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Abstract. Let L1 be a finite simple sloop of cardinality n or the 8-element sloop.
In this paper, we construct a subdirectly irreducible (monolithic) sloop L = 2⊗αL1
of cardinality 2n, for each n ≥ 8, with n ≡ 2 or 4 (mod 6), in which each proper
homomorphic image is a Boolean sloop. Quackenbush [12] has proved that the
variety V (L1) generated by a finite simple planar sloop L1 covers the smallest non-
trivial subvariety (the class of all Boolean sloops). For any finite planar sloop L1,
the variety V (L) generated by the constructed sloop L = 2⊗αL1 covers the variety
V (L1).

MSC 2000: 05B07 (primary); 20N05 (secondary)

1. Introduction

A Steiner loop (or sloop) is a groupoid S = (S, · , 1) with neutral element 1 satisfying the
identities:

x · x = 1, x · y = y · x, x · (x · y) = y.

We use the abbreviation SL(n) for a sloop of cardinality n. If a sloop satisfies the associative
law (x · y) · z = x · (y · z), then it will be a Boolean group that is also called a Boolean sloop.
An extensive study of sloops can be found in [4], [8] and [12].
A Steiner triple system is a pair (P ;B), where P is a set of points and B is a set of

3-element subsets of P called blocks such that for distinct points p1, p2 ∈ P , there is a unique
block b ∈ B with {p1, p2} ⊆ b.
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There is a one to one correspondence between the sloops and the Steiner triple systems
[8], [12]. If the cardinality of the set of points P is equal to n, the Steiner triple system (P ;B)
will be denoted by STS(n). It is well known that a necessary and sufficient condition for the
existence of an STS(n) is n ≡ 1 or 3 (mod 6 ).
Quackenbush [12] proved that the congruences of sloops are permutable, regular, and

Lagrangian. A subsloop S of a sloop L is called normal iff (x · y) · S = x · (y · S) for all
x, y ∈ L.
We have that the lattice of normal subsloops of a sloop L is isomorphic to the lattice of

the congruence relation of L. Quackenbush [12] has also proved that if S is a subsloop of L
and |L| = 2|S|, then S is normal.
There is a well known method for turning a Steiner triple system into another algebra

called a Steiner quasigroup (or squag) [12].
In the comments and problems section of [12], Quackenbush has stated that there should

be non-simple subdirectly irreducible sloops in which any proper homomorphic image must
be a Boolean sloop. He stated that there should be non-simple subdirectly irreducible squags
in which any proper homomorphic image must be a medial squag.
The author in [3] has given a construction of finite subdirectly irreducible squags in which

all proper homomorphic images are medial squags.
In [1] and [2] the author has also given a construction of a subdirectly irreducible (mono-

lithic) sloop of cardinality 2n, in which the cardinality of the congruence class of the unique
atom of its congruence lattice is equal to 2 (the minimal possible size of a proper normal
subsloop).
In this paper, we construct a subdirectly irreducible sloop of cardinality 2n, for each

n ≥ 8, with n ≡ 2 or 4 (mod 6), in which its congruence lattice is a chain of length 2 and
its proper homomorphic image is the 2-element Boolean group. Moreover, the cardinality of
the congruence class of its unique atom is equal to n (the maximal possible size of a proper
normal subsloop).
We will use in this article some basic concepts of universal algebra [9] and other concepts

of graph theory [10].

2. Construction of 2⊗α L1

Let (P ∗1 ;B1) be an STS(n − 1) and its corresponding sloop L1 = (P1; · , 1), where P
∗
1 =

{a0, a1, . . . , an−2} and P1 = P ∗1 ∪ {1}. Consider the set of 1-factors on P1 defined by Fi =
{aiak: ai · ak = ai}, then the class F = {F0, F1, . . . , Fn−2} forms a 1-factorization of the
complete graph Kn on the set of vertices P1.
By taking the set P2 = {b, b0, b1, . . . , bn−2} with P1 ∩ P2 = ∅ and Gi = {bbi} ∪ {blbk:

al · ak = ai for i /∈ {l, k}}, then the class of 1-factors G = {G0, G1, . . . , Gn−2} forms a
1-factorization of the complete graph Kn on the set of vertices P2. There is a well known
construction of an STS(2n − 1) = (P ∗;B) [11], where P ∗ = P ∗1 ∪ P2 and the set of triples
B = B1 ∪ {{bl, bk, ai}: blbk ∈ Gα(i)} for any permutation α on the set {0, 1, . . . , n− 2}.
The corresponding sloop SL(2n) of the STS(2n − 1) = (P ∗;B) will be denoted by L =

2⊗α L1 = (P ; · , 1) where P = P1 ∪ P2 and P ∗ = P − {1}.
If we choose the permutation α equal to the identity map on the set {0, 1, . . . , n − 2},
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then the constructed sloop L = 2⊗αL1 is isomorphic to the direct product of SL(n) = L1 and
the 2-element sloop SL(2). We observe that L1 is a subsloop of 2⊗α L1 for any permutation
α.
In the following section, we choose a simple sloop L1 of cardinality n and a suitable

permutation α to construct a subdirectly irreducible sloop of cardinality 2n.

2.1. Subdirectly irreducible sloops SL(2n)

An STS is planar if it is generated by every triangle and contains a triangle. A planar STS(n)
exits for each n ≥ 7 and n ≡ 1 or 3 (mod 6) [6]. Quackenbush [12] proved in the next theorem
that almost all planar SL(n)’s are simple.

Theorem 1. [12] Let (P ∗;B) be a planar STS(n−1) and (P ; · , 1) be its corresponding sloop,
then either (P ; · , 1) is simple or n = 8.

Accordingly, we may say that for any n > 8 with n ≡ 2 or 4 (mod 6) there is a simple SL(n).

Lemma 2. Let F be a 1-factorization of the complete graph Kn. For any two distinct 1-
factors F1 and F2 of F, there is always a 1-factor F3 of F satisfying that the three factors
F1, F2, and F3 do not contain any sub 1-factorization of the complete graph K4.

Proof. The number of edges of a 1-factor Fi of F is n/2. Then the maximum number of sub
1-factorizations on K4 of F with sub 1-factors f1 ⊆ F1 and f2 ⊆ F2 on a 4-element subset of
vertices is [n/4] (the greatest integer in n/4).
For any possible 4-element subset of vertices {x, y, z, w}, if f1 = {xy, zw} and f2 =

{xz, yw}, then there is at most only one 1-factor Fi of F containing the third sub 1-factor
fi = {xw, yz} of the sub 1-factorization of K4.
If the 1-factorization F contains the maximum number of sub 1-factorizations of K4 with

sub 1-factors f1 ⊆ F1 and f2 ⊆ F2 on a 4-element subset of vertices, then there are at most
[n/4] distinct 1-factors of F – {F1, F2}, each containing the third sub 1-factor fi of a sub
1-factorization of K4.
Since |F| = n − 1 and n − 3 > [1

4
n] for n > 4, then we may say that for n > 4 there is

always at least one 1-factor Fj not containing the third sub 1-factor {xw, yz} for all possible
4-element subset of vertices {x, y, z, w}. This completes the proof of the lemma. �

Now, we are ready to construct a sloop L of cardinality 2n having only one proper congruence
relation φ, in which its homomorphic image L/φ is the 2-element Boolean group.

Theorem 3. Let L1 be a simple sloop of cardinality n > 8, then there is a permutation α
on the set {0, 1, . . . , n− 2} such that the construction 2⊗α L1 will be a subdirectly irreducible
sloop of cardinality 2n, in which each proper homomorphic image is Boolean.

Proof. Without loss of generality, we may assume that a0 · a1 = a2 in L1; then

1a0, a1a2 ∈ F0, 1a1, a0a2 ∈ F1 and 1a2, a0a1 ∈ F2.
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And according to the definition of the 1-factorization G in the construction 2⊗α L1, there is
a sub 1-factorization of G on K4 namely:

bb0, b1b2 ∈ G0, bb1, b0b2 ∈ G1 and bb2, b0b1 ∈ G2.

By Lemma 2, we may also say that there is a 1-factor Gi; i 6= 0, 1, 2 such that the three
1-factors G0, G1, Gi do not contain any sub 1-factorization of the complete graph K4.
By choosing the permutation α = (2 i) on the set {0, 1, . . . , n − 2}, we will prove that

the constructed sloop L = 2 ⊗α L1 is a subdirectly irreducible sloop, in which each proper
homomorphic image is Boolean.
Since L1 is simple and |L| = 2|L1|, then for any permutation α the constructed sloop

L = 2⊗αL1 contains the subsloop L1 as the unique subsloop of cardinality n; L1 is necessary
normal.
If there is an isomorphism f between L and the direct product of L1 and SL(2):=

({0, 1}; + , 0), then it must be f(P1) = P1 × {0} and f(P2) = P2 × {1}. But any 4-element
subsloop {1, ai, aj, ak}×{0} of P1×{0} lies in an 8-element subsloop Y = {1, ai, aj, ak}×{0, 1}
of the direct product L1 × {0, 1}. Since the image f−1(Y ) is a subsloop of L, hence we may
say that if L ∼= L1 × {0, 1}, then any 4-element subsloop U = {1, ai, aj, ak} of P1 lies in an
8-element subsloop X = {1, ai, aj, ak, b′, bi′ , bj′ , bk′} of L with X − U ⊆ P2.
Accordingly, to prove that L is not isomorphic to the direct product of L1 and the 2-

element sloop, it is enough to show that there is no subsloopX of L of cardinality 8 containing
the subsloop U = {1, a0, a1, a2} with X − U ⊆ P2.
Assume there is a subsloop X of cardinality 8 containing U = {1, a0, a1, a2} with X−U =

{bi, bj, bl, bk} ⊆ P2. We have α(0) = 0, so {a0, bl, bk} is a block of B iff blbk ∈ G0. Hence, there
is a sub-1-factor {bibj, blbk} ofG0 related with a0. And we have α(1) = 1, so there is also a sub-
1-factor, say {bibl, bjbk} of G1 , related with a1. If the set X = {1, a0, a1, a2, bi, bj, bl, bk} forms
a subsloop, then the operation ”·” is associative onX. Hence a2 = a0 · a1 = (bi · bj) · (bi · bl) =
bj · bl and so a2 = a0 · a1 = (bl · bk) · (bi · bl) = bi · bk. Moreover, we have α(2) = i ; this
means that a2 is related with the 1-factor Gi (i.e. {a2, bl, bk} is a block of B iff blbk ∈ Gi).
This implies that Gi contains the sub 1-factor = {bjbl, bibk}, contradicting the assumption
that G0, G1, Gi does not contain any sub 1-factorization of K4.
Accordingly, the constructed sloop L = 2⊗α L1 is not isomorphic to the direct product

of L1 and the 2-element sloop SL(2).
Next, we will show that the constructed sloop L = 2⊗αL1 has only one proper congruence

φ satisfying L/φ is Boolean.
Since the constructed sloop L = 2 ⊗α L1 has L1 as a subsloop, then L1 is a normal

subsloop of L. This means that there is a congruence relation φ of L defined by [1]φ = L1.
Let θ be a non-trivial congruence relation of L and θ 6= φ; then [1]θ∩L1 = {1}, otherwise

θL1 (θ restricted on L1) is a non-trivial congruence on L1, contradicting the assumption that
L1 is simple. Consequently, |[1]θ| = 2; then we may assume that [1]θ = {1, bi} for bi ∈ P2.
This means that θ ∩ φ = ∆ (the diagonal relation) and θ ◦ φ = ∇ (the largest congruence).
This implies that L is isomorphic to the direct product of L1 and SL(2), contradicting the
preceding result that L = 2⊗α L1 6∼= L1 × SL(2).
This means that the constructed sloop L has no non-trivial congruence θ with θ 6= φ.

This completes the proof of the theorem. �
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In fact, a sloop SL(m) is simple if m can not be factored into (6n1+i)(6n2+j) for some n1, n2
and some i, j ∈ {2, 4}. In particular, there are only simple SL(m)’s, if m is not divisible by 4.
If m ≡ 2 or 4 (mod 6), then m = 2n. Moreover, if n 6≡ 2 or 4 (mod 6), then there are

only simple sloops of cardinality m.
Let m ≡ 2 or 4 (mod 6) and m = 2n with n > 8. For n ≡ 2 or 4 (mod 6), so by Theorem

1, there is a simple sloop L1 of cardinality n. And by Theorem 3, there is a subdirectly
irreducible sloop L = 2⊗α L1 of cardinality m with only one proper congruence φ satisfying
that L/φ is isomorphic to the 2-element Boolean sloop.
For m 6 16, there are only Boolean sloops SL(m) for m = 2, 4, 8 and only simple sloops

SL(m) for m = 10, 14. To complete the result of Theorem 3 we will show that there is a
subdirectly irreducible L =SL(16) having only one proper congruence φ with |L/φ| = 2 as
follows:
In the catalogue of all 80 STS(15)’s, see [5], choose one which has exactly one 7-element

subsystem. The corresponding sloop has exactly one 8-element subsloop. It has no other
proper non-trivial normal subsloops, since otherwise one could construct a second 7-element
subsystem.

Finally, we may say that:

For each n > 4 with n≡ 2 or 4 (mod 6), there is a subdirectly irreducible (monolithic) sloop L
of cardinality 2n having only one proper non-trivial congruence relation φ; furthermore L/φ
is the 2-element Boolean sloop.

Quackenbush [12] has proved that the variety V (L1) generated by a simple planar sloop L1
has only two subdirectly irreducible sloops L1 and the 2-element sloop SL(2) and then V (L1)
covers the smallest nontrivial subvariety (the class of all Boolean sloops).

Quackenbush [12] has also showed that the variety V (L1,L2, . . . ,Lm) generated by pairwise
non-isomorphic finite simple planar sloops L1,L2, . . . ,Lm equal to Ps(L1,L2, . . . ,Lm, SL(2)).
This implies that the variety V (L) generated by the constructed sloop SL(2n) = L, is not
subvariety of the variety V (L1,L2, . . . ,Lm) generated by any set of pairwise non-isomorphic
finite simple planar sloops L1,L2, . . . ,Lm.
On the other hand, let L1 be a planar sloop of cardinality n and L = 2 ⊗α L1 be the

constructed sloop SL(2n). For any subsloop S other than L1 of L with |S| > 4, one can easily
prove that |L1∩S| =

1
2
|S|. Accordingly, if L1 is planar, then the class of all proper subsloops

of L = 2 ⊗α L1 are exactly L1 and SL(n) for n = 8, 4, 2. This means that the variety V (L)
generated by L properly contains the subvariety V (L1).

Finally, we want to sharpen the previous result by proving that the variety V (L) covers
the variety V (L1). For it we need some concepts and theorems on the congruence modular
varieties due to R. Freese and R. McKenzie [7] and H. Werner [13].

In [12] Quackenbush has proved that any finite simple sloop L1 with |L1| > 2 is functionally
complete; i.e. Ln1 has no skew congruence for any n ≥ 2. He also proved that L

n
1 ×C

m
2 has

no skew congruence for any positive integers n and m, where C2 denotes to the 2-element
sloop SL(2).

Theorem 4. [13] Let K be a permutable variety with A1,A2, . . . ,An ∈ K. Then A1×A2×
· · · ×An has a skew congruence iff for some i 6= j; Ai ×Aj has a skew congruence.
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Accordingly, we may say that Lr ×Ln1 ×C
m
2 has a skew congruence iff L×L1,L

2,L×C2 or
C22 has a skew congruence.
We want to prove that if L2,L×C2 orC22 has a skew congruence φ, then the homomorphic

image of any of them by φ is isomorphic to C2.

Theorem 5. [13] Let K be a permutable variety with A,B ∈ K. Then A × B has a skew
congruence iff there are homomorphic images A′ of A and B′ of B and a 1-1 map µ with
dom(µ) ⊆ A′, |dom(µ)| > 1, range(µ) ⊆ B′ such that {(a, µ(a)): a ∈ dom(µ)} is a congru-
ence class on A′ ×B′.

Theorem 6. [13] Let K be a permutable variety with A,B ∈ K. If {(ai, bi): i ∈ I} is a
congruence class of A × B, then {ai: i ∈ I} is a congruence class of A (i.e. the projection
of a congruence class is a congruence class).

Theorem 7. Let L1 be a finite simple sloop and L = 2⊗αL1 be the constructed sloop. Then
L×L1 has no skew congruence and each of L2,L×C2 and C22 has only one skew congruence
ψ in which the homomorphic image of any of them by ψ is isomorphic to C2.

Proof. Let A and B be two finite non-trivial sloops. By applying the previous two theorems
then we may say that:
A×B has a skew congruence iff there areA′ ∈ H(A), B′ ∈ H(B) and a 1-1 map µ: A′1 → B′

for a subsloop A′1 of A
′ with | A′1 |> 1 such that (A′1, µ(A′1)): = {(a, µ(a)): a ∈ A′1 =

dom(µ)} is a congruence class ofA′×B′. We observe thatA′1 and µ(A′1) are also congruence
classes of A′ and B′ respectively. Moreover, (A′1, µ(A

′
1)) is a non-trivial congruence class of

A′1 ×B′.
This means that if A = L and B = L1, since L1 is simple, then µ(A

′
1) must be equal

to L1. Thus A
′ = L and A′1 must be equal to L1. Hence, if there is a skew congruence on

L× L1, then A′1 ×B′ = L1 × L1 has also a skew congruence, contradicting the fact that L1
is functional complete. Therefore, L× L1 has no a skew congruence.
Let A = L and B = L, so if A′ = L and A′1 = L1, then µ(A

′
1) = L1. In this case,

if L × L has a skew congruence, then (A′1, µ(A′1)) = (L1,L1) is a congruence class of a
skew congruence of A′1 × B′ = L1 × L1. Which is impossible, for the same reason given
above. This means that if A = L and B = L, then A′1 must be a congruence class of
A′ = L/θ ∼= C2, hence A′1 = A′ ∼= C2 and µ(A′1) ∼= C2. Since µ(A′1) is a congruence class
of the homomorphic image B′, then B′ ∼= C2. Which implies that L× L has only one skew
congruence ψ, if ψ/θ × θ is a skew congruence of L/θ × L/θ = A′ ×B′. Therefore, the only
skew congruence ψ of L× L satisfies that (L× L)/ψ ∼= C2.
Let A = L and B = C2 , then A

′
1 must be equal to C2. Hence L × C2 has a skew

congruence iff (A′1, µ(A
′
1)) ∼= (C2,C2) as a congruence class of a skew congruence of A′ ×

B′ = C2 ×C2. Which implies that L ×C2 has only one skew congruence ψ satisfying that
(L×C2)/ψ ∼= C2. This completes the proof of the theorem. �

Quackenbush [12] has proved that HSPf (L1) = Pf{L1,C2}. Similarly and according to the
previous discussion, one may show that HSPf (L) = Pf{L,L1,C2}. Consequently, we may
say that L,L1,C2 are the only subdirectly irreducible (monolithic) sloops in the variety V (L),
then V (L) = Ps{L,L1,C2}. Which implies that the variety V (L) covers the variety V (L1).



M. H. Armanious: On Subdirectly Irreducible Steiner Loops of Cardinality 2n 331

References

[1] Armanious, M. H.: Construction of Nilpotent Sloops of Class n. Discrete Math. 171
(1997), 17–25. Zbl 0884.05016−−−−−−−−−−−−

[2] Armanious, M. H.: Nilpotent SQS-Skeins with Nilpotent Derived Sloops. Ars Combina-
toria, 56 (2000), 193–200.

[3] Armanious, M. H.: Subdirectly Irreducible Steiner Quasigroups of Cardinality 3n. To
appear in Ars Combinatoria.

[4] Bruck, R. H.: A Survey of Binary Systems. Springer-Verlag, Berlin-Heidelberg, New
York 1971. Zbl 0206.30301−−−−−−−−−−−−

[5] Colbourn, C.; Dinitz, J. (eds.): The CRC Handbook of Combinatorial Designs. CRC
Press, New York 1996. Zbl 0836.00010−−−−−−−−−−−−

[6] Doyen, J.: Sur la Structure de Certains Systems Triples de Steiner. Math. Z. 111 (1969),
289–300. Zbl 0182.02702−−−−−−−−−−−−

[7] Freese, R.; McKenzie, R.: Commutator Theory for Congruence Modular Varieties. LMS
Lecture Note Series 125, Cambridge Univ. Press 1987. Zbl 0636.08001−−−−−−−−−−−−

[8] Ganter, B.; Werner, H.: Co-ordinating Steiner Systems. Ann. Discrete Math. 7 (1980),
3–24. Zbl 0437.51007−−−−−−−−−−−−

[9] Grätzer, G.: Universal Algebra. Springer-Verlag New York, Heidelberg, Berlin, 2nd edi-
tion, 1979. Zbl 0412.08001−−−−−−−−−−−−

[10] Harary, F.: Graph Theory. Addison-Wesley, Reading, MA 1969. Zbl 0182.75502−−−−−−−−−−−−
[11] Lindner, C. C.; Rosa, A.: Steiner Quadruple Systems – a Survey. Discrete Math. 22

(1978), 147–181. Zbl 0398.05015−−−−−−−−−−−−
[12] Quackenbush, R. W.: Varieties of Steiner Loops and Steiner Quasigroups. Canad. J.

Math. 18 (1978), 1187–1198. Zbl 0359.20070−−−−−−−−−−−−
[13] Werner, H.: Congruence on Products of Algebras and Functionally complete Algebras.

Algebra Universalis 4 (1974), 99–105.

Received August 18, 2000

http://www.emis.de/MATH-item?0884.05016
http://www.emis.de/MATH-item?0206.30301
http://www.emis.de/MATH-item?0836.00010
http://www.emis.de/MATH-item?0182.02702
http://www.emis.de/MATH-item?0636.08001
http://www.emis.de/MATH-item?0437.51007
http://www.emis.de/MATH-item?0412.08001
http://www.emis.de/MATH-item?0182.75502
http://www.emis.de/MATH-item?0398.05015
http://www.emis.de/MATH-item?0359.20070

