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Abstract. Let L; be a finite simple sloop of cardinality n or the 8-element sloop.
In this paper, we construct a subdirectly irreducible (monolithic) sloop L = 2®,, L,
of cardinality 2n, for each n > 8, with n = 2 or 4 (mod 6), in which each proper
homomorphic image is a Boolean sloop. Quackenbush [12] has proved that the
variety V' (L;) generated by a finite simple planar sloop L; covers the smallest non-
trivial subvariety (the class of all Boolean sloops). For any finite planar sloop Ly,
the variety V(L) generated by the constructed sloop L = 2®, L covers the variety
V(Ly).

MSC 2000: 05B07 (primary); 20N05 (secondary)

1. Introduction

A Steiner loop (or sloop) is a groupoid S = (S, -, 1) with neutral element 1 satisfying the
identities:
r-x=1 z-y=y-z, x-(x-y =yv.

We use the abbreviation SL(n) for a sloop of cardinality n. If a sloop satisfies the associative
law (x-y)-z=x - (y- z), then it will be a Boolean group that is also called a Boolean sloop.
An extensive study of sloops can be found in [4], [8] and [12].

A Steiner triple system is a pair (P; B), where P is a set of points and B is a set of
3-element subsets of P called blocks such that for distinct points pq, po € P, there is a unique
block b € B with {p1,p2} C b.
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There is a one to one correspondence between the sloops and the Steiner triple systems
8], [12]. If the cardinality of the set of points P is equal to n, the Steiner triple system (P; B)
will be denoted by STS(n). It is well known that a necessary and sufficient condition for the
existence of an STS(n) isn =1 or 3 (mod 6 ).

Quackenbush [12] proved that the congruences of sloops are permutable, regular, and
Lagrangian. A subsloop S of a sloop L is called normal iff (z-y)-S = z - (y-S) for all
x,y € L.

We have that the lattice of normal subsloops of a sloop L is isomorphic to the lattice of
the congruence relation of L. Quackenbush [12] has also proved that if S is a subsloop of L
and |L| = 2|5/, then S is normal.

There is a well known method for turning a Steiner triple system into another algebra
called a Steiner quasigroup (or squag) [12].

In the comments and problems section of [12], Quackenbush has stated that there should
be non-simple subdirectly irreducible sloops in which any proper homomorphic image must
be a Boolean sloop. He stated that there should be non-simple subdirectly irreducible squags
in which any proper homomorphic image must be a medial squag.

The author in [3] has given a construction of finite subdirectly irreducible squags in which
all proper homomorphic images are medial squags.

In [1] and [2] the author has also given a construction of a subdirectly irreducible (mono-
lithic) sloop of cardinality 2", in which the cardinality of the congruence class of the unique
atom of its congruence lattice is equal to 2 (the minimal possible size of a proper normal
subsloop).

In this paper, we construct a subdirectly irreducible sloop of cardinality 2n, for each
n > 8, with n = 2 or 4 (mod 6), in which its congruence lattice is a chain of length 2 and
its proper homomorphic image is the 2-element Boolean group. Moreover, the cardinality of
the congruence class of its unique atom is equal to n (the maximal possible size of a proper
normal subsloop).

We will use in this article some basic concepts of universal algebra [9] and other concepts
of graph theory [10].

2. Construction of 2 ®, L,

Let (P;; By) be an STS(n — 1) and its corresponding sloop Ly = (Py; -, 1), where P =
{ag,a1,...,a,_2} and P = P} U {1}. Consider the set of 1-factors on P, defined by F; =
{a;a: a; - ap = a;}, then the class F = {Fy, Fy,..., F,, o} forms a 1-factorization of the
complete graph K, on the set of vertices P;.

By taking the set P2 = {b, bo,bl, c. ,bn_g} with Pl N P2 = @ and Gl = {bbz} U {blbki
a; - ar, = a; for i ¢ {l,k}}, then the class of 1-factors G = {Go,G1,...,G,_2} forms a
1-factorization of the complete graph K, on the set of vertices P,. There is a well known
construction of an STS(2n — 1) = (P*; B) [11], where P* = P U P, and the set of triples
B = By U{{b;, bk, a;}: biby € Gu(;)} for any permutation a on the set {0,1,...,n — 2}.

The corresponding sloop SL(2n) of the STS(2n — 1) = (P*; B) will be denoted by L =
2®q, Ly = (P; -,1) where P = P, U P, and P* = P — {1}.

If we choose the permutation a equal to the identity map on the set {0,1,...,n — 2},
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then the constructed sloop L = 2®,,L; is isomorphic to the direct product of SL(n) = L; and
the 2-element sloop SL(2). We observe that L; is a subsloop of 2 ®, L; for any permutation
a.

In the following section, we choose a simple sloop L; of cardinality n and a suitable
permutation « to construct a subdirectly irreducible sloop of cardinality 2n.

2.1. Subdirectly irreducible sloops SL(2n)

An STS is planar if it is generated by every triangle and contains a triangle. A planar STS(n)
exits for each n > 7 and n = 1 or 3 (mod 6) [6]. Quackenbush [12] proved in the next theorem
that almost all planar SL(n)’s are simple.

Theorem 1. [12] Let (P*; B) be a planar STS(n—1) and (P; -, 1) be its corresponding sloop,
then either (P; -, 1) is simple or n = 8.

Accordingly, we may say that for any n > 8 with n = 2 or 4 (mod 6) there is a simple SL(n).

Lemma 2. Let F be a I-factorization of the complete graph K,. For any two distinct 1-
factors Fy and Fy of F, there is always a 1-factor F3 of ¥ satisfying that the three factors
Fy, F5, and F3 do not contain any sub 1-factorization of the complete graph K.

Proof. The number of edges of a 1-factor F; of F is n/2. Then the maximum number of sub
1-factorizations on K, of F with sub 1-factors f; C F; and fo C F5 on a 4-element subset of
vertices is [n/4] (the greatest integer in n/4).

For any possible 4-element subset of vertices {z,y, z,w}, if fi = {zy,zw} and fo =
{zz,yw}, then there is at most only one 1-factor F; of F containing the third sub 1-factor
fi = {xw,yz} of the sub 1-factorization of Kj.

If the 1-factorization F contains the maximum number of sub 1-factorizations of K, with
sub 1-factors f; C F; and fy C F; on a 4-element subset of vertices, then there are at most
[n/4] distinct 1-factors of F — {F}, F5}, each containing the third sub 1-factor f; of a sub
1-factorization of Kj.

Since |[F|=n—1and n—3 > [in] for n > 4, then we may say that for n > 4 there is
always at least one 1-factor F; not containing the third sub 1-factor {zw,yz} for all possible
4-element subset of vertices {z,y, z, w}. This completes the proof of the lemma. O

Now, we are ready to construct a sloop L of cardinality 2n having only one proper congruence
relation ¢, in which its homomorphic image L/¢ is the 2-element Boolean group.

Theorem 3. Let Ly be a simple sloop of cardinality n > 8, then there is a permutation «
on the set {0,1,...,n—2} such that the construction 2 ®, Ly will be a subdirectly irreducible
sloop of cardinality 2n, in which each proper homomorphic image is Boolean.

Proof. Without loss of generality, we may assume that ay - a; = ay in Ly; then

lag,aras € Fy, lay,apas € F; and lag, aga; € Fs.
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And according to the definition of the 1-factorization G in the construction 2 ®, L1, there is
a sub 1-factorization of G on K4 namely:

bbo, blbg € Go, bbl, b0b2 € G1 and bbg, bgbl S GQ.

By Lemma 2, we may also say that there is a 1-factor G;; ¢ # 0, 1,2 such that the three
1-factors Gy, G1, G; do not contain any sub 1-factorization of the complete graph Kj.

By choosing the permutation o = (2 i) on the set {0,1,...,n — 2}, we will prove that
the constructed sloop L = 2 ®, L; is a subdirectly irreducible sloop, in which each proper
homomorphic image is Boolean.

Since L; is simple and |L| = 2|L;|, then for any permutation « the constructed sloop
L = 2®,L; contains the subsloop L; as the unique subsloop of cardinality n; L is necessary
normal.

If there is an isomorphism f between L and the direct product of L; and SL(2): =
({0,1}; 4+ ,0), then it must be f(P) = P, x {0} and f(P,) = P, x {1}. But any 4-element
subsloop {1, a;, a;, a; } x{0} of P; x {0} lies in an 8-element subsloop Y = {1, a;, a;, ax } x{0, 1}
of the direct product L; x {0,1}. Since the image f~'(Y) is a subsloop of L, hence we may
say that if L = Ly x {0,1}, then any 4-element subsloop U = {1, a;,a;,a;} of P; lies in an
8-element subsloop X = {1,a;, a;, ax, b, by, by, by } of L with X — U C P,.

Accordingly, to prove that L is not isomorphic to the direct product of L; and the 2-
element sloop, it is enough to show that there is no subsloop X of L of cardinality 8 containing
the subsloop U = {1, ag,a1,as} with X — U C P,.

Assume there is a subsloop X of cardinality 8 containing U = {1, ag, a1, as} with X —U =
{bi, bj, b, b} C Pa. We have a(0) = 0, so {ag, b, by} is a block of B iff bjb;, € Gy. Hence, there
is a sub-1-factor {b;b;, b;by. } of Gy related with ag. And we have a(1) = 1, so there is also a sub-
1-factor, say {b;b;, b;by} of Gy , related with a;. If the set X = {1, ag, a1, as, b;, b;, by, by} forms
a subsloop, then the operation ”-” is associative on X. Hence as = ag - a; = (b; - b;) - (b; - b)) =
bj - byand so ay =ag - a1 = (b - bg) - (b; - b)) = b; - by. Moreover, we have a(2) = ¢ ; this
means that ay is related with the 1-factor G; (i.e. {as,b;, bx} is a block of B iff bb, € G;).
This implies that G; contains the sub 1-factor = {b;b;, b;bs}, contradicting the assumption
that Gy, G1, G; does not contain any sub 1-factorization of Kj.

Accordingly, the constructed sloop L = 2 ®, L; is not isomorphic to the direct product
of Ly and the 2-element sloop SL(2).

Next, we will show that the constructed sloop L = 2®,L; has only one proper congruence
¢ satisfying L /¢ is Boolean.

Since the constructed sloop L = 2 ®, L; has L; as a subsloop, then L; is a normal
subsloop of L. This means that there is a congruence relation ¢ of L defined by [1]¢ = L.

Let 0 be a non-trivial congruence relation of L and 0 # ¢; then [1]0N L; = {1}, otherwise
Oy, (0 restricted on L;) is a non-trivial congruence on L;, contradicting the assumption that
L, is simple. Consequently, |[1]0| = 2; then we may assume that [1)0 = {1,b;} for b; € P,.
This means that § N ¢ = A (the diagonal relation) and 6§ o ¢ = V (the largest congruence).
This implies that L is isomorphic to the direct product of Ly and SL(2), contradicting the
preceding result that L = 2 ®, L; 2 L; x SL(2).

This means that the constructed sloop L has no non-trivial congruence 6 with 6 # ¢.
This completes the proof of the theorem. O
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In fact, a sloop SL(m) is simple if m can not be factored into (611 +14)(6nz+j) for some nq, ny
and some i, j € {2,4}. In particular, there are only simple SL(m)’s, if m is not divisible by 4.

If m =2 or 4 (mod 6), then m = 2n. Moreover, if n # 2 or 4 (mod 6), then there are
only simple sloops of cardinality m.

Let m = 2 or 4 (mod 6) and m = 2n with n > 8. For n = 2 or 4 (mod 6), so by Theorem
1, there is a simple sloop L; of cardinality n. And by Theorem 3, there is a subdirectly
irreducible sloop L = 2 ®, L; of cardinality m with only one proper congruence ¢ satisfying
that L/¢ is isomorphic to the 2-element Boolean sloop.

For m < 16, there are only Boolean sloops SL(m) for m = 2,4, 8 and only simple sloops
SL(m) for m = 10,14. To complete the result of Theorem 3 we will show that there is a
subdirectly irreducible L =SL(16) having only one proper congruence ¢ with |L/¢| = 2 as
follows:

In the catalogue of all 80 STS(15)’s, see [5], choose one which has exactly one 7-element
subsystem. The corresponding sloop has exactly one 8-element subsloop. It has no other
proper non-trivial normal subsloops, since otherwise one could construct a second 7-element
subsystem.

Finally, we may say that:

For each n > 4 with n= 2 or 4 (mod 6), there is a subdirectly irreducible (monolithic) sloop L
of cardinality 2n having only one proper non-trivial congruence relation ¢; furthermore L/¢
15 the 2-element Boolean sloop.

Quackenbush [12] has proved that the variety V(L) generated by a simple planar sloop L;
has only two subdirectly irreducible sloops L; and the 2-element sloop SL(2) and then V(L)
covers the smallest nontrivial subvariety (the class of all Boolean sloops).

Quackenbush [12] has also showed that the variety V(Ly, Lo, ..., L,,) generated by pairwise
non-isomorphic finite simple planar sloops Ly, Lo, ..., L,, equal to Py(Ly, Lo, ..., L., SL(2)).
This implies that the variety V(L) generated by the constructed sloop SL(2n) = L, is not
subvariety of the variety V' (Lj, Lo, ..., L,,) generated by any set of pairwise non-isomorphic
finite simple planar sloops Lq, Lo, ..., L,,.

On the other hand, let L; be a planar sloop of cardinality n and L = 2 ®, L; be the
constructed sloop SL(2n). For any subsloop S other than L; of L with |S| > 4, one can easily
prove that |L;NS| = %]S |. Accordingly, if L is planar, then the class of all proper subsloops
of L =2 ®, L; are exactly L; and SL(n) for n = 8,4,2. This means that the variety V(L)
generated by L properly contains the subvariety V(Ly).

Finally, we want to sharpen the previous result by proving that the variety V(L) covers
the variety V' (L;). For it we need some concepts and theorems on the congruence modular
varieties due to R. Freese and R. McKenzie [7] and H. Werner [13].

In [12] Quackenbush has proved that any finite simple sloop L; with |L;| > 2 is functionally
complete; i.e. LT has no skew congruence for any n > 2. He also proved that L} x CJ' has
no skew congruence for any positive integers n and m, where C, denotes to the 2-element

sloop SL(2).

Theorem 4. [13] Let K be a permutable variety with Ay, As, ..., A, € K. Then A; x Ay X
-+ X A, has a skew congruence iff for some i # j; A; X A; has a skew congruence.
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Accordingly, we may say that L” x LT x CJ" has a skew congruence iff L x Ly, L? L x C, or
C? has a skew congruence.

We want to prove that if L2, L x C, or C3 has a skew congruence ¢, then the homomorphic
image of any of them by ¢ is isomorphic to Cs.

Theorem 5. [13] Let K be a permutable variety with A,B € K. Then A x B has a skew
congruence iff there are homomorphic images A’ of A and B’ of B and a 1-1 map p with
dom(p) C A’, |dom(p)| > 1, range(p) C B’ such that {(a, u(a)): a € dom(u)} is a congru-
ence class on A’ x B'.

Theorem 6. [13] Let K be a permutable variety with A,B € K. If {(a;,b;): © € I} is a
congruence class of A x B, then {a;: i € I} is a congruence class of A (i.e. the projection
of a congruence class is a congruence class).

Theorem 7. Let Ly be a finite simple sloop and L = 2®, Ly be the constructed sloop. Then
L x L; has no skew congruence and each of L2, L x Cy and C32 has only one skew congruence
1 in which the homomorphic image of any of them by v is isomorphic to Cs.

Proof. Let A and B be two finite non-trivial sloops. By applying the previous two theorems
then we may say that:

A x B has a skew congruence iff there are A’ € H(A), B’ € H(B) and a 1-1 map p: A’y — B’
for a subsloop A’; of A’ with | A’y |[> 1 such that (A'y, u(A'1)): = {(a,u(a)): a € A’} =
dom(p)} is a congruence class of A’ xB’. We observe that A’y and p(A';) are also congruence
classes of A’ and B’ respectively. Moreover, (A'y, u(A’1)) is a non-trivial congruence class of
A’y x B.

This means that if A = L and B = Ly, since L, is simple, then p(A’y) must be equal
to Li. Thus A’ = L and A’; must be equal to L;. Hence, if there is a skew congruence on
L x Ly, then A’y x B’ = Li; x L; has also a skew congruence, contradicting the fact that L;
is functional complete. Therefore, L x Ly has no a skew congruence.

Let A =L and B =L, so if A’ = L and A’; = Ly, then u(A’y) = Ly. In this case,
if L x L has a skew congruence, then (A'y,u(A’y)) = (Ly,L;) is a congruence class of a
skew congruence of A’y x B’ = L; x L;. Which is impossible, for the same reason given
above. This means that if A = L and B = L, then A’; must be a congruence class of
A’ =L/0 = Cy, hence A’} = A’ = C; and p(A’) = Cs,. Since pu(A'y) is a congruence class
of the homomorphic image B’, then B’ = C,. Which implies that L x L has only one skew
congruence v, if 1/0 x 0 is a skew congruence of L/6 x L/ = A’ x B’. Therefore, the only
skew congruence ¢ of L x L satisfies that (L x L) /¢ = C,.

Let A = L and B = C, , then A’; must be equal to C,. Hence L x C, has a skew
congruence iff (A'y, u(A’1)) = (Cq, Cy) as a congruence class of a skew congruence of A’ x
B’ = C; x Cy. Which implies that L x Cy has only one skew congruence ¢ satisfying that
(L x Cy)/¢ = C,. This completes the proof of the theorem. O

Quackenbush [12] has proved that HSP¢(Ly) = Py{L;, Cy}. Similarly and according to the
previous discussion, one may show that HSP;(L) = P;{L,L;, C;}. Consequently, we may
say that L, L, C, are the only subdirectly irreducible (monolithic) sloops in the variety V (L),
then V(L) = P,{L,L;, Cy}. Which implies that the variety V(L) covers the variety V(Ly).
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