\Delta, W, S, d)$, $(\Delta_2, W, S, d_2) = (\Delta, W, S, w_0 dw_0)$. Define a codistance function d^* between Δ_1 and Δ_2 by: ($(x_1, x_2) \in \Delta_1 \times \Delta_2, (x_2, x_1) \in \Delta_2 \times \Delta_1$)

$$d^*(x_1, x_2) = w_0 d(x_1, x_2)$$

$$d^*(x_2, x_1) = d(x_1, x_2) w_0.$$

It follows from Proposition 1 in [12] that the couple $((\Delta_1, W, S, d_1), (\Delta_2, W, S, d_2))$ with the codistance function d^* is a twin building. It can be shown that this is the only possible twinning on Δ .

We know that two BN-pairs (G, B_+, N, S) and (G, B_-, N, S) can be constructed. Each of these BN-pairs has an associated building. Denote them by (Δ_+, W, S, d_+) and (Δ_-, W, S, d_-) .

We give a short description of (Δ_+, W, S, d_+) . The set of chambers Δ_+ is given by the set $\{gB_+ | g \in G\}$. Let $s \in S$ then g_1B_+ is s-adjacent to g_2B_+ if and only if $B_+g_1^{-1}g_2B_+ = B_+sB_+$. To define the distance between two chambers one uses the Bruhat decomposition of the group G. This means that the group G has a decomposition

$$G = \sqcup (B_+ w B_+)_{w \in W}$$

Moreover if $B_+w'B_+ = B_+w''B_+$ then it follows that w' = w''. For two chambers g_1B_+ and g_2B_+ of Δ_+ the distance $d(g_1B_+, g_2B_+)$ is defined as the unique element $v \in W$ such that

$$B_+g_1^{-1}g_2B_+ = B_+vB_+$$

Using standard arguments it follows that (Δ_+, W, S, d_+) is a building. The same can be done for (G, B_-, N, S) . This gives the building (Δ_-, W, S, d_-) . From the construction of (Δ_+, W, S, d_+) it can be proved that it is isomorphic to (Δ, W, S, d) . The isomorphism is given by

$$\begin{array}{rcl} \varphi_1 \, : \, \Delta_+ & \to & \Delta \\ \varphi_1(gB_+) & \mapsto & g(c_+). \end{array}$$

In a similar way $(\Delta_{-}, W, S, d_{-})$ is isomorphic to $(\Delta_{2}, W, S, d_{2})$.

Consider the group B_- . As we work in a spherical building it follows that $B_- = \langle U_{-w_0}, H \rangle$. Hence $w_0 B_+ w_0 = B_-$. By this we can map every chamber of Δ_- to a chamber of Δ_+ . Namely every hB_- can be written as $hw_0 B_+ w_0$. If we send every hB_- to $hw_0 B_+$ this is well defined. Call this map Opp_{w_0} . The composition $\varphi_2 = Opp_{w_0} \circ \varphi_1$ defines a bijection of Δ_- to Δ . Moreover φ_2 sends s-adjacent chambers to $w_0 s w_0$ -adjacent chambers. This implies that (Δ_-, W, S, d_-) is isomorphic to $(\Delta_2, W, S, w_0 dw_0)$ under φ_2 . The explicit formula for φ_2 is given by

$$\begin{array}{rcl} \varphi : \Delta_{-} & \to \Delta_{2} \\ hB_{-} & \mapsto & hw_{0}(c_{+}) \end{array}$$

To finish the proof we show the following equivalence: $((x_+, y_-) \in \Delta_+ \times \Delta_-)$

$$(x_+, y_-) \in \mathcal{O} \Leftrightarrow d^*(\varphi_1(x_+), \varphi_2(y_-)) = 1.$$

(1) If $(x_+, y_-) \in \mathcal{O}$ then $x_+ = gB_+$ and $y_- = gB_-$, with $g \in G$. Hence $\varphi_1(x_+) = g(c_+)$ and $\varphi_2(y_-) = gw_0(c_+)$. We calculate

$$d(g(c_+), gw_0(c_+)) = d(c_+, w_0(c_+))$$

= $d(c_+, w_0c_+)$
= $w_0.$

This implies that $d^*(\varphi_1(x_+), \varphi_2(y_-)) = 1$.

(2) Suppose gB_+ and hB_- are such that $d^*(\varphi_1(gB_+), \varphi_2(hB_-)) = 1$. This means that $d(g(c_+), hw_0(c_+)) = w_0$. Using the isomorphism φ_1 and the Bruhat decomposition of G if follows that

$$hb_{-} = gb_{+}$$

for appropriate $b_{-} \in B_{-}$ and $b_{+} \in B_{+}$. This means that $(gB_{+}, hB_{-}) \in \mathcal{O}$.

Remains to prove the same result for non-spherical rank 2 Moufang buildings. Let (Γ, W, S, d) be such a building. We consider a graph whose vertex set V is the set of all residues in Γ . Two vertices are joined by an edge if and only if they lie in a chamber. In this way we get a bipartite graph (V, E), which turns out to be a tree. It can also be easily checked that every isomorphism of Γ as building induces an isomorphism of the tree (V, E). For more information about non-spherical rank 2 Moufang buildings we refer to [8]. The result we will prove is:

Theorem 5. Given a non-spherical rank 2 Moufang building (Γ, W, S, d) then the relation \mathcal{O} defines the opposition relation of a twinning between Δ_+ and Δ_- .

Proof. First we fix some notations and terminology.

Denote $W = \{s, t\}$. The chambers of Γ will be considered as doubletons $\{x, x'\}$, where x and x' stand for the simplices in the chamber $\{x, x'\}$. We assume that the standard chamber is given by $c_0 = \{x_0, x_1\}$ and the standard apartment Σ_0 is the sequence $\ldots c_{-2} \stackrel{t}{\sim} c_{-1} \stackrel{s}{\sim} c_0 \stackrel{t}{\sim} c_1 \stackrel{s}{\sim} c_2 \ldots$ Write $c_i = \{x_i, x_{i+1}\}, \forall i$. Then the standard apartment Σ_0 corresponds to a sequence $\ldots x_{-2} \sim x_{-1} \sim x_0 \sim x_1 \sim x_2 \ldots$ in the tree (V, E).

As to the Moufang structure on Γ we keep the notations from above.

Let α_i^+ be the positive root of Σ_0 such that x_i lies on its boundary. Similarly α_i^- is the negative root of Σ_0 such that x_i lies on $\partial \alpha_i^-$. By calculations already made there are two *BN*-pairs involved: (G, B_+, N, S) and (G, B_-, N, S) . They give rise to two buildings (Δ_+, W, S, d_+) and (Δ_-, W, S, d_-) . To prove that \mathcal{O} is the opposition relation of a twinning between Δ_+ and Δ_- we refer to Proposition 5.4. of [2]. In order to use this proposition we show the following:

(i) The relation \mathcal{O} defines a 1-twinning between Δ_+ and Δ_- .

(ii) For any four chambers y_- , c_-^1 and c_-^2 in Δ_- and $e_+ \in \Delta_+$ such that $(e_+, c_-^1) \in \mathcal{O}$, $(e_+, c_-^2) \in \mathcal{O}$ and

$$l(d_{-}(c_{-}^{1}, y_{-})) = l(d_{-}(c_{-}^{2}, y_{-}))$$

= min{l(d_{-}(a_{-}, y_{-}))|(e_{+}, a_{-}) \in \mathcal{O}}

we have $d_{-}(c_{-}^{1}, y_{-}) = d_{-}(c_{-}^{2}, y_{-}).$

(iii) For any four chambers $y_- \in \Delta_-$, $y_+^1, y_+^2, e_+ \in \Delta_+$ such that $(y_+^1, y_-) \in \mathcal{O}$, $(y_+^2, y_-) \in \mathcal{O}$ and

$$\begin{split} l(d_+(e_+,y_+^1)) &= l(d_+(e_+,y_+^2)) \\ &= \min\{l(d_+(a_+,c_+))|(a_+,y_-) \in \mathcal{O}\} \end{split}$$

we have $d_+(y_+^1, e_+) = d_+(y_+^2, e_+).$

(iv) Given chambers y_- , $a_- \in \Delta_-$, e_+ and $b_+ \in \Delta$ such that a_- is as in (ii), $l(d(a_-, y_-))$ is minimal, b_+ is as in (iii) and $l(d(d_+, b_+))$ is minimal then

$$d_+(e_+, b_+) = d(a_-, y_-).$$

If (i), (ii), (iii) and (iv) are satisfied we define for every $x \in \Delta_{\epsilon}$ ($\epsilon \in \{1, -1\}$) a codistance function $d_x : \Delta_- \to W$. For every $z \in \Delta_{-\epsilon}$, $d_x(z)$ equals $d_{-\epsilon}(x_{-\epsilon}, z)$ with $(x, x_{-\epsilon}) \in \mathcal{O}$ such that $l(d(x_{-\epsilon}, z)$ is minimal as in (ii) or (iii). One easily checks this defines a codistance function for every x.

Remains to check these 4 properties:

(1) Because of the definition of \mathcal{O} it suffices to check that \mathcal{O} defines a 1-twinning between the *s*-residue R^s_+ in Δ_+ containing c_+ and the *s*-residue R^s_- in Δ_- containing c_- . We check that for all the chambers x_- of R^s_- satisfy $(x_-, c_+) \in \mathcal{O}$ except $s(c_-)$.

As the stabilizer of R^s_+ and R^s_- acts transitively on the chambers of these residues this will be enough to ensure that \mathcal{O} defines a 1-twinning between R^s_+ and R^s_- . Every element of $R^s_$ has the form $u_{-\alpha_s}s(c_-)$ for $u_{-\alpha_s} \in U_{-\alpha_s}$. Suppose that $u_{-\alpha_s} \neq 1$. Granted the properties of the *BN*-pair (G, B_-, N, S) we can write $u_{-\alpha_s}sc_- = u_{\alpha_s}su'_{\alpha_s}sc_-$ for appropriate u_{α_s} and $u'_{\alpha_s} \in U_{\alpha_s}$. But then $u_{-\alpha_s}s(c_-) = u_{\alpha_s}(c_-)$. And $(c_+, u_{-\alpha_s}(c_-)) = (u_{\alpha_s}(c_+), u_{\alpha_s}(c_-))$. Hence $(c_+, u_{-\alpha_s}(c_-)) \in \mathcal{O}$.

Consider the chamber $s(c_{-})$. If $(c_{+}, s(c_{-})) \in \mathcal{O}$ then there would exist a $g \in G$ such that $g(c_{+}) = c_{+}$ and $g(s(c_{-})) = c_{-}$. But then $g \in B_{+}$ and $gs \in B_{-}$ or $s = b_{+}b_{-}$ for $b_{+} \in B_{+}$ and $b_{-} \in B_{-}$. This contradicts the fact that s stabilizes the standard apartment Σ_{0} . Hence $(s(c_{-}), c_{+}) \notin \mathcal{O}$.

Granted the action of G on Δ_+ and Δ_- we may assume that $d_+ = c_+$ in (2), (3) and (4).

(2) Suppose that y_- , c_-^1 and c_-^2 are chambers as in (ii) with $(c_+, y_-) \notin \mathcal{O}$. Then $y_- = gB_-$, $c_-^1 = b_+^1 B_-$ and $c_-^2 = b_+^2 B_-$ for $g \in G$, $b_+^i \in B_+$. Let $d_-(c_-^1, y_-) = w_1$ and $d_-(c_-^2, y_-) = w_2$. It follows from the assumptions that $l(w_1) = l(w_2)$.

Assume $w_1 \neq w_2$.

Because we work in a non-spherical Coxeter group two possibilities occur. Namely $w_1^2 = w_2^2 = 1$ or $w_1^2 \neq 1$ and $w_2^2 \neq 1$.

Expressing that the distances from c_{-}^{1} and c_{-}^{2} to y_{-} are w_{1} and w_{2} gives:

$$gB_{-} = b_{+}^{1}b_{-}^{1}w_{1}B_{-}$$
$$= b_{+}^{2}b_{-}^{2}w_{2}B_{-}$$

for $b_{-}^{i} \in B_{-}$. Hence

$$b_{+}^{1}b_{-}^{1}w_{1} = b_{+}^{2}b_{-}^{2}w_{2}b_{-}$$

for $b_{-} \in B_{-}$. But then

$$(b_{+}^{2})^{-1}b_{+}^{1} = b_{-}^{2}w_{2}b_{-}w_{1}^{-1}(b_{-}^{1})^{-1}.$$

If $w_1^2 = w_2^2 = 1$ then

$$b_{-}^{2}w_{2}b_{-}w_{1}^{-1}(b_{-}^{1})^{-1} = b_{-}'w_{2}w_{1}b_{-}''$$

for $b'_-, b''_- \in B_-$. If $w_1^2 \neq 1$ and $w_2^2 \neq 1$ then $w_1w_2 = 1$ and

$$b_{-}^{2}w_{2}b_{-}w_{1}^{-1}(b_{-}^{1})^{-1} = b_{-}'w_{2}^{2}b_{-}''$$

for $b'_{-}, b''_{-} \in B_{-}$.

In all cases we find that if $w_1 \neq w_2$ then for a $v \neq 1$, b'_- and $b''_- \in B_-$

 $b'_{-}vb''_{-} \in B_{+},$

with $l(v) = 0 \mod 2$. This means that $b'_v v b''_u$ has to fix the chamber c_+ . Write $b'_v v b''_u = u'_v v u''_u h$ for $h \in H$. Then $u'_v v u''_u$ has to fix c_+ .

Two cases occur:

(a) $u''_{-} = 1$.

Then we have $u'_{-}(v(x_0) = x_0 \text{ and } u'_{-}(v(x_1)) = x_1$. This is only possible if v = 1 and $u'_{-} = 1$. (b) The element $u''_{-} \neq 1$.

Suppose that $W = \{s, t\}, \ \partial \alpha_s = x_0, \ \partial \alpha_t = x_1.$

If $u''_{-} \in U_{-\alpha_s}$ we find that $u'_{-}vu''_{-}(x_0) = x_0$. Granted the condition on u''_{-} this implies that $u'_{-}(v(x_0)) = x_0$. Again a contradiction.

Hence there exists an index j such that $x_j \sim y_1 \sim y_2 \sim \ldots \sim u''_{-}(x_0) \sim u''_{-}(x_1)$ is the gallery in Γ from Σ_0 to $u''_{-}(x_1)$.

Suppose that j < 0 (we already excluded the case where j = 0).

Because $l(v) = 0 \mod 2$, v acts as a translation of Σ_0 , i.e.

$$v(x_l) = x_{l+k_0}, \ \forall l$$

for a fixed $k_0 \in \mathbb{Z}$. Let $v(x_j) = x_m$. If $m \leq 0$ then $d_+(x_j, u''_-(x_0)) \neq d_+(x_m, x_0)$. One easily checks that there cannot exist a $u'_- \in U_-$ with $u'_-(vu''_-(x_0)) = x_0$. If $m \geq 1$ then

$$d_{+}(x_{m}, vu''_{-}(x_{0})) < d_{+}(x_{m}, vu''_{-}(x_{1})).$$

Using this fact one also checks that for no $u'_{-} \in U_{-}$ we can have $u'_{-}(vu''_{-}(x_{0})) = x_{0}$. If j > 0 one uses similar arguments to deduce a contradiction. (3) If (y^{1}_{+}, y_{-}) and $(y^{2}_{+}, y_{-}) \in \mathcal{O}$ then

$$\begin{array}{rcl} y_{-} &=& g(c_{-}) \\ y_{+}^{1} &=& g(c_{+}) \\ y_{+}^{2} &=& gb_{-}(c_{+}) \end{array}$$

for $g \in G$ and $b_{-} \in B_{-}$.

A symmetric proof completely analogous to (2) gives $d_+(y_+^1, c_+) = d_+(y_+^2, c_+)$. (4) Let y_- and c_-^1 be chambers of Δ_- with $(c_+, c_-^1) \in \mathcal{O}$ and $d(c_-^1, y_-)$ being minimal as in (ii). Then we look for a chamber y_+ in Δ_+ such that $(y_+, y_-) \in \mathcal{O}$ and $d_+(c_+, y_+) = d_-(c_-^1, y_-)$. This will imply (iv). Without loss of generality we can assume that $c_{-}^{1} = c_{-}$. Let the minimal gallery in Δ between c_{-} and y_{-} be

$$y_{-}^{0} = c_{-} \stackrel{s}{\sim} y_{-}^{1} \stackrel{t}{\sim} y_{-}^{2} \stackrel{s}{\sim} \dots \stackrel{t}{\sim} y_{-}^{m} = y_{-}$$

If $y_-^1 = u_{-\alpha_s} s(c_-)$ let y_+^1 be $u_{-\alpha_s} s(c_+)$. If $y_-^2 = u_{-\alpha_t} t u_{-\alpha_s} s(c_-)$ let y_+^2 be $u_{-\alpha_t} t u_{-\alpha_s} s(c_+)$. If we do this for all y_-^i we get a gallery

$$y^0_+ = c_+ \stackrel{s}{\sim} y^1_+ \stackrel{t}{\sim} y^2_+ \stackrel{s}{\sim} \dots \stackrel{t}{\sim} y^m_+$$

from c_+ to y_+^m . One shows with a proof similar as in (2) that for no $v \in W$ and $b_-, b'_- \in B_$ we can have that $b_-vb'_- \in B_+$. This ensures us that all the y_+^j are different. The gallery is therefore non-stammering and $d_+(c_+, y_+^m) = d_-(c_-^1, y_-)$. By construction we have $(y_+, y_-) \in \mathcal{O}$.

This completes the proof that (i), (ii), (iii) and (iv) are satisfied for \mathcal{O} . Hence \mathcal{O} is the opposition relation of a twinning between Δ_+ and Δ_- .

6. Constructing a 2-twinning

In this paragraph we will show that the building (Δ, W, S, d) is half of a twin building using a result of B. Mühlherr in [2]. We restate the main result of loc. cit.

Theorem 6. Let M be a Coxeter matrix over I, let (Δ_+, W, S, d_+) and (Δ_-, W, S, d_-) be two thick buildings of type M and let $\mathcal{O} \subseteq (\Delta_+ \times \Delta_-) \cup (\Delta_- \times \Delta_+)$ be a non-empty symmetric relation. Then \mathcal{O} is the opposition relation of a twinning between $(\Delta_+, W, S, \delta_+)$ and $(\Delta_-, W, S, \delta_-)$ if and only if the following condition is satisfied:

If $J \subseteq I$ is of cardinality at most 2 and if $R_+ \subseteq \Delta_+$ and $R_- \subseteq \Delta_-$ are J-residues, then either $\mathcal{O} \cap ((R_+ \times R_-) \cup (R_- \times R_+)) = \emptyset$ or $\mathcal{O} \cap ((R_+ \times R_-) \cup (R_- \times R_+))$ is the opposition relation of a twinning between R_+ and R_- .

We now have:

Theorem 7. Given a Moufang building (Δ, W, S, d) with root groups $(U_{\alpha})_{\alpha \in \Phi}$ then Δ is half of a twin building, i.e. there exists a building $(\Delta_{-}, W, S, d_{-})$ and a codistance function d^* such that $((\Delta, W, S, d), (\Delta_{-}, W, S, d_{-}), d^*)$ is a twin building.

Proof. By Theorem 2 and Corollary 3 we know that there are two BN-pairs involved. Namely (G, B_+, N, S) and (G, B_-, N, S) . The building (Δ_+, W, S, d_+) associated to (G, B_+, N, S) is by construction isomorphic to Δ . We define the symmetric relation \mathcal{O} between Δ_+ and Δ_- as before. Consider $s_i, s_j \in S$. Let $R_{s_is_j}^+$ and $R_{s_is_j}^-$ be the $\{s_i, s_j\}$ -residues in Δ_+ and Δ_- containing c_+ and c_- respectively. Then it follows from Theorem 4 and Theorem 5 that \mathcal{O} defines the opposition relation of a twinning between $R_{s_is_j}^+$ and $R_{s_is_j}^-$. By construction this implies that \mathcal{O} satisfies the conditions of Theorem 6. Hence \mathcal{O} defines a twinning between Δ_+ and Δ_- . This means that $\Delta \cong \Delta_+$ is half of a twin building. \Box

References

- [1] Abramenko, P.: Twin buildings and applications to S-arithmetic groups. Lecture Notes in Math. **1641**, Springer, Berlin Heidelberg 1996.
- [2] Mühlherr, B.: A Rank Two Characterization of Twinnings. Europ. J. Combinatorics 19 (1998), 603–612.
- [3] Mühlherr, B.; Ronan, M.: Local to global structures in Twin buildings. Invent. Math. 122 (1995), 71–81.
- [4] Mühlherr, B.: Locally split and locally finite twin buildings of 2-spherical type. To appear in J. Reine Angew. Math. (1999).
- [5] Mühlherr, B.: On the existence of Certain 2-Spherical Twin Buildings. Habilitationsschrift, Dortmund June 1999.
- [6] Mühlherr, B.; Van Maldeghem, H.: On certain twin buildings over tree diagrams. Bull. Belg. Math. Soc. (1998), 393–402.
- [7] Ronan, M.: Lectures on Buildings. Academic Press 1989.
- [8] Ronan, M.; Tits, J.: Twin trees I. Invent. Math. 116 (1994), 463–479.
- [9] Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Math. 386, Springer 1974.
- [10] Tits, J.; Ensembles ordonnés, immeubles et sommes amalgamées. Bull. Soc. Math. Belgique 38 (1986), 367–387.
- [11] Tits, J.: Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra 105 (1987), 542–573.
- [12] Tits, J.: Twin buildings and groups of Kac-Moody type. London Math. Soc. Lecture Notes 165, (Proceedings of a conference on groups, combinatorics and geometry, Durham 1990), Cambridge University Press 1992, 249–286.
- [13] Tits, J.; Weiss, R.: The classification of Moufang polygons. In preparation.

Received January 21, 2000