On Subdirectly Irreducible Steiner Loops of Cardinality 2n

Magdi H. Armanious

El-Metawakel Ala Alah St. 3 El-Zeiton, P. C. 11321, Cairo, Egypt e-mail: m.armanious@excite.com

Abstract. Let \mathbf{L}_1 be a finite simple sloop of cardinality n or the 8-element sloop. In this paper, we construct a subdirectly irreducible (monolithic) sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ of cardinality 2n, for each $n \geq 8$, with $n \equiv 2$ or 4 (mod 6), in which each proper homomorphic image is a Boolean sloop. Quackenbush [12] has proved that the variety $V(\mathbf{L}_1)$ generated by a finite simple planar sloop \mathbf{L}_1 covers the smallest non-trivial subvariety (the class of all Boolean sloops). For any finite planar sloop \mathbf{L}_1 , the variety $V(\mathbf{L})$ generated by the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ covers the variety $V(\mathbf{L})$.

MSC 2000: 05B07 (primary); 20N05 (secondary)

1. Introduction

A Steiner loop (or sloop) is a groupoid $\mathbf{S} = (S, \cdot, 1)$ with neutral element 1 satisfying the identities:

$$x \cdot x = 1, \quad x \cdot y = y \cdot x, \quad x \cdot (x \cdot y) = y.$$

We use the abbreviation SL(n) for a sloop of cardinality n. If a sloop satisfies the associative law $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, then it will be a Boolean group that is also called a Boolean sloop. An extensive study of sloops can be found in [4], [8] and [12].

A Steiner triple system is a pair (P; B), where P is a set of points and B is a set of 3-element subsets of P called blocks such that for distinct points $p_1, p_2 \in P$, there is a unique block $b \in B$ with $\{p_1, p_2\} \subseteq b$.

0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag

There is a one to one correspondence between the sloops and the Steiner triple systems [8], [12]. If the cardinality of the set of points P is equal to n, the Steiner triple system (P; B) will be denoted by STS(n). It is well known that a necessary and sufficient condition for the existence of an STS(n) is $n \equiv 1$ or $3 \pmod{6}$.

Quackenbush [12] proved that the congruences of sloops are permutable, regular, and Lagrangian. A subsloop S of a sloop L is called normal iff $(x \cdot y) \cdot S = x \cdot (y \cdot S)$ for all $x, y \in L$.

We have that the lattice of normal subsloops of a sloop **L** is isomorphic to the lattice of the congruence relation of **L**. Quackenbush [12] has also proved that if **S** is a subsloop of **L** and |L| = 2|S|, then **S** is normal.

There is a well known method for turning a Steiner triple system into another algebra called a Steiner quasigroup (or squag) [12].

In the comments and problems section of [12], Quackenbush has stated that there should be non-simple subdirectly irreducible sloops in which any proper homomorphic image must be a Boolean sloop. He stated that there should be non-simple subdirectly irreducible squags in which any proper homomorphic image must be a medial squag.

The author in [3] has given a construction of finite subdirectly irreducible squages in which all proper homomorphic images are medial squages.

In [1] and [2] the author has also given a construction of a subdirectly irreducible (monolithic) sloop of cardinality 2^n , in which the cardinality of the congruence class of the unique atom of its congruence lattice is equal to 2 (the minimal possible size of a proper normal subsloop).

In this paper, we construct a subdirectly irreducible sloop of cardinality 2n, for each $n \ge 8$, with $n \equiv 2$ or 4 (mod 6), in which its congruence lattice is a chain of length 2 and its proper homomorphic image is the 2-element Boolean group. Moreover, the cardinality of the congruence class of its unique atom is equal to n (the maximal possible size of a proper normal subsloop).

We will use in this article some basic concepts of universal algebra [9] and other concepts of graph theory [10].

2. Construction of $2 \otimes_{\alpha} L_1$

Let $(P_1^*; B_1)$ be an STS(n-1) and its corresponding sloop $\mathbf{L}_1 = (P_1; \cdot, 1)$, where $P_1^* = \{a_0, a_1, \ldots, a_{n-2}\}$ and $P_1 = P_1^* \cup \{1\}$. Consider the set of 1-factors on P_1 defined by $F_i = \{a_i a_k: a_i \cdot a_k = a_i\}$, then the class $\mathbf{F} = \{F_0, F_1, \ldots, F_{n-2}\}$ forms a 1-factorization of the complete graph K_n on the set of vertices P_1 .

By taking the set $P_2 = \{b, b_0, b_1, \ldots, b_{n-2}\}$ with $P_1 \cap P_2 = \emptyset$ and $G_i = \{bb_i\} \cup \{b_l b_k: a_l \cdot a_k = a_i \text{ for } i \notin \{l, k\}\}$, then the class of 1-factors $\mathbf{G} = \{G_0, G_1, \ldots, G_{n-2}\}$ forms a 1-factorization of the complete graph K_n on the set of vertices P_2 . There is a well known construction of an $\operatorname{STS}(2n-1) = (P^*; B)$ [11], where $P^* = P_1^* \cup P_2$ and the set of triples $B = B_1 \cup \{\{b_l, b_k, a_i\}: b_l b_k \in G_{\alpha(i)}\}$ for any permutation α on the set $\{0, 1, \ldots, n-2\}$.

The corresponding sloop SL(2n) of the $STS(2n-1) = (P^*; B)$ will be denoted by $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1 = (P; \cdot, 1)$ where $P = P_1 \cup P_2$ and $P^* = P - \{1\}$.

If we choose the permutation α equal to the identity map on the set $\{0, 1, \ldots, n-2\}$,

then the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ is isomorphic to the direct product of $\mathrm{SL}(n) = \mathbf{L}_1$ and the 2-element sloop $\mathrm{SL}(2)$. We observe that \mathbf{L}_1 is a subsloop of $2 \otimes_{\alpha} \mathbf{L}_1$ for any permutation α .

In the following section, we choose a simple sloop \mathbf{L}_1 of cardinality n and a suitable permutation α to construct a subdirectly irreducible sloop of cardinality 2n.

2.1. Subdirectly irreducible sloops SL(2n)

An STS is planar if it is generated by every triangle and contains a triangle. A planar STS(n) exits for each $n \ge 7$ and $n \equiv 1$ or 3 (mod 6) [6]. Quackenbush [12] proved in the next theorem that almost all planar SL(n)'s are simple.

Theorem 1. [12] Let $(P^*; B)$ be a planar STS(n-1) and $(P; \cdot, 1)$ be its corresponding sloop, then either $(P; \cdot, 1)$ is simple or n = 8.

Accordingly, we may say that for any n > 8 with $n \equiv 2$ or 4 (mod 6) there is a simple SL(n).

Lemma 2. Let \mathbf{F} be a 1-factorization of the complete graph K_n . For any two distinct 1factors F_1 and F_2 of \mathbf{F} , there is always a 1-factor F_3 of \mathbf{F} satisfying that the three factors F_1, F_2 , and F_3 do not contain any sub 1-factorization of the complete graph K_4 .

Proof. The number of edges of a 1-factor F_i of \mathbf{F} is n/2. Then the maximum number of sub 1-factorizations on K_4 of \mathbf{F} with sub 1-factors $f_1 \subseteq F_1$ and $f_2 \subseteq F_2$ on a 4-element subset of vertices is [n/4] (the greatest integer in n/4).

For any possible 4-element subset of vertices $\{x, y, z, w\}$, if $f_1 = \{xy, zw\}$ and $f_2 = \{xz, yw\}$, then there is at most only one 1-factor F_i of **F** containing the third sub 1-factor $f_i = \{xw, yz\}$ of the sub 1-factorization of K_4 .

If the 1-factorization \mathbf{F} contains the maximum number of sub 1-factorizations of K_4 with sub 1-factors $f_1 \subseteq F_1$ and $f_2 \subseteq F_2$ on a 4-element subset of vertices, then there are at most [n/4] distinct 1-factors of $\mathbf{F} - \{F_1, F_2\}$, each containing the third sub 1-factor f_i of a sub 1-factorization of K_4 .

Since $|\mathbf{F}| = n - 1$ and $n - 3 > [\frac{1}{4}n]$ for n > 4, then we may say that for n > 4 there is always at least one 1-factor F_j not containing the third sub 1-factor $\{xw, yz\}$ for all possible 4-element subset of vertices $\{x, y, z, w\}$. This completes the proof of the lemma.

Now, we are ready to construct a sloop **L** of cardinality 2n having only one proper congruence relation ϕ , in which its homomorphic image \mathbf{L}/ϕ is the 2-element Boolean group.

Theorem 3. Let \mathbf{L}_1 be a simple sloop of cardinality n > 8, then there is a permutation α on the set $\{0, 1, \ldots, n-2\}$ such that the construction $2 \otimes_{\alpha} \mathbf{L}_1$ will be a subdirectly irreducible sloop of cardinality 2n, in which each proper homomorphic image is Boolean.

Proof. Without loss of generality, we may assume that $a_0 \cdot a_1 = a_2$ in \mathbf{L}_1 ; then

 $1a_0, a_1a_2 \in F_0, \quad 1a_1, a_0a_2 \in F_1 \quad \text{and} \quad 1a_2, a_0a_1 \in F_2.$

And according to the definition of the 1-factorization **G** in the construction $2 \otimes_{\alpha} \mathbf{L}_1$, there is a sub 1-factorization of **G** on K_4 namely:

$$bb_0, b_1b_2 \in G_0, \quad bb_1, b_0b_2 \in G_1 \text{ and } bb_2, b_0b_1 \in G_2.$$

By Lemma 2, we may also say that there is a 1-factor G_i ; $i \neq 0, 1, 2$ such that the three 1-factors G_0, G_1, G_i do not contain any sub 1-factorization of the complete graph K_4 .

By choosing the permutation $\alpha = (2 \ i)$ on the set $\{0, 1, \ldots, n-2\}$, we will prove that the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ is a subdirectly irreducible sloop, in which each proper homomorphic image is Boolean.

Since \mathbf{L}_1 is simple and $|\mathbf{L}| = 2|\mathbf{L}_1|$, then for any permutation α the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ contains the subsloop \mathbf{L}_1 as the unique subsloop of cardinality n; \mathbf{L}_1 is necessary normal.

If there is an isomorphism f between \mathbf{L} and the direct product of \mathbf{L}_1 and $\mathrm{SL}(2) := (\{0,1\}; +, 0)$, then it must be $f(P_1) = P_1 \times \{0\}$ and $f(P_2) = P_2 \times \{1\}$. But any 4-element subsloop $\{1, a_i, a_j, a_k\} \times \{0\}$ of $P_1 \times \{0\}$ lies in an 8-element subsloop $Y = \{1, a_i, a_j, a_k\} \times \{0, 1\}$ of the direct product $L_1 \times \{0, 1\}$. Since the image $f^{-1}(Y)$ is a subsloop of \mathbf{L} , hence we may say that if $\mathbf{L} \cong L_1 \times \{0, 1\}$, then any 4-element subsloop $U = \{1, a_i, a_j, a_k\}$ of P_1 lies in an 8-element subsloop $X = \{1, a_i, a_j, a_k, b', b_{i'}, b_{j'}, b_{k'}\}$ of \mathbf{L} with $X - U \subseteq P_2$.

Accordingly, to prove that **L** is not isomorphic to the direct product of L_1 and the 2element sloop, it is enough to show that there is no subsloop **X** of **L** of cardinality 8 containing the subsloop $U = \{1, a_0, a_1, a_2\}$ with $X - U \subseteq P_2$.

Assume there is a subsloop **X** of cardinality 8 containing $U = \{1, a_0, a_1, a_2\}$ with $X - U = \{b_i, b_j, b_l, b_k\} \subseteq P_2$. We have $\alpha(0) = 0$, so $\{a_0, b_l, b_k\}$ is a block of B iff $b_l b_k \in G_0$. Hence, there is a sub-1-factor $\{b_i b_j, b_l b_k\}$ of G_0 related with a_0 . And we have $\alpha(1) = 1$, so there is also a sub-1-factor, say $\{b_i b_l, b_j b_k\}$ of G_1 , related with a_1 . If the set $X = \{1, a_0, a_1, a_2, b_i, b_j, b_l, b_k\}$ forms a subsloop, then the operation "." is associative on X. Hence $a_2 = a_0 \cdot a_1 = (b_i \cdot b_j) \cdot (b_i \cdot b_l) = b_j \cdot b_l$ and so $a_2 = a_0 \cdot a_1 = (b_l \cdot b_k) \cdot (b_i \cdot b_l) = b_i \cdot b_k$. Moreover, we have $\alpha(2) = i$; this means that a_2 is related with the 1-factor G_i (i.e. $\{a_2, b_l, b_k\}$ is a block of B iff $b_l b_k \in G_i$). This implies that G_i contains the sub 1-factor $= \{b_j b_l, b_i b_k\}$, contradicting the assumption that G_0, G_1, G_i does not contain any sub 1-factorization of K_4 .

Accordingly, the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ is not isomorphic to the direct product of \mathbf{L}_1 and the 2-element sloop SL(2).

Next, we will show that the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ has only one proper congruence ϕ satisfying \mathbf{L}/ϕ is Boolean.

Since the constructed sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ has \mathbf{L}_1 as a subsloop, then \mathbf{L}_1 is a normal subsloop of \mathbf{L} . This means that there is a congruence relation ϕ of \mathbf{L} defined by $[1]\phi = L_1$.

Let θ be a non-trivial congruence relation of \mathbf{L} and $\theta \neq \phi$; then $[1]\theta \cap L_1 = \{1\}$, otherwise $\theta_{\mathbf{L}_1}$ (θ restricted on \mathbf{L}_1) is a non-trivial congruence on \mathbf{L}_1 , contradicting the assumption that L_1 is simple. Consequently, $|[1]\theta| = 2$; then we may assume that $[1]\theta = \{1, b_i\}$ for $b_i \in P_2$. This means that $\theta \cap \phi = \Delta$ (the diagonal relation) and $\theta \circ \phi = \nabla$ (the largest congruence). This implies that \mathbf{L} is isomorphic to the direct product of \mathbf{L}_1 and $\mathrm{SL}(2)$, contradicting the preceding result that $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1 \not\cong \mathbf{L}_1 \times \mathrm{SL}(2)$.

This means that the constructed sloop **L** has no non-trivial congruence θ with $\theta \neq \phi$. This completes the proof of the theorem. In fact, a sloop SL(m) is simple if m can not be factored into $(6n_1+i)(6n_2+j)$ for some n_1, n_2 and some $i, j \in \{2, 4\}$. In particular, there are only simple SL(m)'s, if m is not divisible by 4.

If $m \equiv 2$ or 4 (mod 6), then m = 2n. Moreover, if $n \not\equiv 2$ or 4 (mod 6), then there are only simple sloops of cardinality m.

Let $m \equiv 2 \text{ or } 4 \pmod{6}$ and m = 2n with n > 8. For $n \equiv 2 \text{ or } 4 \pmod{6}$, so by Theorem 1, there is a simple sloop \mathbf{L}_1 of cardinality n. And by Theorem 3, there is a subdirectly irreducible sloop $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ of cardinality m with only one proper congruence ϕ satisfying that \mathbf{L}/ϕ is isomorphic to the 2-element Boolean sloop.

For $m \leq 16$, there are only Boolean sloops SL(m) for m = 2, 4, 8 and only simple sloops SL(m) for m = 10, 14. To complete the result of Theorem 3 we will show that there is a subdirectly irreducible $\mathbf{L} = SL(16)$ having only one proper congruence ϕ with $|\mathbf{L}/\phi| = 2$ as follows:

In the catalogue of all 80 STS(15)'s, see [5], choose one which has exactly one 7-element subsystem. The corresponding sloop has exactly one 8-element subsloop. It has no other proper non-trivial normal subsloops, since otherwise one could construct a second 7-element subsystem.

Finally, we may say that:

For each n > 4 with $n \equiv 2$ or 4 (mod 6), there is a subdirectly irreducible (monolithic) sloop **L** of cardinality 2n having only one proper non-trivial congruence relation ϕ ; furthermore \mathbf{L}/ϕ is the 2-element Boolean sloop.

Quackenbush [12] has proved that the variety $V(\mathbf{L}_1)$ generated by a simple planar sloop \mathbf{L}_1 has only two subdirectly irreducible sloops \mathbf{L}_1 and the 2-element sloop SL(2) and then $V(\mathbf{L}_1)$ covers the smallest nontrivial subvariety (the class of all Boolean sloops).

Quackenbush [12] has also showed that the variety $V(\mathbf{L}_1, \mathbf{L}_2, \dots, \mathbf{L}_m)$ generated by pairwise non-isomorphic finite simple planar sloops $\mathbf{L}_1, \mathbf{L}_2, \dots, \mathbf{L}_m$ equal to $P_s(\mathbf{L}_1, \mathbf{L}_2, \dots, \mathbf{L}_m, \mathrm{SL}(2))$. This implies that the variety $V(\mathbf{L})$ generated by the constructed sloop $\mathrm{SL}(2n) = \mathbf{L}$, is not subvariety of the variety $V(\mathbf{L}_1, \mathbf{L}_2, \dots, \mathbf{L}_m)$ generated by any set of pairwise non-isomorphic finite simple planar sloops $\mathbf{L}_1, \mathbf{L}_2, \dots, \mathbf{L}_m$.

On the other hand, let \mathbf{L}_1 be a planar sloop of cardinality n and $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ be the constructed sloop $\mathrm{SL}(2n)$. For any subsloop S other than \mathbf{L}_1 of \mathbf{L} with |S| > 4, one can easily prove that $|L_1 \cap S| = \frac{1}{2}|S|$. Accordingly, if \mathbf{L}_1 is planar, then the class of all proper subsloops of $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ are exactly \mathbf{L}_1 and $\mathrm{SL}(n)$ for n = 8, 4, 2. This means that the variety $V(\mathbf{L})$ generated by \mathbf{L} properly contains the subvariety $V(\mathbf{L}_1)$.

Finally, we want to sharpen the previous result by proving that the variety $V(\mathbf{L})$ covers the variety $V(\mathbf{L}_1)$. For it we need some concepts and theorems on the congruence modular varieties due to R. Freese and R. McKenzie [7] and H. Werner [13].

In [12] Quackenbush has proved that any finite simple sloop \mathbf{L}_1 with $|L_1| > 2$ is functionally complete; i.e. \mathbf{L}_1^n has no skew congruence for any $n \ge 2$. He also proved that $\mathbf{L}_1^n \times \mathbf{C}_2^m$ has no skew congruence for any positive integers n and m, where \mathbf{C}_2 denotes to the 2-element sloop SL(2).

Theorem 4. [13] Let **K** be a permutable variety with $\mathbf{A}_1, \mathbf{A}_2, \ldots, \mathbf{A}_n \in \mathbf{K}$. Then $\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \times \mathbf{A}_n$ has a skew congruence iff for some $i \neq j$; $\mathbf{A}_i \times \mathbf{A}_j$ has a skew congruence.

Accordingly, we may say that $\mathbf{L}^r \times \mathbf{L}_1^n \times \mathbf{C}_2^m$ has a skew congruence iff $\mathbf{L} \times \mathbf{L}_1, \mathbf{L}^2, \mathbf{L} \times \mathbf{C}_2$ or \mathbf{C}_2^2 has a skew congruence.

We want to prove that if \mathbf{L}^2 , $\mathbf{L} \times \mathbf{C}_2$ or \mathbf{C}_2^2 has a skew congruence ϕ , then the homomorphic image of any of them by ϕ is isomorphic to \mathbf{C}_2 .

Theorem 5. [13] Let **K** be a permutable variety with $\mathbf{A}, \mathbf{B} \in \mathbf{K}$. Then $\mathbf{A} \times \mathbf{B}$ has a skew congruence iff there are homomorphic images \mathbf{A}' of \mathbf{A} and \mathbf{B}' of \mathbf{B} and a 1-1 map μ with $dom(\mu) \subseteq \mathbf{A}'$, $|dom(\mu)| > 1$, $range(\mu) \subseteq \mathbf{B}'$ such that $\{(a, \mu(a)): a \in dom(\mu)\}$ is a congruence class on $\mathbf{A}' \times \mathbf{B}'$.

Theorem 6. [13] Let \mathbf{K} be a permutable variety with $\mathbf{A}, \mathbf{B} \in K$. If $\{(a_i, b_i): i \in I\}$ is a congruence class of $\mathbf{A} \times \mathbf{B}$, then $\{a_i: i \in I\}$ is a congruence class of \mathbf{A} (i.e. the projection of a congruence class is a congruence class).

Theorem 7. Let \mathbf{L}_1 be a finite simple sloop and $\mathbf{L} = 2 \otimes_{\alpha} \mathbf{L}_1$ be the constructed sloop. Then $\mathbf{L} \times \mathbf{L}_1$ has no skew congruence and each of \mathbf{L}^2 , $\mathbf{L} \times \mathbf{C}_2$ and \mathbf{C}_2^2 has only one skew congruence ψ in which the homomorphic image of any of them by ψ is isomorphic to \mathbf{C}_2 .

Proof. Let \mathbf{A} and \mathbf{B} be two finite non-trivial sloops. By applying the previous two theorems then we may say that:

 $\mathbf{A} \times \mathbf{B}$ has a skew congruence iff there are $\mathbf{A}' \in H(\mathbf{A})$, $\mathbf{B}' \in H(\mathbf{B})$ and a 1-1 map μ : $\mathbf{A}'_1 \to \mathbf{B}'$ for a subsloop \mathbf{A}'_1 of \mathbf{A}' with $|\mathbf{A}'_1| > 1$ such that $(\mathbf{A}'_1, \mu(\mathbf{A}'_1)) := \{(a, \mu(a)): a \in \mathbf{A}'_1 = dom(\mu)\}$ is a congruence class of $\mathbf{A}' \times \mathbf{B}'$. We observe that \mathbf{A}'_1 and $\mu(\mathbf{A}'_1)$ are also congruence classes of \mathbf{A}' and \mathbf{B}' respectively. Moreover, $(\mathbf{A}'_1, \mu(\mathbf{A}'_1))$ is a non-trivial congruence class of $\mathbf{A}'_1 \times \mathbf{B}'$.

This means that if $\mathbf{A} = \mathbf{L}$ and $\mathbf{B} = \mathbf{L}_1$, since \mathbf{L}_1 is simple, then $\mu(\mathbf{A}'_1)$ must be equal to \mathbf{L}_1 . Thus $\mathbf{A}' = \mathbf{L}$ and \mathbf{A}'_1 must be equal to \mathbf{L}_1 . Hence, if there is a skew congruence on $\mathbf{L} \times \mathbf{L}_1$, then $\mathbf{A}'_1 \times \mathbf{B}' = \mathbf{L}_1 \times \mathbf{L}_1$ has also a skew congruence, contradicting the fact that \mathbf{L}_1 is functional complete. Therefore, $\mathbf{L} \times \mathbf{L}_1$ has no a skew congruence.

Let $\mathbf{A} = \mathbf{L}$ and $\mathbf{B} = \mathbf{L}$, so if $\mathbf{A}' = \mathbf{L}$ and $\mathbf{A}'_1 = \mathbf{L}_1$, then $\mu(\mathbf{A}'_1) = \mathbf{L}_1$. In this case, if $\mathbf{L} \times \mathbf{L}$ has a skew congruence, then $(\mathbf{A}'_1, \mu(\mathbf{A}'_1)) = (\mathbf{L}_1, \mathbf{L}_1)$ is a congruence class of a skew congruence of $\mathbf{A}'_1 \times \mathbf{B}' = \mathbf{L}_1 \times \mathbf{L}_1$. Which is impossible, for the same reason given above. This means that if $\mathbf{A} = \mathbf{L}$ and $\mathbf{B} = \mathbf{L}$, then \mathbf{A}'_1 must be a congruence class of $\mathbf{A}' = \mathbf{L}/\theta \cong \mathbf{C}_2$, hence $\mathbf{A}'_1 = \mathbf{A}' \cong \mathbf{C}_2$ and $\mu(\mathbf{A}'_1) \cong \mathbf{C}_2$. Since $\mu(\mathbf{A}'_1)$ is a congruence class of the homomorphic image \mathbf{B}' , then $\mathbf{B}' \cong \mathbf{C}_2$. Which implies that $\mathbf{L} \times \mathbf{L}$ has only one skew congruence ψ , if $\psi/\theta \times \theta$ is a skew congruence of $\mathbf{L}/\theta \times \mathbf{L}/\theta = \mathbf{A}' \times \mathbf{B}'$. Therefore, the only skew congruence ψ of $\mathbf{L} \times \mathbf{L}$ satisfies that $(\mathbf{L} \times \mathbf{L})/\psi \cong \mathbf{C}_2$.

Let $\mathbf{A} = \mathbf{L}$ and $\mathbf{B} = \mathbf{C}_2$, then \mathbf{A}'_1 must be equal to \mathbf{C}_2 . Hence $\mathbf{L} \times \mathbf{C}_2$ has a skew congruence iff $(\mathbf{A}'_1, \mu(\mathbf{A}'_1)) \cong (\mathbf{C}_2, \mathbf{C}_2)$ as a congruence class of a skew congruence of $\mathbf{A}' \times \mathbf{B}' = \mathbf{C}_2 \times \mathbf{C}_2$. Which implies that $\mathbf{L} \times \mathbf{C}_2$ has only one skew congruence ψ satisfying that $(\mathbf{L} \times \mathbf{C}_2)/\psi \cong \mathbf{C}_2$. This completes the proof of the theorem.

Quackenbush [12] has proved that $HSP_f(\mathbf{L}_1) = P_f\{\mathbf{L}_1, \mathbf{C}_2\}$. Similarly and according to the previous discussion, one may show that $HSP_f(\mathbf{L}) = P_f\{\mathbf{L}, \mathbf{L}_1, \mathbf{C}_2\}$. Consequently, we may say that $\mathbf{L}, \mathbf{L}_1, \mathbf{C}_2$ are the only subdirectly irreducible (monolithic) sloops in the variety $V(\mathbf{L})$, then $V(\mathbf{L}) = P_s\{\mathbf{L}, \mathbf{L}_1, \mathbf{C}_2\}$. Which implies that the variety $V(\mathbf{L})$ covers the variety $V(\mathbf{L}_1)$.

References

- Armanious, M. H.: Construction of Nilpotent Sloops of Class n. Discrete Math. 171 (1997), 17–25.
 Zbl 0884.05016
- [2] Armanious, M. H.: Nilpotent SQS-Skeins with Nilpotent Derived Sloops. Ars Combinatoria, 56 (2000), 193–200.
- [3] Armanious, M. H.: Subdirectly Irreducible Steiner Quasigroups of Cardinality 3n. To appear in Ars Combinatoria.
- Bruck, R. H.: A Survey of Binary Systems. Springer-Verlag, Berlin-Heidelberg, New York 1971.
- [5] Colbourn, C.; Dinitz, J. (eds.): The CRC Handbook of Combinatorial Designs. CRC Press, New York 1996.
 Zbl 0836.00010
- [6] Doyen, J.: Sur la Structure de Certains Systems Triples de Steiner. Math. Z. 111 (1969), 289–300.
 Zbl 0182.02702
- [7] Freese, R.; McKenzie, R.: Commutator Theory for Congruence Modular Varieties. LMS Lecture Note Series 125, Cambridge Univ. Press 1987.
 Zbl 0636.08001
- [8] Ganter, B.; Werner, H.: Co-ordinating Steiner Systems. Ann. Discrete Math. 7 (1980), 3-24.
 Zbl 0437.51007
- [9] Grätzer, G.: Universal Algebra. Springer-Verlag New York, Heidelberg, Berlin, 2nd edition, 1979.
 Zbl 0412.08001
- [10] Harary, F.: *Graph Theory*. Addison-Wesley, Reading, MA 1969. Zbl 0182.75502
- [11] Lindner, C. C.; Rosa, A.: Steiner Quadruple Systems a Survey. Discrete Math. 22 (1978), 147–181.
 Zbl 0398.05015
- [12] Quackenbush, R. W.: Varieties of Steiner Loops and Steiner Quasigroups. Canad. J. Math. 18 (1978), 1187–1198.
 Zbl 0359.20070
- [13] Werner, H.: Congruence on Products of Algebras and Functionally complete Algebras. Algebra Universalis 4 (1974), 99–105.

Received August 18, 2000