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1. Introduction

The “Moufang Condition” for spherical buildings was introduced by J. Tits in the appendix
of [9], as a tool to give more structure to the classification of spherical buildings of rank at
least three (which are automatically “Moufang”). More recently, also the spherical buildings
of rank 2 satisfying the Moufang Condition are classified [13]. Hence one could say that,
on the geometric level, spherical buildings axiomatize the situation of a simple group of Lie
type, while on the group-theoretic level, the Moufang Condition characterizes the groups
themselves as automorphism groups. A few years ago, a similar phenomenon occured after
the discovery of Kac-Moody algebras and Kac-Moody groups. In [11] Tits gave a group
theoretical definition of a “Moufang Condition” intrinsically generalizing the notion of “Mou-
fang spherical building”. This definition was formally translated into geometrical language
by Ronan in his book [7]. The main motivation was an attempt to characterize the Kac-
Moody groups as automorphism groups of certain buildings (namely, the Moufang buildings).
However, this equivalence is not yet established. On the geometric level, Ronan and Tits
introduced the so-called “twin buildings” (see [12]), and these axiomatize the situation of a
Kac-Moody group geometrically. Again, the equivalence of (simple) Kac-Moody groups and
twin buildings (possibly under some additional hypotheses) has not been established yet.
However, the work of Tits (see [11], [12], [9]), Mühlherr (see [4], [5], [6]) and Ronan points
in the direction that a classification of 2-spherical twin buildings (i.e., twin buildings with a
diagram containing no edges labelled ∞) is feasible. Moreover, Mühlherr and Ronan show
in [3] that, under some mild restrictions, both combinatorial buildings of a 2-spherical twin
building satisfy the Moufang Condition. Hence, in view of the analog for the spherical case,
and in view of a possible classification of Moufang buildings (still under some additional,
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natural, conditions), the question of whether every Moufang building corresponds to a twin
building is very interesting. In fact, Proposition 4 of [12] says that this is indeed the case. For
a proof of that proposition, Tits refers the reader to the paper [11] without any additional
specification or hint. The paper [11] indeed contains a rough outline of a possible proof
of the proposition, and with some effort, one can reconstruct in detail the arguments and
(non-trivial technical) computations. However, in the present paper, we want to present a
proof of Tits’ proposition partly following his ideas, but mainly using alternative geometric
arguments. In my opinion this gives better insight into the geometry of twin buildings and
the relation with groups, as a generalization of the connection between geometries and groups
in the theory of (semi-simple) algebraic groups.
The paper is organized as follows. In Section 2 we give some definitions and facts to

introduce the setting for the Moufang building ∆. In Section 3 we construct a chamber
system C− using the groups which come from the Moufang structure on ∆. At the end of
this section a covering κ between C− and ∆ is defined. Using universal properties of ∆ this
implies that κ is an isomorphism. In the last section we give a proof that ∆ is the half of a
twin building.

Acknowledgment. I am very grateful to Bernhard Mühlherr for some helpful discussions
on the subject of the paper.

2. Preliminaries

By a Coxeter matrix M over the finite index set I we will mean a symmetric matrix M =
(mij)i,j∈I with entries in N ∪ ∞ such that mii ≥ 1 and mij ≥ 2 if i 6= j. With every such
Coxeter matrix one can associate a group W with presentation

W = 〈si|(sisj)
mij〉.

This is the Coxeter group or Weyl group of type M . We sometimes write (W,S) instead of
W where S = {si|i ∈ I}. This couple is called a Coxeter system of type M . This notation is
used when we have a particular set S of generators of W in mind. The length of an element
w ∈ W with respect to this generating set is denoted by l(w). An expression w = si1 . . . sim
with l(w) = m is called reduced or minimal.

Definition 1. LetM be a Coxeter matrix and (W,S) a Coxeter system of typeM . A building
of typeM is a quadruple (∆,W, S, d) with ∆ a set whose elements are called chambers, (W,S)
the given Coxeter system and d a distance function going from ∆ × ∆ to W satisfying 3
axioms:
Bu1 w = 1 if and only if x = y.

Bu2 If z ∈ ∆ is a chamber such that d(y, z) = s with s ∈ S then d(x, z) = w or ws.
Moreover if l(ws) > l(w) then d(x, z) = ws.

Bu3 If s ∈ S then there exists a chamber z of ∆ such that d(x, z) = ws.

This definition was taken from [12]. When there is no confusion possible, or when (W,S) is
not important a building (∆,W, S, d) will also briefly be written as (∆, d) or as ∆.
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An obvious example of a building of type M is given by the Coxeter group itself. Cham-
bers are elements of W and distance between two chambers x and y is defined as x−1y. In
the sequel we sometimes view the Coxeter group either as group or as a building. Which
approach is used will be clear from the context unless stated otherwise.
If the associated Coxeter group is finite, then the building ∆ is called a spherical building.

For more information about spherical buildings we refer to [9], where they are classified in
case |S| ≥ 3. As a generalisation of the idea of spherical building the concept of twin buildings
was introduced by M.Ronan and J.Tits. The paper [12] can be seen as a standard reference
on this subject. We give the definition of [12] of a twin building.

Definition 2. For a certain Coxeter matrix and associated Weyl group (W,S) a twinned
pair of buildings or a twin building of type M is a pair of buildings (∆+,W, S, d+) and
(∆−,W, S, d−) with a codistance function d

∗ going from ∆+ × ∆− t ∆− × ∆+ to W sat-
isfying (ε ∈ {−1, 1}, x ∈ ∆ε, y ∈ ∆−ε and d∗(x, y) = w):

Tw1 d∗(y, x) = w−1.

Tw2 If z ∈ ∆−ε is such that d−ε(y, z) = s ∈ S and l(ws) < l(w) then d∗(x, z) = ws.

Tw3 For every s ∈ S there exists at least one chamber z ∈ ∆−ε with d∗(x, z) = ws.

Apart from the geometrical description of buildings there is also a nice group theoretical
counterpart. This is the notion of a BN -pair or Tits system.

Definition 3. Let G be a group with two subgroups B and N . Then (G,B,N, S) forms a
BN-pair or Tits system if the following axioms are satisfied:

BN0 〈B,N〉 = G.

BN1 H = B ∩N E N and N/H is a Coxeter group with generating set

S = {si|i ∈ I}.

BN2 BsBwB ⊂ BswB ∪BwB whenever w ∈ W and s ∈ S.

BN3 sBs 6= B for s ∈ S.

More information about BN -pairs can be found in [9].

Remains to define what a Moufang building is. To do this we follow the approach in Paragraph
4 of Chapter 6 in [7]. First we need some additional notions like panel, apartment and root.
Let (∆,W, S, d) be a building then two chambers x and y are called s-adjacent for s ∈ S
whenever d(x, y) = s or x = y. An s-panel P is a maximal set of mutually s-adjacent
chambers. When we don’t have a specific s in mind an s-panel will also be called a panel.

To relate buildings one needs a notion of morphisms.

Definition 4. Given two buildings (∆,W, S, d) and (∆′,W, S, d′) of the same type a mor-
phism from (∆,W, S, d) to (∆′,W, S, d′) is a mapping θ going from ∆ to ∆′ such that if x
and y are s-adjacent then θ(x) and θ(y) are also s-adjacent where x, y ∈ ∆. An isomorphism
is also called an isometry.

A nice example of an isometry of the Coxeter group onto itself is given by left multiplication
with a fixed element.
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Definition 5. Given a Coxeter group viewed as a building then for an element s ∈ S the
fundamental root defined by s is the set αs = {w ∈ W |l(sw) > l(w)}. All other roots in W
are subsets of the form w(αs) for some w ∈ W . The opposite root of a root α is the root
−α having an empty intersection with α. For every root α the boundary of α denoted by ∂α,
is the set of panels that have non-empty intersection with both α and −α. Roots are called
positive or negative according whether they contain 1 or not. If a root α is positive, this is
denoted by α > 0. Similarly α < 0 means that the root α is a negative root.
The set of all roots in W is denoted by Ψ.

We fix some notation. If si, i ∈ I denotes a fundamental reflection then the root associated
with si is written as αi.

Definition 6. An apartment Σ in a building ∆ is an isometric copy of the Coxeter group W
viewed as a building in ∆. A root in a building ∆ is defined as an isometric copy of a root α
in W . The boundary of a root in ∆, and the notion of positive and negative roots are defined
in a similar way.

It can be proven that apartments always exist in buildings and that they characterize the
geometry (cf. Theorem 3.11 of [7]).

Definition 7. Two roots α and β in W are called prenilpotent if and only if α∩ β 6= ∅ and
(−α) ∩ (−β) 6= ∅. If two roots α and β in W are prenilpotent then the interval [α, β] is
defined as the set

{γ ∈ Ψ |α ∩ β ⊂ γ and (−α) ∩ (−β) ⊂ (−γ)}.

The notation (α, β), with α, β a prenilpotent pair of roots, stands for [α, β] \ {α, β}.

Starting with a building (∆,W, S, d) of a certain type M and the set Φ of all roots in a fixed
apartment Σ0 (called the standard apartment) of ∆ we call the building Moufang if there
exists a set of automorphism groups (Uα)α∈Φ also called root groups such that:

Mo1 Every element u ∈ Uα fixes all chambers of α. If π is a panel on ∂α and c is the chamber
of π lying in α then Uα fixes c and acts regularly on all the chambers of π \ {c}.

Mo2 If {α, β} is a pair of prenilpotent distinct roots then

[Uα, Uβ] ⊂ U(α,β).

Mo3 For each uα ∈ Uα \ {1} there exists an element m(uα) ∈ U−αuαU−α stabilizing Σ.

Mo4 If n = m(uα) then for every root β we have nUβn
−1 = Usα(β).

Given a Moufang building ∆ with root groups (Uα)α∈Φ, we define the group G = 〈Uα〉α∈Φ,
N the group generated by all m(uγ) with uγ ∈ Uγ for a root γ in Φ. The standard chamber
c+ is defined as the image of 1 under the isometry going from the Coxeter group W to the
standard apartment Σ0. It follows from the construction that c+ is the intersection of all
positive roots in Σ0. The subgroup of elements of N that fix Σ0 is denoted by H, the torus
in the classical sense. It is easy to check that H ⊂ NG(Uα) for all root groups Uα. The group
B+ stands for 〈H,Uα〉α>0, B− = 〈H,Uα〉α<0 and Bα = 〈H,Uα〉 for every α ∈ Φ. The group
B+ also has a geometrical meaning: it is the full stabilizer in G of the standard chamber
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c+ in ∆ and N is the stabilizer of the apartment Σ0 in G. The first fact is not obvious to
show. It follows mainly from Lemma 4 in Section 5 of [11]. In fact this lemma yields that
G = ∪(B+wB+)w∈W . With this setup we thus get a system (G, (Uα)α∈Φ) of groups. In the
paper [11] J.Tits considers similar systems satisfying 5 axioms, namely (RD1) till (RD5). It
is not hard to check that (G, (Uα)α∈Φ) satisfies (RD1), (RD2), (RD3) and (RD4). However
axiom (RD5) cannot be proved by elementary techniques. It states that ∀i ∈ I and αi ∈ Φ
with αi > 0, Bαi 6⊂ B− and B−αi 6⊂ B+. That B−αi 6⊂ B+ is easy to check. This follows
essentially from the equality StabG(c+) = B+. Namely if B−αi ⊂ B+ then every u−αi ∈ U−αi
would fix c+ contradicting the regular action of U−αi . To exclude that Bαi is contained in
B− one cannot use the same argument as for the other case. The difference here is that B−
has no interpretation in terms of the building geometry. For this we will have to look deeper
into the structure of ∆. Moreover the following results are true. For proofs we refer to [11].

Theorem 1. Given a Moufang building (∆,W, S, d) of type M (with notations as above)
then there is a unique homorphism ν : N 7→ W such that for n ∈ N and α ∈ Φ

nBαn
−1 = Bν(n)(α).

The kernel of ν is H. This implies that N/H ∼= W and N/H is generated by a set s̃iH where
{s̃i} is a set of m(uαi) with uαi 6= 1 and {αi | i ∈ I} a fundamental root system in Φ.

Proof. This is a restatement of Lemma 3(i),(iii) in Paragraph 5 of [11]. The only thing one
has to check are axioms (RD2), (RD3) and (RD4) of loc. cit. for the system (G, (Bα)α∈Φ).

2

In what follows we will also consider elements of w as they were in the group G and write
for example wBαw

−1 = Bw(α) if there is no confusion. If we consider w as being an element
of G we have a representative of w in N/H in mind.

Theorem 2. Given a Moufang building (∆,W, S, d) of type M (with notations as above)
then G acts transitively on ∆ and the system (G,B+, N, S) forms a BN-pair where S is a
set of generators of the group N/H.

Proof. One checks that axiom (RD1) of RD-systems (cf. Paragraph 5 in [11]) is satisfied for
(G, (Bα)α∈Φ) and that B−α ⊆ B+ for all α > 0. Then the proof of Lemma 4 in Paragraph 5
of loc. cit. is still valid. Following the strategy of Proposition 4(i) of loc. cit. one deduces
that (G,B+, N, S) is a BN -pair. 2

We also mention the following property which we will use later on.

Lemma 1. Given a Moufang building (∆,W, S, d) as above then for every i ∈ I the group
Bαi with αi > 0 has two double cosets in the group it generates with B−αi, these are Bαi and
BαisiBαi. Hence we can write

〈Bαi , B−αi〉 = Bαi ∪BαisiBαi .

Proof. If u−αi ∈ B−αi and u−αi /∈ H then there exist elements uαi and u
′
αi
in Uαi such

that m(u−αi) = uαiu−αiu
′
αi
. From the properties of the Moufang building ∆ it follows that

uαiu−αiu
′
αi
s−1i ∈ H, hence u−αi ∈ BαisiBαi . This proves the claim. 2
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3. The chamber system C−

In this paragraph we construct a chamber system C− using the groups. First we need some
lemmas.

Lemma 2. Given a negative root αi with i ∈ I then

BαBαi s̃iB− ⊂ Bαi s̃iB−

for every negative root α ∈ Φ.

Proof. For the proof we refer to Lemma 4 in Section 5 of [11]. One replaces all positive roots
by negative roots. 2

Lemma 3. Let w ∈ W (with (W,S) a Weyl group) , and si1 . . . sim a reduced expression of
w. Set for j ∈ {1, . . . ,m} wj = si1 . . . sij , w0 = 1 and βj = wj−1(αj) then {β1, . . . , βm} is
the set of all positive roots sent by w−1 to a negative root.

Proof. This lemma is a restatement of Proposition 3(i) of [11], Section 5. The proof can be
found there. 2

Lemma 4. Given any w ∈ W and a reduced expression si1 . . . sim of w then the set

U−β1 . . . U−βm

is a group U−w only depending on w. The group B−w satsifies B−wwB− = B−wB−.

Proof. The statement of this lemma is analogous to the statement of Proposition 3(ii), (iv)
in Section 5 of [11]. The only difference is that the groups here are parametrized by negative
roots. One can easily check that the proof given in loc. cit. remains partially valid if positive
roots are replaced by negative roots. 2

Using the groups U−w we construct the following chamber system C−. Let U− = 〈U−α〉α>0.
For a given w ∈ W the group U−w defines a coset structure on U−. We define C−w as the set
of all right cosets of U−w in U−. The set of chambers of C− is the disjoint union tC−w . As we
want the chamber system C− to be defined over the set I we have to define an i-adjacency
relation for every i ∈ I. To do this we first fix some terminology which is introduced in [11]
in Section 5.11.

Given J ⊆ I such that WJ = 〈si|i ∈ J〉 is finite and an element w ∈ W , then w is called
right J-anti-reduced if l(w) = max{l(u)|u ∈ wWJ}. For w ∈ W and i ∈ I, wi stands for the
unique right {i}-anti-reduced element in the i-panel in W containing w. For adjacency we
state the following rule:

Two chambers xU−w and yU−v are i-adjacent if and only if
(1) wi = vi,

(2) xU−wi = yU−wi .
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It is easily checked that C− equipped with this adjacency relation is indeed a chamber system
over I in the sense of [7], Chapter 1.

We also remark that the group U− acts on the chamber system C− by left multiplication. It
is easily checked that under this action i-adjacent chambers are sent to i-adjacent chambers.
This means that the group U− acts as a group of type preserving automorphisms of the
chamber system C−.

The next step is to construct a chamber systems morphism between C− and (∆,W, S, d).

Lemma 5. The map κ between C− and (∆,W, S, d) that sends xUw to xw(c+) is a type pre-
serving morphism between the chamber systems C− and (∆,W, S, d) (i.e. it sends i-adjacent
chambers to i-adjacent chambers).

Proof. We have to check that κ is well defined and that if xU−w and yU−v are i-adjacent,
then also κ(xU−w) and κ(yU−v) are i-adjacent. To see this we rely on the following property:

U−w ⊂ StabG(w(c+)). (∗)

Let’s first check this property. By Theorem 1 and Lemma 2 the group w−1U−ww is contained
in B+. As StabG(c+) = B+ formula (∗) is clear. Because of property (∗) the map κ is well
defined, i.e. if xU−w = x

′U−w then x(w(c+)) = x
′(w(c+)).

Suppose that xU−w and yU−v are i-adjacent, i.e. w
i = vi and xU−wi = yU−wi . From

wi = vi it follows that w(c+) and v(c+) are i-adjacent and belong to the i-panel containing
wi. From y−1x ∈ U−wi we deduce that y

−1x stabilizes wi(c+), hence also stabilizes the i-panel
through wi(c+). This means that y

−1x(w(c+)) and v(c+) are i-adjacent, hence also x(w(c+))
and y(v(c+)) are i-adjacent. This completes the proof of the lemma. 2

4. Properties of κ

In this paragraph we show that κ is a 2-covering from C− onto (∆,W, S, d). We start by
showing that κ is surjective. For this we need an additional property of Moufang buildings.

Proposition 1. Given a Moufang building (∆,W, S, d) with standard apartment Σ0, then
the orbit of Σ0 (as a set of chambers) under B− is the full building ∆, i.e. B−(Σ0) = ∆.

Proof. The proposition follows from the decomposition G = B−WB+ regarded the fact that
{w(c+)|w ∈ W} = Σ0. First we show that G = ∪(B−wB−)w∈W .
Using Lemma 4 we write:

B−siB−wB− = B−siB−wwB−.

Two cases occur:

(1) l(siw) > l(w).
Then siB−wsi ⊂ B− and

B−siB−wB− = B−(siB−wsi)siwB− = B−siwB−.
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(2) l(siw) < l(w).
Hence

B−siB−wB− = B−siB−sisiwB−

⊂ {B−siB−, B−}siwB−
⊂ B−wB− ∪B−siwB−.

From this one deduces that ∪(B−wB−)w∈W = G.
Then we show that for every w ∈ W and si ∈ S

B−siB−wB+ ⊆ B−swB+ ∪B−wB+.

As above again two cases can occur:

(1) l(siw) < l(w).
This means that the root w−1(αi) is negative, hence

B−siB−wB+ = B−siB−αiwB+

= B−siw(w
−1B−αiw)B+

= B−siwB+.

(2) l(siw) > l(w).
Then we use the above equation and calculate:

B−siB−wB+ = B−siB−sisiwB+

⊂ B−{1, si}B−siwB+
= B−siwB+ ∪B−wB+.

It follows that B−WB+ = G. 2

Corollary 1. The morphism κ is surjective.

Proof. Consider an arbitrary chamber a in ∆. Then by Proposition 1 we have a = b−v(c+)
for some b− ∈ B− and v ∈ W . As for every root α, H ⊂ StabG(Uα) we can write b− as u−h
for u− ∈ U− and h ∈ H. Because H fixes every chamber of Σ0 we can write a = u−v(c+). If
we consider the element u−U−v of C− then clearly κ(u−U−v) = a. 2

The only problem that remains to prove is that κ is a 2-covering.

Theorem 3. The map κ is 2-covering from C− to ∆, i.e. it sends spherical rank 2 residues
isomorphically onto spherical rank 2 residues.

Proof. To prove this we remark that the action of U− on C− and ∆ is compatible with κ,
i.e. for all xU−w ∈ C− and u− ∈ U− we have κ(u−xU−w) = u−κ(xU−w). In order to prove
that κ is a 2-covering, it will then be enough to show that κ induces an isomorphism between
every {i, j} residue containing a chamber U−w, with w an {i, j}-anti-reduced element in W ,
and its image in ∆. To see this we remark that every rank 2 residue in C− always contains
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a chamber xU−w where w is {i, j}-anti-reduced and x ∈ U−. The morphism determined by
x−1 will then send the given rank 2 residue to another rank 2 residue that contains U−w.
Fix a certain rank 2 residue in C− of spherical type {i, j} (hence mij < ∞). Call this

residue Rij−. Suppose that R
ij
− contains a chamber U−w with w {i, j}-anti-reduced. As U−w ∈

Rij−, we see that w(c+) ∈ κ(R
ij
−). If we denote by R

ij the {i, j}-residue in ∆ which contains
w(c+) then we have to show that κ induces an isomorphism between R

ij
− and R

ij.

(1) The map κ induces a surjection between Rij− and R
ij.

This will follow from the fact that κ induces a surjection between rank 1 residues. Consider
a fixed i ∈ I and a chamber a in ∆. Using Proposition 1 and the action of U− on ∆ we can
assume that a = v(c+), v ∈ W . Then every chamber of the i-residue containing a can be
written under the form v(uαisi(c+)) with uαi ∈ Uαi and αi > 0.
Two cases occur:

(i) l(vsi) < l(v).
Then vuαi = vuαiv

−1v with vuαiv
−1 ∈ Uv(αi). Granted the condition on v, one has Uv(αi) ⊂

U−vi . If we consider in C
− the chamber vuαiv

−1U−vsi , then this chamber is i-adjacent to U−v
and κ(vuαiv

−1U−v) = a.

(ii) l(vsi) > l(v).
Using Lemma 1, one starts by rewriting uαi as u−αisib−αi with u−αi ∈ U−αi and b−αi ∈ B−αi .
As we also know that sib−αisi ⊂ Bαi the chamber a coincides with vu−αi(c+). Because of the
condition on v we have that vu−αiv

−1 ∈ U−v(αi) ⊂ U−vi . Hence the chamber vu−αiv
−1U−vsi

is i-adjacent to U−v and κ(vu−αiv
−1U−vsi) = a.

This completes the proof that κ induces a surjection between rank 1 residues in C− and ∆.
Because rank 2 residues are connected it is clear that κ induces a surjection of Rij− onto R

ij.

(2) The morphism κ induces an injection of Ri,j− into R
ij.

Suppose that we have two chambers u′−U−w′ and u
′′
−U−w′′ in R

ij
− such that κ(u

′
−U−w′) =

κ(u′′−U−w′′). This means that u
′
−w
′(c+) = u

′′
−w
′′(c+) and both w

′ and w′′ belong to the {i, j}-
residue in W determined by w. Because of the conditions on w it is easy to check that both
u′− and u

′′
− belong to U−w. We rewrite the above equality as

(w−1u′−w)w
−1w′(c+) = (w

−1u′′−w)w
−1w′′(c+).

As both u′− and u
′′
− belong to U−w the elements w

−1u′−w and w
−1u′′−w belong to B+. Call

the first one b′+ and the second one b
′′
+, then we find

b′+w
−1w′(c+) = b

′′
+w
−1w′′(c+).

But this implies by the Bruhat decomposition of the group G (as we have a BN -pair in G)
that w−1w′ = w−1w′′, yielding w′ = w′′.

There remains to show that u′−U−w′ = u
′′
−U−w′′ .

From the equality u′−w
′(c+) = u

′′
−w
′(c+) one deduces that w

′−1u
′′−1
− u

′
−w
′ ∈ B+. The element

u
′′−1
− u

′
− is contained in U−w and we call it u−w. Then u−w satisfies w

′−1u−ww
′ ∈ B+. Consider

the set of positive roots sent by w−1 into negative roots, namely {γ1, . . . , γn}. Because
of the properties of w we can divide this set into two subsets (after possibly reordering)
{γ1, . . . , γl−1} t {γl, . . . , γn}. Here {γ1, . . . , γl−1} is the set of positive roots sent by w′ to a
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negative root and {γl, . . . , γn} is the set of remaining roots. With this notation in mind we
write u−w as u−w′u−r with u−w′ ∈ U−w′ and u−r = u−γl . . . u−γn . We rewrite the formula
w′−1u−ww

′ ∈ B+ as
w′−1u−rw

′ = w′−1u−1−w′w
′b̃+

for a b̃+ ∈ B+. The element w′−1u−rw′ apparently belongs to B+. Suppose that w =
w′ sjsi . . . sj︸ ︷︷ ︸

m terms

with l(w) = l(w′) + m. Then

w′−1{γl, . . . , γn} = {αj, sj(αi), . . . , sjsi . . . si(αj)}.

Hence we can write w′−1u−rw
′ as u−αju−sj(αi) . . . u−sjsi...si(αj) yielding that w

−1u−rw
′ ∈ U− ∩

B+. Now we look at the rank 2 building Γij determined by Bαi , B−αi , Bαj and B−αj (i.e.
the rank 2 building we get by considering the group 〈Bαi , Bαj , B−αi , B−αj〉 and the induced
BN -pair in it). It follows that w′−1u−rw

′ is inside the group generated by these four groups.
But w′−1u−rw

′ fixes the fundamental chamber cij+ in this polygon. Hence this element is
inside U ij− ∩ B

ij
+ where the groups B

ij
+ and B

ij
− are similarly as above. The proof that κ is a

2-covering will be done if we show the following lemma.

Lemma 6. If we are given a spherical rank 2 building with Weylgroup 〈s1, s2|(s1s2)m12〉 then

B+ ∩B− = H.

Proof. If we consider a spherical rank 2 Moufang building, the groups B+ and B− both have
a geometric meaning. Indeed, in the standard apartment Σ there will be two chambers c+
and c− such that the l(d(c+, c−)) is maximal in the Weylgroup. The group B+ will then be
the stabilizer of c+ in G, B− will be the stabilizer of c− and H will be the stabilizer of the
standard apartment in G. This implies in particular that B−∩B+ ⊆ H and as H ⊆ B+∩B−
we have

H = B+ ∩B−. 2

This lemma implies that w′u−rw
′−1 lies in H. Moreover by properties of spherical Moufang

buildings explained in [7] on pages 75 and 76 it follows that u−1r = 1. This yields u− ∈ U−w′
or u

′′−1
− u

′
− ∈ U−w′ , hence u

′′
−U−w′ = u

′
−U−w′ what we wanted to show. This completes the

proof of Theorem 3. 2

As already mentioned the group U− acts on both C− and ∆ in a way compatible with κ. This
implies that StabU−(a) = StabU−(κ(a)) with a ∈ C

−. If we do this for c+ then κ(1) = c+ and
StabU−(1) = 1 and StabU−(c+) = U− ∩ B+. This gives us U− ∩ B+ = {1}, which is a very
strong condition. Consider B− ∩ B+. Every element in this intersection can be written as
hu− for h ∈ H and u− ∈ U−. But then u− = 1 and the element is contained in H. As also
H ⊆ B− ∩B+ we find

B− ∩B+ = H.

Using the universal properties of buildings we get the following corollary.

Corollary 2. The chamber system C− is a building of type M isomorphic to (∆,W, S, d)
under κ.
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Proof. This follows from the results in [10]. It is shown in this paper that every building is
a universal object with respect to 2-coverings. This means that if we cover a building by a
chamber system, then this covering is necessarily an isomorphism. 2

Corollary 3. The pair (G,B−, N, S) is a BN-pair.

Proof. The proof is similar to the proof of Theorem 2 as Bα 6⊂ B−, ∀α > 0. 2

5. The relation O

We start from a Moufang building (∆,W, S, d). The set of all roots inW is given by Φ = {α}.
The rootgroups are denoted by Uα. We use notation as before. Then we know that there are
two BN -pairs involved, (G,B+, N, S) and (G,B−, N, S). The first BN -pair yields a building
(∆+,W, S, d+) isomorphic to (∆,W, S, d). From the second the building (∆−,W, S, d−) is
constructed. As the chambers of ∆+ and ∆− correspond to cosets of B+ respectively B− the
group G acts in a natural way on both buildings. Let c+ and c− be the chambers of ∆+ and
∆− corresponding to B+ and B−. We define the relation O ⊂ ∆+ ×∆− ∪∆− ×∆+ by the
following rules:

( (x+, y−) ∈ ∆+ ×∆−, (y−, x+) ∈ ∆− ×∆+)

(x+, y−) ∈ O
m

∃g ∈ G such that (g(x+), g(y−)) = (c+, c−)

(y−, x+) ∈ O
m

(x+, y−) ∈ O

We describe the relation O for rank 2 Moufang buildings.

Theorem 4. Suppose that (∆,W, S, d) is a rank 2 Moufang building of spherical type then
the relation O defines a twinning between ∆+ and ∆−.

Proof. As the building ∆ is of spherical type there exists a unique element w0 inW such that
l(w0) > l(w) ∀w ∈ W . We make the following construction. Set (∆1,W, S, d1) = (∆,W, S, d),
(∆2,W, S, d2) = (∆,W, S, w0dw0). Define a codistance function d

∗ between ∆1 and ∆2 by:

( (x1, x2) ∈ ∆1 ×∆2, (x2, x1) ∈ ∆2 ×∆1)

d∗(x1, x2) = w0d(x1, x2)

d∗(x2, x1) = d(x1, x2)w0.

It follows from Proposition 1 in [12] that the couple ((∆1,W, S, d1), (∆2,W, S, d2)) with the
codistance function d∗ is a twin building. It can be shown that this is the only possible
twinning on ∆.
We know that two BN -pairs (G,B+, N, S) and (G,B−, N, S) can be constructed. Each of
theseBN -pairs has an associated building. Denote them by (∆+,W, S, d+) and (∆−,W, S, d−).
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We give a short description of (∆+,W, S, d+). The set of chambers ∆+ is given by the set
{gB+ | g ∈ G}. Let s ∈ S then g1B+ is s-adjacent to g2B+ if and only if B+g

−1
1 g2B+ =

B+sB+. To define the distance between two chambers one uses the Bruhat decomposition of
the group G. This means that the group G has a decomposition

G = t(B+wB+)w∈W .

Moreover if B+w
′B+ = B+w

′′B+ then it follows that w
′ = w′′. For two chambers g1B+ and

g2B+ of ∆+ the distance d(g1B+, g2B+) is defined as the unique element v ∈ W such that

B+g
−1
1 g2B+ = B+vB+.

Using standard arguments it follows that (∆+,W, S, d+) is a building. The same can be
done for (G,B−, N, S). This gives the building (∆−,W, S, d−). From the construction of
(∆+,W, S, d+) it can be proved that it is isomorphic to (∆,W, S, d). The isomorphism is
given by

ϕ1 : ∆+ → ∆

ϕ1(gB+) 7→ g(c+).

In a similar way (∆−,W, S, d−) is isomorphic to (∆2,W, S, d2).
Consider the group B−. As we work in a spherical building it follows that B− = 〈U−w0 , H〉.
Hence w0B+w0 = B−. By this we can map every chamber of ∆− to a chamber of ∆+.
Namely every hB− can be written as hw0B+w0. If we send every hB− to hw0B+ this is well
defined. Call this map Oppw0 . The composition ϕ2 = Oppw0 ◦ϕ1 defines a bijection of ∆− to
∆. Moreover ϕ2 sends s-adjacent chambers to w0sw0-adjacent chambers. This implies that
(∆−,W, S, d−) is isomorphic to (∆2,W, S, w0dw0) under ϕ2. The explicit formula for ϕ2 is
given by

ϕ : ∆− → ∆2
hB− 7→ hw0(c+).

To finish the proof we show the following equivalence:
((x+, y−) ∈ ∆+ ×∆−)

(x+, y−) ∈ O ⇔ d
∗(ϕ1(x+), ϕ2(y−)) = 1.

(1) If (x+, y−) ∈ O then x+ = gB+ and y− = gB−, with g ∈ G. Hence ϕ1(x+) = g(c+) and
ϕ2(y−) = gw0(c+). We calculate

d(g(c+), gw0(c+)) = d(c+, w0(c+))

= d(c+, w0c+)

= w0.

This implies that d∗(ϕ1(x+), ϕ2(y−)) = 1.
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(2) Suppose gB+ and hB− are such that d
∗(ϕ1(gB+), ϕ2(hB−)) = 1. This means that

d(g(c+), hw0(c+)) = w0. Using the isomorphism ϕ1 and the Bruhat decomposition of G
if follows that

hb− = gb+

for appropriate b− ∈ B− and b+ ∈ B+. This means that (gB+, hB−) ∈ O. 2

Remains to prove the same result for non-spherical rank 2 Moufang buildings. Let (Γ,W, S, d)
be such a building. We consider a graph whose vertex set V is the set of all residues in Γ.
Two vertices are joined by an edge if and only if they lie in a chamber. In this way we get
a bipartite graph (V,E), which turns out to be a tree. It can also be easily checked that
every isomorphism of Γ as building induces an isomorphism of the tree (V,E). For more
information about non-spherical rank 2 Moufang buildings we refer to [8]. The result we will
prove is:

Theorem 5. Given a non-spherical rank 2 Moufang building (Γ,W, S, d) then the relation
O defines the opposition relation of a twinning between ∆+ and ∆−.

Proof. First we fix some notations and terminology.
Denote W = {s, t}. The chambers of Γ will be considered as doubletons {x, x′}, where x and
x′ stand for the simplices in the chamber {x, x′}. We assume that the standard chamber is

given by c0 = {x0, x1} and the standard apartment Σ0 is the sequence . . . c−2
t
∼ c−1

s
∼ c0

t
∼

c1
s
∼ c2 . . .. Write ci = {xi, xi+1}, ∀i. Then the standard apartment Σ0 corresponds to a

sequence . . . x−2 ∼ x−1 ∼ x0 ∼ x1 ∼ x2 . . . in the tree (V,E).
As to the Moufang structure on Γ we keep the notations from above.

Let α+i be the positive root of Σ0 such that xi lies on its boundary. Similarly α
−
i is the negative

root of Σ0 such that xi lies on ∂α
−
i . By calculations already made there are two BN -pairs

involved: (G,B+, N, S) and (G,B−, N, S). They give rise to two buildings (∆+,W, S, d+)
and (∆−,W, S, d−). To prove that O is the opposition relation of a twinning between ∆+
and ∆− we refer to Proposition 5.4. of [2]. In order to use this proposition we show the
following:

(i) The relation O defines a 1-twinning between ∆+ and ∆−.

(ii) For any four chambers y−, c
1
− and c

2
− in ∆− and e+ ∈ ∆+ such that (e+, c

1
−) ∈ O,

(e+, c
2
−) ∈ O and

l(d−(c
1
−, y−)) = l(d−(c

2
−, y−))

= min{l(d−(a−, y−))|(e+, a−) ∈ O}

we have d−(c
1
−, y−) = d−(c

2
−, y−).

(iii) For any four chambers y− ∈ ∆−, y1+, y
2
+, e+ ∈ ∆+ such that (y

1
+, y−) ∈ O, (y

2
+, y−) ∈ O

and

l(d+(e+, y
1
+)) = l(d+(e+, y

2
+))

= min{l(d+(a+, c+))|(a+, y−) ∈ O}

we have d+(y
1
+, e+) = d+(y

2
+, e+).



354 V. Vermeulen: Moufang Buildings and Twin Buildings

(iv) Given chambers y−, a− ∈ ∆−, e+ and b+ ∈ ∆ such that a− is as in (ii), l(d(a−, y−)) is
minimal, b+ is as in (iii) and l(d(d+, b+)) is minimal then

d+(e+, b+) = d(a−, y−).

If (i), (ii), (iii) and (iv) are satisfied we define for every x ∈ ∆ε (ε ∈ {1,−1}) a codistance
function dx : ∆− 7→ W . For every z ∈ ∆−ε, dx(z) equals d−ε(x−ε, z) with (x, x−ε) ∈ O such
that l(d(x−ε, z) is mimimal as in (ii) or (iii). One easily checks this defines a codistance
funtion for every x.
Remains to check these 4 properties:

(1) Because of the definition of O it suffices to check that O defines a 1-twinning between
the s-residue Rs+ in ∆+ containing c+ and the s-residue R

s
− in ∆− containing c−. We check

that for all the chambers x− of R
s
− satisfy (x−, c+) ∈ O except s(c−).

As the stabilizer of Rs+ and R
s
− acts transitively on the chambers of these residues this will

be enough to ensure that O defines a 1-twinning between Rs+ and R
s
−. Every element of R

s
−

has the form u−αss(c−) for u−αs ∈ U−αs . Suppose that u−αs 6= 1. Granted the properties
of the BN -pair (G,B−, N, S) we can write u−αssc− = uαssu

′
αs
sc− for appropriate uαs and

u′αs ∈ Uαs . But then u−αss(c−) = uαs(c−). And (c+, u−αs(c−)) = (uαs(c+), uαs(c−)). Hence
(c+, u−αs(c−)) ∈ O.
Consider the chamber s(c−). If (c+, s(c−)) ∈ O then there would exist a g ∈ G such that
g(c+) = c+ and g(s(c−)) = c−. But then g ∈ B+ and gs ∈ B− or s = b+b− for b+ ∈ B+ and
b− ∈ B−. This contradicts the fact that s stabilizes the standard apartment Σ0.
Hence (s(c−), c+) 6∈ O.
Granted the action of G on ∆+ and ∆− we may assume that d+ = c+ in (2), (3) and (4).

(2) Suppose that y−, c
1
− and c

2
− are chambers as in (ii) with (c+, y−) 6∈ O. Then y− = gB−,

c1− = b
1
+B− and c

2
− = b

2
+B− for g ∈ G, b

i
+ ∈ B+. Let d−(c

1
−, y−) = w1 and d−(c

2
−, y−) = w2.

It follows from the assumptions that l(w1) = l(w2).
Assume w1 6= w2.
Because we work in a non-spherical Coxeter group two possibilities occur. Namely w21 =
w22 = 1 or w

2
1 6= 1 and w

2
2 6= 1.

Expressing that the distances from c1− and c
2
− to y− are w1 and w2 gives:

gB− = b1+b
1
−w1B−

= b2+b
2
−w2B−

for bi− ∈ B−.
Hence

b1+b
1
−w1 = b

2
+b
2
−w2b−

for b− ∈ B−.
But then

(b2+)
−1b1+ = b

2
−w2b−w

−1
1 (b

1
−)
−1.

If w21 = w
2
2 = 1 then

b2−w2b−w
−1
1 (b

1
−)
−1 = b′−w2w1b

′′
−
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for b′−, b
′′
− ∈ B−.

If w21 6= 1 and w
2
2 6= 1 then w1w2 = 1 and

b2−w2b−w
−1
1 (b

1
−)
−1 = b′−w

2
2b
′′
−

for b′−, b
′′
− ∈ B−.

In all cases we find that if w1 6= w2 then for a v 6= 1, b′− and b
′′
− ∈ B−

b′−vb
′′
− ∈ B+,

with l(v) = 0 mod 2. This means that b′−vb
′′
− has to fix the chamber c+. Write b

′
−vb

′′
− =

u′−vu
′′
−h for h ∈ H. Then u

′
−vu

′′
− has to fix c+.

Two cases occur:

(a) u′′− = 1.
Then we have u′−(v(x0) = x0 and u

′
−(v(x1)) = x1. This is only possible if v = 1 and u

′
− = 1.

(b) The element u′′− 6= 1.
Suppose that W = {s, t}, ∂αs = x0, ∂αt = x1.
If u′′− ∈ U−αs we find that u

′
−vu

′′
−(x0) = x0. Granted the condition on u

′′
− this implies that

u′−(v(x0)) = x0. Again a contradiction.
Hence there exists an index j such that xj ∼ y1 ∼ y2 ∼ . . . ∼ u′′−(x0) ∼ u

′′
−(x1) is the gallery

in Γ from Σ0 to u
′′
−(x1).

Suppose that j < 0 (we already excluded the case where j = 0).
Because l(v) = 0 mod 2, v acts as a translation of Σ0, i.e.

v(xl) = xl+k0 , ∀l

for a fixed k0 ∈ Z.
Let v(xj) = xm.
If m ≤ 0 then d+(xj, u′′−(x0)) 6= d+(xm, x0). One easily checks that there cannot exist a
u′− ∈ U− with u

′
−(vu

′′
−(x0)) = x0.

If m ≥ 1 then
d+(xm, vu

′′
−(x0)) < d+(xm, vu

′′
−(x1)).

Using this fact one also checks that for no u′− ∈ U− we can have u
′
−(vu

′′
−(x0)) = x0.

If j > 0 one uses similar arguments to deduce a contradiction.

(3) If (y1+, y−) and (y
2
+, y−) ∈ O then

y− = g(c−)

y1+ = g(c+)

y2+ = gb−(c+)

for g ∈ G and b− ∈ B−.
A symmetric proof completely analogous to (2) gives d+(y

1
+, c+) = d+(y

2
+, c+).

(4) Let y− and c
1
− be chambers of ∆− with (c+, c

1
−) ∈ O and d(c

1
−, y−) being minimal as in (ii).

Then we look for a chamber y+ in ∆+ such that (y+, y−) ∈ O and d+(c+, y+) = d−(c1−, y−).



356 V. Vermeulen: Moufang Buildings and Twin Buildings

This will imply (iv). Without loss of generality we can assume that c1− = c−. Let the minimal
gallery in ∆ between c− and y− be

y0− = c−
s
∼ y1−

t
∼ y2−

s
∼ . . .

t
∼ ym− = y−

If y1− = u−αss(c−) let y
1
+ be u−αss(c+). If y

2
− = u−αttu−αss(c−) let y

2
+ be u−αttu−αss(c+).

If we do this for all yi− we get a gallery

y0+ = c+
s
∼ y1+

t
∼ y2+

s
∼ . . .

t
∼ ym+

from c+ to y
m
+ . One shows with a proof similar as in (2) that for no v ∈ W and b−, b

′
− ∈ B−

we can have that b−vb
′
− ∈ B+. This ensures us that all the y

j
+ are different. The gallery is

therefore non-stammering and d+(c+, y
m
+ ) = d−(c

1
−, y−). By construction we have (y+, y−) ∈

O.
This completes the proof that (i), (ii), (iii) and (iv) are satisfied for O. Hence O is the
opposition relation of a twinning between ∆+ and ∆−. 2

6. Constructing a 2-twinning

In this paragraph we will show that the building (∆,W, S, d) is half of a twin building using
a result of B. Mühlherr in [2]. We restate the main result of loc. cit.

Theorem 6. Let M be a Coxeter matrix over I, let (∆+,W, S, d+) and (∆−,W, S, d−) be
two thick buildings of type M and let O ⊆ (∆+ × ∆−) ∪ (∆− × ∆+) be a non-empty sym-
metric relation. Then O is the opposition relation of a twinning between (∆+,W, S, δ+) and
(∆−,W, S, δ−) if and only if the following condition is satisfied:
If J ⊆ I is of cardinality at most 2 and if R+ ⊆ ∆+ and R− ⊆ ∆− are J-residues, then
either O∩ ((R+×R−)∪ (R−×R+)) = ∅ or O∩ ((R+×R−)∪ (R−×R+)) is the opposition
relation of a twinning between R+ and R−.

We now have:

Theorem 7. Given a Moufang building (∆,W, S, d) with root groups (Uα)α∈Φ then ∆ is half
of a twin building, i.e. there exists a building (∆−,W, S, d−) and a codistance function d

∗

such that ((∆,W, S, d), (∆−,W, S, d−), d
∗) is a twin building.

Proof. By Theorem 2 and Corollary 3 we know that there are two BN -pairs involved. Namely
(G,B+, N, S) and (G,B−, N, S). The building (∆+,W, S, d+) associated to (G,B+, N, S) is
by construction isomorphic to ∆. We define the symmetric relation O between ∆+ and ∆−
as before. Consider si, sj ∈ S. Let R+sisj and R

−
sisj
be the {si, sj}-residues in ∆+ and ∆−

containing c+ and c− respectively. Then it follows from Theorem 4 and Theorem 5 that O
defines the opposition relation of a twinning between R+sisj and R

−
sisj
. By construction this

implies that O satisfies the conditions of Theorem 6. Hence O defines a twinning between
∆+ and ∆−. This means that ∆ ∼= ∆+ is half of a twin building. 2
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