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Abstract. Let G = (V,E, d) be any connected weighted graph which admits not
only degenerated realisations in the n-dimensional Euclidean space. Its configura-
tion space is always homeomorphic to a (1

2
n(n+1)− e)-dimensional sphere, where

n is the number of vertices minus one and e the number of edges.

1. Introduction and results

We consider point sets in fixed high dimensional Euclidean space with given distances between
certain pairs of points, called weighted graphs. The configuration space of a weighted graph
is the set of all possible realisations modulo the group of proper isometries of the Euclidean
space (with the natural topology).
Recently several authors showed a universality theorem for weighted graphs in the plane,

[2], [3] and [5]: for any compact real algebraic variety there exists a weighted graph in the
plane such that its configuration space contains this variety as a component. The situation
changes radically if we consider weighted graphs which admit not only degenerated realisa-
tions in high dimensional Euclidean space. If the Euclidean space has dimension at least the
number of vertices, then the configuration space is always a closed ball, and if the dimension
is equal to the number of vertices minus one, then the configuration space is always a sphere.
It is surprising that the dimension of the ball, respectively the sphere does not depend on
the weights but only on the number of edges:
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Theorem. Let G = (V,E, d) be a connected weighted graph with n = #V − 1 and e = #E
which admits not only degenerated realisations in the Euclidean space Rn. The configuration
space [G]+n of G is homeomorphic to the sphere S

1
2
n(n+1)−e.

Of special interest is the case of weighted graphs with m ≥ 3 vertices which are joined in
cyclic order by edges of positive weights in the (m− 1)-dimensional Euclidean space:

Corollary. Let Pm be an m-gon which admits not only an aligned realisation in the Euclidean
space Rm−1. The configuration space [Pm]+m−1 of Pm is homeomorphic to the sphere S

1
2
m(m−3).

It is a well known fact, that the configuration space of any quadrilateral in three-space is
homeomorphic to a two-dimensional sphere. This is a special case of the above corollary.

2. Definitions and proofs

Let us start with the definition of the main objects with which we deal:

Definition. The triple G = (V,E, d) consisting of

(1) a set of vertices V = {V0, V1, . . . , Vn},

(2) a set of edges E = {{Vi1 , Vj1}, . . . , {Vie , Vje}} with il, jl ∈ {0, 1, . . . , n}, il 6= jl and

(3) a weight function d : E → R+, that attaches to every edge {Vil , Vjl} in E a positive
weight d(Vil , Vjl) ∈ R+,

is called a weighted graph.

If a weighted graph contains several components, each of them can be treated separately
and the total non-compact configuration space can be assembled. Therefore only connected
weighted graphs are interesting, i.e. graphs in which any two vertices are connected by a
sequence of edges.
An m-gon Pm is a special connected weighted graph given by m vertices which are joined

in cyclic order by m edges of positive weights.

We call a connected weighted graph G = (V,E, d) realisable in Rr, if there exists Φ : V →
Rr such that

|Φ(Vi)− Φ(Vj)| = d(Vi, Vj) for all {Vi, Vj} in E.

A realisation ξ of G = (V,E, d) in Rr is an (n + 1)-tuple of points (p0, p1, . . . , pn) ⊂ (Rr)n+1
such that |pi−pj| = d(Vi, Vj) if {Vi, Vj} is an element of E. A realisation ξ of G in Rr is called
degenerated if ξ is also a realisation in Rr−1. For polygons in the plane degenerate realisations
correspond exactly with critical values of the Morse function defining the configuration space,
cf. [1] and [4]. The configuration space of G in Rr is

[G]+r = {ξ realisation of G in R
r}/Iso+(Rr)

with the natural topology. Iso+(Rr) is the group of orientation preserving isometries of Rr.
We also make use of [G]r = {ξ realisation of G in Rr}/Iso(Rr), the space of all realisations
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modulo the group of isometries of Rr. The natural involution τ on O(r) induces an involution
τ̃ on [G]+r , hence

[G]r = [G]
+
r /τ̃ . (1)

Set k =
(
#V
2

)
− #E = 1

2
n(n + 1) − e, the number of edges which have no prescribed

weight. Let ξ be a realisation of G = (V,E, d) in Rr. For all l ∈ {0, 1, . . . , k − 1} set
xl := |pil − pjl| if {Vi, Vj} is not an element of E. The k parameters x0, x1, . . . , xk−1 are the
length of the distances between vertices, which are not prescribed. They can be used as a
natural parametrisation of the configuration space.
Further let us define for any integer r ≥ 1 the subset

Ωr(G) =

{
x ∈ Rk

∣∣∣∣
∃ ξ non-degenerated realisation of G in Rr
with |pil − pjl| = xl,∀ l ∈ {0, 1, . . . , k − 1}

}

of Rk. Notice that if n = #V − 1 and if G admits not only degenerated realisations in Rn
then Ωn(G) is homeomorphic to [G]n. Moreover if N ≥ #V then ΩN(G) is empty.

After these preliminaries we give the proof of the theorem. Our aim consists in showing,
that [G]n is homeomorphic to a k-dimensional ball, where k =

1
2
n(n + 1)− e. Using (1) the

configuration space [G]+n can be obtained as follows: take two copies of [G]n and attach their
boundaries. This results in a (1

2
n(n+ 1)− e)-dimensional sphere. Thus we have to show the

following two lemmas. The first lemma, due to Schoenberg [6], is a criterion for the distance
preserving embedding of a complete weighted graph in an r-dimensional Euclidean space:

Lemma 1. Let G = (V,E, d) be a connected weighted graph with E = {{Vi, Vj} | 0 ≤ i <
j ≤ n}, i.e. every vertex in V is joined with all others by an edge {Vi, Vj} of prescribed
length dij = d(Vi, Vj). Further let r be an integer with 1 ≤ r ≤ n = #V − 1. There exists a
non-degenerated realisation of G in Rr if and only if the quadratic form Q : Rn → R given by

Q(v) =
1

2

n∑

i,j=1

(d20i + d
2
0j − d

2
ij)vivj

is positive and has rank r.

Proof. Let ξ be a non-degenerated realisation of G given by the tuple (p0, p1, . . . , pn) of n+1
points in Rn with |pi − pj| = d(Vi, Vj) = dij for all i, j ∈ {0, 1, . . . , n} with i 6= j. Consider
v =
∑n
i=1 vi(pi − p0) with vi ∈ R and notice that

Q(v) = 〈v, v〉 =
n∑

i,j=1

〈pi − p0, pj − p0〉vivj

=
n∑

i,j=1

d0id0j cos(](pi − p0, pj − p0))vivj

=
1

2

n∑

i,j=1

(d20i + d
2
0j − d

2
ij)vivj.
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Since the vectors p1 − p0, . . . , pn − p0 span an r-dimensional vector space the quadratic form
Q has rank r. Further if x 6= 0 then Q(x) = |x|2 > 0, so Q is positive.

The quadratic form Q is positive and has rank r. A transformation S ∈ GL(n,R) exists,
such that Q = St Ir S, where Ir = diag(1, . . . , 1, 0, . . . , 0) with rank r. Let e1, . . . , en be the
standard basis of Rn and set p0 = 0 and pi = Ir S ei, then

|pi|
2 = |Ir S ei|

2 = 〈St I tr Ir S ei, ei〉 = 〈S
t Ir S ei, ei〉 = Q(ei) = d

2
0i

for all i ∈ {1, . . . , n} and by linearity |pi−pj|2 = Q(ei−ej) = d2ij for all i, j ∈ {1, . . . , n} with
i 6= j. In other words the (n+ 1)-tuple (p0, p1, . . . pn) is a realisation of G in Rr × {0} ⊂ Rn.
If G were realisable in Rr−1 then by the first half the quadratic form Q had rank r − 1,

which contradicts the assumption.

Lemma 2. Let G = (V,E, d) be a connected weighted graph with #V = n+ 1 which admits
not only degenerated realisations in Rn. Then Ωn(G) is a bounded and simply connected subset
of Rk. If further ∂ Ωn(G) signifies the boundary of Ωn(G), then

∂Ωn(G) =
⋃

m<n

Ωm(G).

Proof. Consider the map F : Rk × Rn → R defined by

F (x, v) = Qx(v) =
n∑

i,j=1

(f0i(x) + f0j(x)− fij(x)) vivj,

where

fij(x) =

{
d(Vi, Vj)

2 if {Vi, Vj} ∈ E
xl if {Vil , Vjl} /∈ E

Lemma 1 implies that the graph G has a non-degenerated realisation (p0, p1, . . . , pn) in Rn,
with |pil−pjl| = xl for all {il, jl} such that {Vil , Vjl} /∈ E, if and only if the quadratic form Qx
is positive and has rank n. Notice that by bi-linearity, it is sufficient to test Qx for positivity
only on Sn−1 ⊂ Rn. This fact allows us to define ϕ : Rk → R by ϕ(x) = minv∈Sn−1 F (x, v).
We then have

Ωn(G) = {x ∈ Rk |ϕ(x) > 0}.
The mapping x 7→ F (x, v) being affine, ϕ is the minimum of a family of affine functions.
This implies that ϕ is concave, i.e. if x, y ∈ Rk then

ϕ(λx+ (1− λ)y) ≥ λϕ(x) + (1− λ)ϕ(y) for all λ ∈ [0, 1].

As the function ϕ is concave, the subset Ωn(G) is a simply connected subset of Rk. Since G
is connected Ωn(G) is bounded.
Finally, Lemma 1 implies that the set of degenerate realisations of G in Rn is given by

⋃

m<n

Ωm(G) = {x ∈ Rk |ϕ(x) = 0} = ∂ Ωn(G).

Notice that ϕ(x) < 0 if x /∈ (R+)k. If G is not realisable then Ωn(G) is empty by Lemma 1.
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The dimension of the affine hull of the vertices is at most n = #V − 1, therefore Ωn(G) is
homeomorphic to [G]#V+N for all N ∈ N. The configuration space of weighted graphs in
R#V+N for any N ∈ N is therefore stable, in other words [G]#V+N is an (

1
2
n(n + 1) − e)-

dimensional ball.
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