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Abstract. In the late 70’s A. Kouchnirenko posed the problem of bounding from
above the number of positive real roots (that is, with positive coordinates) of a
system of k polynomial equations in k variables not in function of the degrees of
the polynomials (like in Bezout Theorem), but in function of the number of terms
involved, and he conjectured an upper bound. Although he never wrote this con-
jecture (as far as I know), many references to it can be found ([3] for one of the
first and [7] for one of the most recent). I recently learned that Kouchnirenko
himself was “100% sure” that his conjecture was false, since a colleague of his
once presented him a simple counterexample, a system of two threenomial (poly-
nomials with three terms) equations in two variables with 5 positive roots while
the conjecture predicts at most 4. His colleague tragically died soon afterward.
The counterexample was lost and Kouchnirenko never found it again. Here such a
counterexample is presented, maybe the lost counterexample found again . . .

Kouchnirenko’s Conjecture

Let f1 = f2 = · · · = fk = 0 be a system of polynomial equations in k variables and mi be the
number of terms of fi. The number of non-degenerate isolated positive roots of this system is
less or equal to (m1 − 1)(m2 − 1) · · · (mk − 1).

Remark 1. It is necessary to assume the roots to be non-degenerate in the sense that the
(real) zero set of each polynomial must have pure codimension one. Indeed, if we omit
this condition, then counterexamples where the zero set of one polynomial has codimension
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k − 1, where k > 2 are already known (B. Sturmfels [7] mentions one due to W. Fulton).
Such counterexamples use the well known equivalence over the reals of a system of equations
f1 = f2 = · · · = fk = 0 with one equation f 21 + f

2
2 + · · ·+ f

2
k = 0.

Remark 2. Of course all the roots, not only the positive ones, of a system of polynomials
f1 = f2 = · · · = fk = 0 are worth interest, but notice that the roots in any open octant
are equal to the roots in the open first octant of the system obtained by replacing in the
polynomials each variable xi by ±xi, accordingly, and the roots in any coordinate hyperplane
are the roots of the system obtained by replacing the corresponding xi by 0. This is one main
reason why Koushnirenko’s problem focuses on the positive roots only.

In particular the conjecture predicts that a system of two threenomial equations in two
variables has no more than four non-degenerate isolated positive roots.

Theorem. There exists a real number t0 > 0 such that, for any positive integers a and b
for which 0 < a/b ≤ t0, the following system of polynomial equations has five non-degenerate
isolated positive roots.

y2b + 1.1xb − 1.1xa = 0

x2b + 1.1yb − 1.1ya = 0

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
A1

A0

A’1

Figure 1. The two initial arcs of parabolas drawn by Mathematica

1. The idea of the proof

The zero sets C1 and C2 in R2≥0 of the following two threenomials

P1(x, y) = y2 + 1.1x− 1.1

P2(x, y) = x2 + 1.1y − 1.1
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are two arcs of parabolas which intersect transversally in three points as can be seen on
Figure 1 drawn by Mathematica. One can actually replace all the coefficients 1.1 by 1 + ε
for ε sufficiently small. Observe that C1 is symmetric to C2 with respect to the diagonal line
y = x.
The zero sets C1,t and C2,t in R2≥0 of the following deformations of P1 and P2:

P1,t(x, y) = y2 + 1.1x− 1.1xt

P2,t(x, y) = x2 + 1.1y − 1.1yt

form two continuous one-parameter families of diffeomorphic curves in the complement of a
small neighborhood of the coordinate axis if t remains small enough. Under that condition
C1,t and C2,t still intersect transversally in 3 points in this region. Moreover they also intersect
transversally in 2 points near the coordinate axis, bringing the number of intersection points
to 5. Taking t = a/b rational numbers, and rescaling (x, y) 7→ (xb, yb) yields systems of 2
threenomial equations with 5 positive roots.

2. The proof

2.1. Near the coordinate axis

To follow this idea, we must describe more precisely the neighborhood of the y-axis and the
behavior of C1,t in it. By symmetry we get a similar description for the neighborhood of the
x-axis and for C2,t in it. Let

h1,t(x) =
√
1.1xt − 1.1x defined on the closed interval [0, 1].

So C1,t is the graph of y = h1,t(x) (see Fig. 2), and let

g(t) = t1/1−t = exp
ln t

1− t
defined for t ≥ 0 with g(0) = 0 .

Clearly g(t) is continuous and increasing.

Lemma 1. For any t > 0, the function x 7→ h1,t(x) is continuous and has a unique maximum
at x = g(t) and two minima at x = 0 and x = 1 (see Fig. 2).

The function h1,t(x) is clearly continuous for 0 ≤ x ≤ 1, differentiable for 0 < x < 1 and
h′1,t(x) = 1.1(tx

t−1 − 1)/2
√
1.1xt − 1.1x. So h′(x) = 0 for txt−1 − 1 = 0, that is for x = g(t),

which remains in the open interval 0 < x < 1 if t > 0 remains small enough. The lemma
follows since h′1,t(x) > 0 for 0 < x < g(t) and h

′
1,t(x) < 0 for g(t) < x < 1.

Lemma 2. There exists a t1 > 0 such that h1,t(g(t1)) > 1 for all 0 ≤ t ≤ t1.

Indeed x 7→ h1,0(x) =
√
1.1
√
1− x is continuous at x = 0 and h1,0(0) =

√
1.1 > 1. So

h1,0(x) > 1 for x small enough. Since x = g(t) is continuous, increasing with t and g(0) = 0,
we get that h1,0(g(t)) > 1 for t small enough, that is, for all 0 ≤ t ≤ t′1 for some t

′
1 > 0.

Let x′1 = g(t
′
1). The function t 7→ h1,t(x

′
1) =

√
1.1x′1

t − 1.1x′1 is continuous for t ≥ 0 and
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Figure 2. A curve C1,t

h1,0(x
′
1) > 1 so we get that h1,t(x

′
1) > 1 for t small enough, that is, for all 0 ≤ t ≤ t

′′
1 for

some t′′1 > 0. Let t1 = inf (t
′
1, t
′′
1) and x1 = g(t1). For any t > 0 the function x 7→ h1,t(x)

continuously decreases on g(t) < x ≤ 1 (from Lemma 1). Hence we get

0 ≤ t ≤ t1 ≤ t
′
1 ⇒ 0 ≤ g(t) ≤ g(t1) ≤ g(t

′
1)⇒ 1 < h1,t(x

′
1) ≤ h1,t(x1) ≤ h1,t(g(t))

which proves the Lemma.

Let q2(x) = 1− x2/1.1 ≥ 0 for 0 ≤ x ≤
√
1.1, so C2 is the graph of y = q2(x). Since q

′
2(x) =

−2x/1.1 < 0 the function q2 is strictly decreasing. Also let U1 = {(x, y) ∈ R2≥0 : x ≤ g(t1)}
(the t1 of Lemma 2).

Lemma 3. For 0 < t ≤ t1 the curves C1,t intersect exactly once and transversally the curve
C2 in the interior of U1 (see Fig. 3).

From Lemma 1 we know that h1,t(x) is continuous and strictly increasing on 0 < x ≤ g(t).
Moreover q2(x) is continuous and strictly decreasing and h1,t(0) = 0, q2(0) = 1, h1,t(g(t)) > 1
(from Lemmas 1 and 2) and q2(g(t)) < 1 (q2(x) decreases). This proves that the graphs C1,t
and C2 intersect transversally exactly once in the interior of U(t) = {(x, y) ∈ R≥0 : x ≤
g(t)} ⊂ U1. Moreover h1,t(x) decreases on g(t) < x < x1 continuously but stays greater than
1 (Lemma 2) while q2(x) stays smaller than 1. Therefore their graphs do not intersect in
U1 \ U(t). This proves the Lemma.

2.2. Counting transversal intersections

Let V1 = {(x, y) ∈ R2≥0 : x ≥ g(t)} (the t1 of Lemma 2).

Lemma 4. The curves C1,t in V1 form a continuous one-parameter family of diffeomorphic
curves for 0 ≤ t ≤ t1.
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Figure 3. The curves C1,t intersect C2 in U1.

Clearly the curves are all diffeomorphic. Moreover t 7→
√
1.1xt − 1.1x = h1,t(x) is continuous

for any x > 0, and since x varies in 0 < g(t1) ≤ x ≤ 1, a closed interval, (x, t) 7→ h1,t(x) is
uniformly continuous in t. This proves the Lemma.

Recall the well known fact that small isotopies preserve transversal intersections (see for in-
stance [1]), that is, if Γ1,t and Γ2,t are two continuous one-parameter families of diffeomorphic
curves for t ≥ 0, and Γ1,0 intersects transversally Γ2,0 at some point P , then Γ1,t and Γ2,t
intersect transversally in any given neighborhood of P provided t > 0 is small enough.

Lemma 5. There exists a t0 > 0 such that the curves C1,t and C2,t intersect transversally in
R2>0 at exactly five points for all 0 < t ≤ t0 (see Fig. 4).

Let U2 = {(x, y) ∈ R≥0 : y ≤ g(t1)} and V2 = {(x, y) ∈ R2≥0 : y ≥ g(t1)} (symmetric to U1
and V1 with respect to the diagonal line y = x). By symmetry the curves C2,t in V2 form a
continuous one-parameter family of diffeomorphic curves for 0 ≤ t ≤ t1. We assume that t1
is small enough so that the intersections of C2 with the C1,t are all in the interior of V2. Since
C2 = C2,0, the C2,t intersect transversally each C1,t′ exactly once in the interior of U1 ∩V2 for
t ≥ 0 small enough. Hence C1,t and C2,t intersect transversally exactly once in the interior
of U1 ∩ V2, and by symmetry once in the interior of U2 ∩ V1 for t small enough. Since they
intersect in disjoint open sets, C1,t and C2,t intersect transversally exactly twice near the
coordinate axis, that is, in the interior of U1 ∪ U2 for 0 < t ≤ t′0 for some t

′
0 (they intersect

also in (0, 0) 6∈ R2>0). We also assume that t1 is small enough so that the three intersection
points of C1 and C2 are in the interior of V = V1 ∩ V2. Hence C1,t intersects transversally
C2,t exactly three times in V for 0 ≤ t ≤ t′′0 for some t

′′
0 > 0. Since R2>0 is the union of the

interior of (U1 ∪ U2) with V , the lemma simply follows by taking t0 = inf (t′0, t
′′
0).
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Figure 4. How C1,t and C2,t intersect.

2.3. Concluding the proof of the theorem

Let a/b be an arbitrary positive integer smaller than t0 (from Lemma 5). The map (x, y) 7→
(xb, yb) is clearly a diffeomorphism R2≥0 → R2≥0. Composing with P1,a/b(x, y) and P2,a/b(x, y)
yield the two threenomials of the theorem. Their zero sets intersect transversally at five points
as C1,a/b and C2,a/b do by Lemma 5. This proves the theorem since transversal intersections
correspond to non-degenerate isolated roots.

3. Concluding remarks

Remark 3. The first exponent t of the form 1/n, where n is a positive integer, for which the
system has five positive roots is t = 1/53. Jan Verschelde computed by homotopy methods
[8] only one root for t ≤ 1/52 and indeed five roots for t = 1/53 (with errors less than 10−16):

x = 9.91327281341155E-01, y = 9.91327281341155E-01

x = 9.23271265717941E-01, y = 9.99996305511136E-01

x = 9.99990265492731E-01, y = 9.31747195213204E-01

x = 9.99996305511136E-01, y = 9.23271265717941E-01

x = 9.31747195213205E-01, y = 9.99990265492731E-01

Remark 4. Notice that the 2-dimensional polynomial system of the Theorem easily gen-
eralizes to 2k-dimensional systems which pass Kouchnirenko’s bound by 5k − 4k. However
it does not generalize trivially to 2-dimensional systems which would pass Kouchnirenko’s
bound by a function of the number of monomials.

Kouchnirenko’s conjecture is true when k = 1. This is a direct consequence of Descartes
rule which gives a sharp upper bound on the number of positive roots of a polynomial in
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one variable in function of the sign of the terms. The construction of polynomials with a
number of positive roots equal to Descartes bound has been generalized in some sense [2]
to the construction of a system of polynomial equations with some large number of positive
roots (using Sturmfels-Viro method [6]). But it turned out that this number is not the right
candidate for a multivariate Descartes bound as shown by T-Y. Li and X. Wang in [5], or by
this simple system:

x+ y − 2.1 = 0

x2 + y2 − 4 = 0

which has two positive roots while the candidate for the multivariate Descartes bound was
one.
A. Khovanskii [3] [4] found an upper bound on the number of real positive roots of a

system of k polynomial equations in k variables which depends on the number m of different
monomials involved. The bound is (k+1)m2m(m−1)/2 and is, as he wrote himself, “apparently
considerably overstated” (it is equal to 248, 832 for a system of two threenomial equations
like ours). Therefore the Kouchnirenko problem, to find a sharp bound which depends on
the number of monomials involved, and the Descartes problem, to find a sharp bound which
depends on the signs of the terms involved remain actively open.
According to Maurice Rojas (preprint CO/0008069 on xxx.lanl.gov server), the upper

bound on the number of positive roots of a system of two threenomial equations in 2 variables
is precisely 5. More recently T-Y. Li showed me a (independent) proof of this result.

Thanks to B. Sturmfels and M-F. Roy who have launched me on Kouchnirenko’s conjecture
and to Omer Pelman and Edwin O’Shea for interesting discussions.
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