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Abstract. Let H be a closed, noncompact subgroup of a simple Lie group G, such
that G/H admits an invariant Lorentz metric. We show that if G = SO(2, n), with
n ≥ 3, then the identity component H◦ of H is conjugate to SO(1, n)◦. Also, if
G = SO(1, n), with n ≥ 3, then H◦ is conjugate to SO(1, n− 1)◦.

1. Introduction

Definition 1.1.
• A Minkowski form on a real vector space V is a nondegenerate quadratic form that is
isometric to the form −x21 + x

2
2 + · · ·+ x

2
n+1 on Rn+1, where dimV = n+ 1 ≥ 2.

• A Lorentz metric on a smooth manifold M is a choice of Minkowski metric on the
tangent space TpM , for each p ∈M , such that the form varies smoothly as p varies.

A. Zeghib [14] classified the compact homogeneous spaces that admit an invariant Lorentz
metric. In this note, we remove the assumption of compactness, but add the restriction that
the transitive group G is almost simple. Our starting point is a special case of a theorem of
N. Kowalsky.

Theorem 1.2. (N. Kowalsky, cf. [11, Thm. 5.1]) Let G/H be a nontrivial homogeneous space
of a connected, almost simple Lie group G with finite center. If there is a G-invariant Lorentz
metric on G/H, then either

1) there is also a G-invariant Riemannian metric on G/H; or
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2) G is locally isomorphic to either SO(1, n) or SO(2, n), for some n.

As explained in the following elementary proposition, it is easy to characterize the homo-
geneous spaces that arise in Conclusion (1) of Theorem 1.2, although it is probably not
reasonable to expect a complete classification.

Notation 1.3. We use g to denote the Lie algebra of a Lie group G, and h ⊂ g to denote
the Lie algebra of a Lie subgroup H of G.

Proposition 1.4. (cf. [11, Thm. 1.1]) Let G/H be a homogeneous space of a Lie group G,
such that g is simple and dimG/H ≥ 2. The following are equivalent.

1) The homogeneous space G/H admits both a G-invariant Riemannian metric and a
G-invariant Lorentz metric.

2) The closure of AdGH is compact, and leaves invariant a one-dimensional subspace of g
that is not contained in h.

The two main results of this note examine the cases that arise in Conclusion (2) of Theo-
rem 1.2. It is well known [10, Egs. 2 and 3] that SO(1, n)◦/ SO(1, n − 1)◦ and SO(2, n)◦/
SO(1, n)◦ have invariant Lorentz metrics. Also, for any discrete subgroup Γ of SO(1, 2), the
Killing form provides an invariant Lorentz metric on SO(1, 2)◦/Γ. We show that these are
essentially the only examples.
Note that SO(1, 1) and SO(2, 2) fail to be almost simple. Thus, in 1.2(2), we may assume

• G is locally isomorphic to SO(1, n), and n ≥ 2; or

• G is locally isomorphic to SO(2, n), and n ≥ 3.

Proposition 2.4′. Let G be a Lie group that is locally isomorphic to SO(1, n), with n ≥ 2.
If H is a closed subgroup of G, such that

• the closure of AdGH is not compact, and

• there is a G-invariant Lorentz metric on G/H,

then either

1) after any identification of g with so(1, n), the subalgebra h is conjugate to a standard
copy of so(1, n− 1) in so(1, n), or

2) n = 2 and H is discrete.

Theorem 3.5′. Let G be a Lie group that is locally isomorphic to SO(2, n), with n ≥ 3. If
H is a closed subgroup of G, such that

• the closure of AdGH is not compact, and

• there is a G-invariant Lorentz metric on G/H,

then, after any identification of g with so(2, n), the subalgebra h is conjugate to a standard
copy of so(1, n) in so(2, n).

N. Kowalsky announced a much more general result than Theorem 3.5′ in [10, Thm. 4], but it
seems that she did not publish a proof before her premature death. She announced a version
of Proposition 2.4′ (with much more general hypotheses and a somewhat weaker conclusion)
in [10, Thm. 3], and a proof appears in her Ph.D. thesis [9, Cor. 6.2].
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Remark 1.5. It is easy to see that there is a G-invariant Lorentz metric on G/H if and only
if there is an (AdGH)-invariant Minkowski form on g/h. Thus, although Proposition 2.4

′

and Theorem 3.5′ are geometric in nature, they can be restated in more algebraic terms. It
is in such a form that they are proved in §2 and §3.

Proposition 2.4′ and Theorem 3.5′ are used in work of S. Adams [3] on nontame actions on
Lorentz manifolds. See [16, 11, 4, 15, 1, 2] for some other research concerning actions of Lie
groups on Lorentz manifolds.

Acknowledgements. I am grateful to Scot Adams for suggesting this problem and providing
historical background. I would like to thank the Isaac Newton Institute for Mathematical
Sciences for providing the stimulating environment where this work was carried out, and
I would also like to thank an anonymous referee for pointing out a misleading passage in
the original manuscript. The research was partially supported by a grant from the National
Science Foundation (DMS-9801136).

2. Homogeneous spaces of SO(1, n)

The following lemma is elementary.

Lemma 2.1. Let π be the standard representation of g = so(1, k) on Rk+1, and let g =
k+ a+ n be an Iwasawa decomposition of g.

1) The representation π has only one positive weight (with respect to a), and the corre-
sponding weight space is 1-dimensional.

2) There are subspaces V and W of Rk+1, such that
(a) dim(Rk+1/V ) = 1;
(b) dimW = 1;

(c) π(n)V ⊂ W ;

(d) for all nonzero u ∈ n, we have π(u)2Rk+1 = W ; and
(e) for all nonzero u ∈ n and v ∈ Rk+1, we have π(u)2v = 0 if and only if v ∈ V .

Corollary 2.2. Let h be a subalgebra of a real Lie algebra g, let Q be a Minkowski form on
g/h, and define π : NG(h)→ GL(g/h) by π(g)(v + h) = (AdG g)v + h.

1) Suppose T is a connected Lie subgroup of G that normalizes H, such that π(T ) ⊂ SO(Q)
and AdG T is diagonalizable over R. Then, for any ordering of the T -weights on g, the
subalgebra h contains codimension-one subspaces of both g+ and g−, where g+ is the
sum of all the positive weight spaces of T , and g− is the sum of all the negative weight
spaces of T .

2) If U is a connected Lie subgroup of G that normalizes H, such that π(U) ⊂ SO(Q) and
AdG U is unipotent, then there are subspaces V/h and W/h of g/h, such that

(a) dim(g/V ) = 1;

(b) dim(W/h) = 1;

(c) [V, u] ⊂ W ;
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(d) for each u ∈ u, either W = h+ (adg u)2g, or [g, u] ⊂ h; and

(e) for all u ∈ u, we have (adg u)2V ⊂ h.

For ease of reference, let us record the following well known fact from the theory of real
algebraic groups.

Lemma 2.3. Let H be a Zariski closed, noncompact subgroup of GL(m,R), for some m. If
H does not contain any nontrivial hyperbolic elements, then there exist a compact subgroup
M and a nontrivial unipotent subgroup U , such that H =M n U .

Proof. The algebraic Levi decomposition [13, Thm. 6.4, p. 286], [7, Prop. 8.4.2, p. 117]
provides Zariski closed subgroups M and U of H, such that
• H =M n U ;
• M is reductive; and

• U is unipotent.
Because M is reductive and, being a subgroup of H, does not contain hyperbolic elements,
we know that M is compact [5, Cor. 9.4, p. 127]. However, M n U = H is not compact, so
this implies that U cannot be compact; hence, U is nontrivial. �

Proposition 2.4. Let H be a Lie subgroup of G = SO(1, n), with n ≥ 2, such that
• the closure of H is not compact; and

• there is an (AdGH)-invariant Minkowski form on g/h.
Then either
1) H◦ is conjugate to a standard copy of SO(1, n− 1)◦ in SO(1, n), or

2) n = 2 and H◦ is trivial.

Proof. Let H be the Zariski closure of H, and note that the Minkowski form is also in-
variant under AdGH. Replacing H by a finite-index subgroup, we may assume H is Zariski
connected.
Let G = KAN be an Iwasawa decomposition of G.

Case 1. Assume n ≥ 3 and A ⊂ H. From Corollary 2.2(1) , we see that h contains
codimension-one subspaces of both n and n−. (Note that this implies H◦ is nontrivial.)
This implies that H is reductive. (Because (H ∩ N)◦ unipH is a unipotent subgroup that
intersects N nontrivially (and R-rankG = 1), it must be contained in N , so unipH ⊂ N .
Similarly, unipH ⊂ N−. Therefore unipH ⊂ N ∩ N− = e.) Then, since H contains a
codimension-one subgroup of N , and since A ⊂ H, it follows that H is conjugate to either
SO(1, n− 1) or SO(1, n). Because H◦ is a nontrivial, connected, normal subgroup of H, we
conclude that H◦ is conjugate to either SO(1, n − 1)◦ or SO(1, n)◦. Because g/h 6= 0 (else
dim g/h = 0 < 2, which contradicts the fact that there is a Minkowski form on g/h), we see
that H◦ is conjugate to SO(1, n− 1)◦.

Case 2. Assume n ≥ 3 and H does not contain any nontrivial hyperbolic elements. From
Lemma 2.3, we know there exist a compact subgroup M and a nontrivial unipotent sub-
group U , such that H =M n U . Replacing H by a conjugate, we may assume, without loss
of generality, that U ⊂ N .
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Let us show, for every nonzero u ∈ u, that [g, u] 6⊂ h. From the Morosov Lemma [8,
Thm. 17(1), p. 100], we know there exists v ∈ g, such that [v, u] is hyperbolic (and nonzero).
If [v, u] ∈ h, this contradicts the fact that H does not contain nontrivial hyperbolic elements.
Let V/h and W/h be subspaces of g/h as in Corollary 2.2(2). Because (adg u)

2g = n for
every nonzero u ∈ n, we have W = n+h (see 2.2(2d)), so dim n/(h∩n) = 1 (see 2.2(2b)) and

[u, V ] ⊂ W = n+ h ⊂ n+ h = n+m (2.5)

(see 2.2(2c)).
Assume, for the moment, that n ≥ 4. Then

dim u+ dim(V ∩ n−) ≥ dim(h ∩ n) + dim(V ∩ n−)

≥ (dim n− 1) + (dim n− − 1)

= (n− 2) + (n− 2)

≥ n

> dim n.

This implies that there exist u ∈ u and v ∈ V ∩ n−, such that 〈u, v〉 ∼= sl(2,R), with [u, v]
hyperbolic (and nonzero). This contradicts the fact that m+ n has no nontrivial hyperbolic
elements.
We may now assume that n = 3. For any nonzero u ∈ n, we have

dim[u, V ] ≥ dim[u, g]− 1 = dim n+ 1 > dim n,

so [u, V ] 6⊂ n. Then, from (2.5), we conclude that m 6= 0, so m acts irreducibly on n. This
contradicts the fact that h ∩ n is a codimension-one subspace of n that is normalized by m.

Case 3. Assume n = 2. We may assume H◦ is nontrivial (otherwise Conclusion (2) holds).
We must have dim g/h ≥ 2, so we conclude that dimH◦ = 1 and dim g/h = 2. Because
SO(1, 1) consists of hyperbolic elements, this implies that AdG h acts diagonalizably on g/h,
for every h ∈ H. Therefore H◦ is conjugate to A, and, hence, to SO(1, 1)◦. �

3. Homogeneous spaces of SO(2, n)

Theorem 3.1. (Borel-Tits [6, Prop. 3.1]) Let H be an F -subgroup of a reductive algebraic
group G over a field F of characteristic zero. Then there is a parabolic F -subgroup P of G,
such that unipH ⊂ unipP and H ⊂ NG(unipH) ⊂ P .

Notation 3.2. Let k = bn/2c. Identifying Ck+1 with R2k+2 yields an embedding of SU
(
1, k
)

in SO(2, 2k). Then the inclusion R2k+2 ↪→ R2k+3 yields an embedding of SU
(
1, k
)
in SO(2,

2k + 1). Thus, we may identify SU
(
1, bn/2c

)
with a subgroup of SO(2, n).

We use the following well-known result to shorten one case of the proof of Theorem 3.5.

Lemma 3.3. ([12, Lem. 6.8]) If L is a connected, almost-simple subgroup of SO(2, n), such
that R-rankL = 1 and dimL > 3, then L is conjugate under O(2, n) to a subgroup of either
SO(1, n) or SU

(
1, bn/2c

)
.
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Corollary 3.4. Let L be a connected, reductive subgroup of G = SO(2, n), such that
R-rankL = 1. Then dimU ≤ n− 1, for every connected, unipotent subgroup U of L.
Furthermore, if dimU = n− 1, then either
1) L is conjugate to SO(1, n)◦; or

2) n is even, and L is conjugate under O(2, n) to SU(1, n/2).

Theorem 3.5. Let H be a Lie subgroup of G = SO(2, n), with n ≥ 3, such that

• the closure of H is not compact, and

• there is an (AdGH)-invariant Minkowski form on g/h.

Then H◦ is conjugate to a standard copy of SO(1, n)◦ in SO(2, n).

Proof. Let H be the Zariski closure of H, and note that the Minkowski form is also in-
variant under AdGH. Replacing H by a finite-index subgroup, we may assume H is Zariski
connected.
Let G = KAN be an Iwasawa decomposition of G. For each real root φ of g (with respect

to the Cartan subalgebra a), let gφ be the corresponding root space, and let projφ : g → gφ
and projφ⊕−φ : g → gφ + g−φ be the natural projections. Fix a choice of simple real roots α
and β of g, such that dim gα = 1 and dim gβ = n − 2 (so the positive real roots are α, β,
α + β, and α + 2β). Replacing N by a conjugate under the Weyl group, we may assume
n = gα + gβ + gα+β + gα+2β. From the classification of parabolic subgroups [5, Prop. 5.14,
p. 99], we know that the only proper parabolic subalgebras of g that contain ng(n) are

ng(n), pα = ng(n) + g−α, and pβ = ng(n) + g−β. (3.6)

Case 1. Assume h contains nontrivial hyperbolic elements. Let t = h ∩ a. Replacing H by a
conjugate, we may assume t 6= 0.

Subcase 1.1. Assume t ∈ {ker(α+ β), ker β}.

Subsubcase 1.1.1. Assume H is reductive. We may assume t = ker(α+β) (if necessary, replace
H with its conjugate under the Weyl reflection corresponding to the root α). Then, from
Corollary 2.2(1), we see that h contains a codimension-one subspace of gα+2β + gβ + g−α.
(Note that this implies H◦ is nontrivial.)
Let n′ = gα+β+gα+2β+gβ+g−α, so n

′ is the Lie algebra of a maximal unipotent subgroup
of G. (In fact, n′ is the image of n under the Weyl reflection corresponding to the root α.)
From the preceding paragraph, we know that

dim(h ∩ n′) ≥ dim(gα+2β + gβ + g−α)− 1 = n− 1.

Therefore, Corollary 3.4 implies that H is conjugate (under O(2, n)) to either SO(1, n) or
SU(1, n/2). It is easy to see that H is not conjugate to SU(1, n/2). (See [12, proof of
Thm. 1.5] for an explicit description of su(1, n/2) ∩ n. If n is even, then n > 3, so su(1, n/2)
does not contain a codimension-one subspace of any (n − 2)-dimensional root space, but h
does contain a codimension-one subspace of gβ.) Therefore, we conclude that H is conjugate
to SO(1, n). Then, because H◦ is a nontrivial, connected, normal subgroup of H, we conclude
that H◦ = (H)◦ is conjugate to SO(1, n)◦.
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Subsubcase 1.1.2. Assume H is not reductive. Let P be a maximal parabolic subgroup of G
that contains H (see Theorem 3.1). By replacing P and H with conjugate subgroups, we may
assume that P contains the minimal parabolic subgroup NG(N). Therefore, the classification
of parabolic subalgebras (3.6) implies that P is either Pα or Pβ.

Subsubsubcase 1.1.2.1. Assume t = ker(α + β). From Corollary 2.2(1), we see that h (and
hence also p) contains codimension-one subspaces of gα+2β + gβ + g−α and g−α−2β + g−β +
gα. Because pα does not contain such a subspace of g−α−2β + g−β + gα, we conclude that
P = Pβ. Furthermore, because the intersection of pβ with each of these subspaces does
have codimension one, we conclude that h has precisely the same intersection; therefore
(gα+2β + gβ) + (g−β + gα) ⊂ h. Hence h ⊃ [gα, gβ] = gα+β. We now have

(adg gα+β)
2g = gα + gα+β + gα+2β ≡ 0 (mod h),

so Corollary 2.2(2d) implies

h ⊃ [g, gα+β] ⊃ [g−α−β, gα+β] ⊃ ker β.

This contradicts the fact that h ∩ a = t = ker(α+ β).

Subsubsubcase 1.1.2.2. Assume t = ker β. From Corollary 2.2(1), we see that h (and hence
also p) contains a codimension-one subspace of g−α + g−α−β + g−α−2β. Because neither pα
nor pβ contains such a subspace, this is a contradiction.

Subcase 1.2. Assume t ∈ {kerα, ker(α+2β)}. We may assume t = kerα (if necessary, replace
H with its conjugate under the Weyl reflection corresponding to the root β). From Corol-
lary 2.2(1), we see that h contains a codimension-one subspace of gβ+gα+β+gα+2β. Because
any codimension-one subalgebra of a nilpotent Lie algebra must contain the commutator
subalgebra, we conclude that h contains gα+2β. Then we have

(adg gα+2β)
2g = gα+2β ≡ 0 (mod h),

so Corollary 2.2(2d) implies

h ⊃ [g, gα+2β] ⊃ gβ + gα+β + gα+2β.

Similarly, we also have h ⊃ g−β + g−α−β + g−α−2β. It is now easy to show that h ⊃ gφ for
every real root φ, so h = g. This contradicts the fact that g/h 6= 0.

Subcase 1.3. Assume t contains a regular element of a. Replacing H by a conjugate under
the Weyl group, we may assume that n is the sum of the positive root spaces, with respect
to t. Then, from Corollary 2.2(1), we see that h contains codimension-one subspaces of
both n and n−. Therefore, h contains codimension-one subspaces of gβ + gα+β + gα+2β and
g−β + g−α−β + g−α−2β, so the argument of Subcase 1.2 applies.

Case 2. Assume that h does not contain nontrivial hyperbolic elements. From Lemma 2.3,
we know there exist a compact subgroup M and a nontrivial unipotent subgroup U , such
that H =M n U . Choose subspaces V/h and W/h of g/h as in Corollary 2.2(2).
Let P be a proper parabolic subgroup of G, such that U ⊂ unipP and H ⊂ P (see

Theorem 3.1). Replacing H and P by conjugates, we may assume, without loss of generality,
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that P contains the minimal parabolic subgroup NG(N) (so unipP ⊂ N). From the classi-
fication of parabolic subalgebras (3.6), we know that there are only three possibilities for P .
We consider each of these possibilities separately.
First, though, let us show that

for every nonzero u ∈ u, we have [g, u] 6⊂ h. (3.7)

From the Morosov Lemma [8, Thm. 17(1), p. 100], we know there exists v ∈ g, such that
[v, u] is hyperbolic (and nonzero). If [v, u] ∈ h, this contradicts the fact that h does not
contain nontrivial hyperbolic elements.

Subcase 2.1. Assume P = NG(N) is a minimal parabolic subgroup of G.

Subsubcase 2.1.1. Assume projβ u 6= 0. Choose u ∈ u, such that projβ u 6= 0, and let
Z = (adg u)

2g−α−2β. (So dimZ = 1, proj−α Z 6= 0, and proj−α−β Z = 0.) From Corol-
lary 2.2(2d), we know that Z ⊂ W . Then, because proj−α h ⊂ proj−α p = 0, we conclude,
from Corollary 2.2(2b), that W = h+ Z.
Because W = h+ Z ⊂ p+ Z, we have proj−α−βW = 0. Therefore, because projβ u 6= 0,

we conclude, from Corollary 2.2(2c), that proj−α−2β V = 0, so Corollary 2.2(2a) implies
that V = ker(proj−α−2β). In particular, we have g−β ⊂ V , so Corollary 2.2(2c) implies
[g−β, u] ⊂ W . Therefore, we have

[g−β, projβ u] ⊂ [g−β, u+ (gα + gα+β + gα+2β)]

= [g−β, u] + [g−β, gα + gα+β + gα+2β]

⊂ W + (gα + gα+β)

= h+ Z + (gα + gα+β)

⊂ m+ n+ Z.

Because proj−α[g−β, projβ u] = 0, we conclude that [g−β, projβ u] ⊂ m + n. This contradicts
the fact that m+ n does not contain nontrivial hyperbolic elements.

Subsubcase 2.1.2. Assume projβ u = 0. Replacing H by a conjugate under N , we may assume

m ⊂ g0, so projβ h = 0.
We have u ⊂ gα + gα+β + gα+2β, so (adg u)2g ⊂ gα + gα+β + gα+2β for every u ∈ u. Thus,

Corollary 2.2(2d) implies W ⊂ (gα + gα+β + gα+2β) + h.
We have

projβ⊕−βW ⊂ projβ⊕−β(gα + gα+β + gα+2β) + projβ⊕−β h = 0,

so Corollary 2.2(2c) implies that projβ⊕−β
(
(adg u)V

)
= 0.

Subsubsubcase 2.1.2.1. Assume projα u 6= 0, for some u ∈ u. From the conclusion of the
preceding paragraph, we know that proj−β

(
(adg u)V

)
= 0. Because projβ u = 0 and projα 6=

0, this implies proj−α−β V = 0, so V = ker(proj−α−β) (see 2.2(2a)). In particular, g−α ⊂ V ,
so Corollary 2.2(2c) implies

[gα, g−α] ⊂ [u+ (gα+β + gα+2β), g−α] ⊂ [u, V ] + [gα+β + gα+2β, g−α]

⊂ W + gβ ⊂ h+ n ⊂ m+ n.
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This contradicts the fact that m+ n does not contain nontrivial hyperbolic elements.

Subsubsubcase 2.1.2.2. Assume projα+β u 6= 0, for some u ∈ u. From Subsubsubcase 2.1.2.1,
we may assume projα u = 0. Because 0 = projβ⊕−β

(
(adg u)V

)
has codimension ≤ 1 in

projβ⊕−β
(
(adg u)g

)
(see 2.2(2a)), which contains the 2-dimensional subspace projβ⊕−β

(
[u,

g−α−2β + g−α]
)
, we have a contradiction.

Subsubsubcase 2.1.2.3. Assume u = gα+2β. (This argument is similar to Subsubsubcase
2.1.2.1.) Because projβ

(
(adg u)V

)
= 0, we know that proj−α−β V = 0, so V = ker(proj−α−β)

(see 2.2(2a)). In particular, g−α−2β ⊂ V , so Corollary 2.2(2c) implies

[gα+2β, g−α−2β] ⊂ [u, V ] ⊂ W ⊂ h+ n ⊂ m+ n.

This contradicts the fact that m+ n does not contain nontrivial hyperbolic elements.

Subcase 2.2. Assume P = Pα. We may assume there exists x ∈ h, such that proj−α x 6= 0
(otherwise, H ⊂ NG(N), so Subcase 2.1 applies). Note that, because U ⊂ unipP , we have
projα u = 0.

Subsubcase 2.2.1. Assume projα+β u 6= 0. Choose u ∈ u, such that projα+β u 6= 0. Then
[x, u] ∈ [h, u] ⊂ u, and

[
[x, u], u

]
is a nonzero element of gα+2β, so we see that gα+2β ⊂ [u, u].

Because every unipotent subgroup of SO(1, k) is abelian, we conclude that adg gα+2β acts
trivially on g/h, which means h ⊃ [g, gα+2β]. This contradicts (3.7).

Subsubcase 2.2.2. Assume projα+β u = 0. We may assume, furthermore, that projα h 6= 0
(otherwise, by replacing H with its conjugate under the Weyl reflection corresponding to the
root α, we could revert to Subcase 2.1). Then, because [h, u] ⊂ u, we must have projβ u = 0.
Thus, u = gα+2β. From Corollary 2.2(2d), we have

W = [g, gα+2β, gα+2β] + h = gα+2β + h ⊂ u+ h = h,

so

W ∩ (gβ + gα+β) ⊂ h ∩ (gβ + gα+β) = (h ∩ n) ∩ (gβ + gα+β)

= u ∩ (gβ + gα+β) = gα+2β ∩ (gβ + gα+β) = 0.

On the other hand, from Corollary 2.2(2c), we know that W contains a codimension-one
subspace of [g, gα+2β], so W contains a codimension-one subspace of gβ + gα+β. This is a
contradiction.

Subcase 2.3. Assume P = Pβ. Note that, because U ⊂ unipP , we have projβ u = 0.
From Corollary 2.2(2d), we have

W = h+ (adg u)
2g ⊂ h+ (gα + gα+β + gα+2β)

= h+ unip pβ ⊂ (m+ u) + unip pβ = m+ unip pβ.

Subsubcase 2.3.1. Assume there is some nonzero u ∈ u, such that projα u = 0. Replacing H
by a conjugate (under G−β), we may assume projα+β u 6= 0.
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Let V ′ = V ∩ (g−α + g−α−β). Because V ′ contains a codimension-one subspace of g−α +
g−α−β (see Corollary 2.2(2a)), one of the following two subsubsubcases must apply.

Subsubsubcase 2.3.1.1. Assume there exists v ∈ V ′, such that proj−α−β v = 0. From Corol-
lary 2.2(2c), we have [u, v] ∈ W . Then, because [u, v] is a nonzero element of gβ, we conclude
that

0 6= W ∩ gβ ⊂ (m+ unip pβ) ∩ gβ = 0.

This contradicts the fact that M , being compact, has no nontrivial unipotent elements.

Subsubsubcase 2.3.1.2. Assume proj−α−β V
′ = g−α−β. For v ∈ V ′, we have proj0[u, v] =

[projα+β u, proj−α−β v]. Thus, there is some v ∈ V
′, such that proj0[u, v] is hyperbolic (and

nonzero). On the other hand, from Corollary 2.2(2c), we have [u, v] ∈ W = m + unip pβ.
This contradicts the fact that m ⊂ h does not contain nonzero hyperbolic elements.

Subsubcase 2.3.2. Assume projα u 6= 0, for every nonzero u ∈ u. Fix some nonzero u ∈ u.
Because dim uα = 1, we must have dim u = 1 (so u = Ru). Replacing H by a conjugate (un-
der Gβ), we may assume projα+β u = 0. Also, we may assume projα+2β u 6= 0 (otherwise, we
could revert to Subsubcase 2.3.1 by replacing H with its conjugate under the Weyl reflection
corresponding to the root β).
Let t = [u, g−α + g−α−2β]. Because 〈gα, g−α〉 and 〈gα+2β, g−α−2β〉 centralize each other,

we see that t = [gα, g−α] + [gα+2β, g−α−2β] is a two-dimensional subspace of g consisting
entirely of hyperbolic elements. Because V contains a codimension-one subspace of g−α +
g−α−2β (see Corollary 2.2(2a)), and [u, V ] ⊂ W (see Corollary 2.2(2c)), we see that W
contains a codimension-one subspace of t, so W contains nontrivial hyperbolic elements.
This contradicts the fact that W ⊂ m + unip pβ does not contain nontrivial hyperbolic
elements. �
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