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Abstract. For a convex body K, let us denote by t(K) the largest number for
which there exists a packing with finitely many translates of K in which every
translate has at least t(K) neighbours. In this paper we determine t(K) for
convex discs and 3-dimensional convex cylinders. We also examine how small the
cardinalities of the extremal configurations can be in these cases.
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1. Introduction

In this paper we consider the problem how large the minimum number of neighbours of
a member can be in a packing with finitely many translates of a convex body. A related
result of Kertész [6] shows that in any finite packing of R3 with congruent balls there is
a member having at most eight neighbours. It is not known if eight can be replaced by
seven or six in the previous statement. On the other hand, in higher dimensions Alon [1]
constructed finite packings of equal balls in which every member has a large number of

neighbours (namely, at least 2
√
d neighbours for every dimension d = 4k, k ∈ N).

First we give a solution of the problem for convex discs, then for 3-dimensional convex
cylinders. (By a convex cylinder we mean a convex body which is the Minkowski sum of
a segment and a compact convex set of dimension smaller by one.) We also investigate
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on the minimum cardinalities of the extremal packings for these convex bodies. Note that
Österreicher and Linhart [8] examined similar problems in R2 for packings with congruent
copies of smooth convex discs. For additional related results and references in this topic,
see the survey papers by G. Fejes Tóth [2] and by G. Fejes Tóth and W. Kuperberg [3].
Let us recall some notions. By a translative packing of a convex body we mean a

collection of mutually nonoverlapping translates of that body. The neighbours of a member
K ′ in a packing are those members that have a common point with K ′ and are different
from K ′ (i.e. they touch K ′). The kissing numbers of a packing are the numbers occuring
as the number of neighbours of some member in the packing. The minimum kissing number
of a packing is the least among all kissing numbers of the packing, that is, it is the minimum
number of neighbours that a member has in the packing. A 2-dimensional convex body is
called a convex disc.
For a given convex body K, let t(K) denote the largest number for which there is

a packing with finitely many translates of K in which every member has at least t(K)
neighbours. In other words, t(K) is the maximum of the minimum kissing numbers of
packings with finitely many translates of K. Let m(K) be the minimum cardinality of
packings with finitely many translates of K whose minimum kissing numbers are maximal,
i.e. equal to t(K).

We prove the following two theorems.

Theorem 1. Let D be a convex disc. Then

t(D) =

{
3, if D is not a parallelogram,
4, if D is a parallelogram,

and

m(D) =

{
7, if D is not a parallelogram,
12, if D is a parallelogram.

Theorem 2. Let C be a 3-dimensional convex cylinder. Then

t(C) =

{
10, if D is not a parallelepiped,
13, if D is a parallelepiped,

and

m(C) ≤

{
172, if D is not a parallelepiped
392, if D is a parallelepiped.

One can reformulate the problem considered in this paper in terms of Minkowski spaces.
(By a Minkowski space we mean a finite dimensional normed space in this paper.) Recall
that two translates of a d-dimensional convex body K are nonoverlapping [resp., touching]
exactly if the distance between their translation vectors is at least 1 [resp., exactly 1]
in Rd equipped with the Minkowski metric whose unit ball is the difference body of K.
Using this property, it is easy to see that the problem is equivalent to the following: In a
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given Minkowski space, how large the minimum vertex degree of a graph can be in which
the vertices are formed by finitely many distinct points of the space and two vertices are
connected by an edge exactly if the distance between them is minimal, that is, it is equal
to the minimum distance occuring between any two vertices of the graph? By Theorems 1
and 2 this problem is solved when the Minkowski space is either 2-dimensional or it is
3-dimensional and has a cylindrical unit ball.

2. Proof of Theorem 1

First we recall some notations. We use the standard notation αA+βB for the set {αa+βb ∈
Rd | a ∈ A, b ∈ B} for arbitrary A,B ⊆ Rd and α, β ∈ R. If v ∈ Rd, then we simply write
A+ v instead of A+ {v}, and we write A−B instead of A+ (−1)B. If U ⊆ Rd and V is
a collection of subsets of Rd, then we introduce the notation U(∩)V = {U ∩ V | V ∈ V}.
For a convex body K, we denote its boundary by ∂K. If F is a finite set, then we denote
its cardinality by |F |.
We now recall a well-known observation of Minkowski [7], which says that two trans-

lates K + x and K + y of a convex body K have a common point if and only if the two
translates 12 (K −K) + x and

1
2 (K −K) + y of the Minkowski symmetrization

1
2 (K −K)

of K have a common point. This shows that it suffices to prove Theorem 1 when D is
centrally symmetric. Therefore we may assume throughout the proof that D is centrally
symmetric.
Let P be an arbitrary packing with finitely many translates of D, and let S =

conv(
⋃
P), where conv(.) stands for the convex hull of a set. We distinguish two cases.

Case 1. D is a parallelogram.

By affine invariance it is enough to consider the case D = [0, 1]2 ⊆ R2.
Consider a supporting line l1 of S which is horizontal (i.e. parallel to the first coordi-

nate axis). Then l1(∩)P is a nonempty collection of finitely many nonoverlapping segments
lying in l1. Let D1 ∈ P be chosen so that l1 ∩D1 6= ∅ and l1 ∩D1 does not separate any
other two segments of l1(∩)P in l1. Let l′1 6= l1 be the other line parallel to l1 which
contains a side of D1. Since it is clear that at most one neighbour of D1 intersects l1,
there are at most three neighbours of D1 which intersect l

′
1 and do not intersect l1, and

that every neighbour of D1 intersects either l1 or l
′
1, thus we get that D1 has at most four

neighbours. This shows t(D) ≤ 4.
Now, consider an n × n grid of translates of D for n ≥ 4, and remove the four

translates of D at the corners of the grid. In this finite packing every member has at
least four neighbours (the case n = 4 is illustrated in Figure 1). This implies t(D) ≥ 4.
Consequently t(D) = 4.
Assume now that in P every member has at least four neighbours. Then we get that

exactly one neighbour of D1 intersects l1, and there are exactly three neighbours of D1
which intersect l′1 and do not intersect l1. But for a fixed supporting line l1 of S there are
two distinct choices D11 and D12 for D1, and they have at most two common neighbours.
Thus there are at least six members of P which have a neighbour intersecting l1. On
the other hand, it is also implied that the horizontal width of S (i.e. the length of the
projection of S to the horizontal coordinate axis) is at least 4.
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Let l2 6= l1 be the other horizontal supporting line of S. An analogous argument
shows that there are at least six members of P which have a neighbour intersecting l2.

Figure 1. A translative packing of 12 squares with minimum kissing number 4

Now, considering the vertical supporting lines of S, the very same kind of argument as in
the horizontal case gives that the vertical width of S is at least 4. Therefore those two
subcollections of P formed by those members of P which have neighbours intersecting l1
and l2, respectively, have no common members. Since each subcollection has at least six
elements, we get |P| ≥ 12. Therefore m(D) ≥ 12.
On the other hand, in the above mentioned example derived from the n×n grid there

are 12 translates of D for n = 4. This implies m(D) ≤ 12. Consequently m(D) = 12.

Case 2. D is not a parallelogram.

First we prove t(D) ≤ 3. We begin with introducing some notions. A packing H of
translates of D is a Hadwiger configuration if every member of the packing touches D. Two
members D1, D2 ∈ H are called opposite if the center of D is the midpoint of the segment
connecting the centers of D1 and D2 (recall that D is centrally symmetric throughout the
proof). Note that a Hadwiger configuration has a natural cyclic order. We say that there
is a gap in a Hadwiger configuration H if there are two consecutive members of H which
are disjoint. A segment s connecting two points of a convex disc D is a long segment if its
length is larger than the half of the maximum length of chords of D parallel to s.

Subcase 1. ∂D does not contain two nonoverlapping long segments having a common
endpoint.

In this case, by Swanepoel [9] either every Hadwiger configuration of six translates of D
consists of three pairs of opposite members or it contains a pair of opposite translates with
translational vectors parallel to a long segment of ∂D.
If ∂D contains a long segment, then let l be a supporting line of S parallel to one such

long segment. Otherwise choose an arbitrary supporting line of S as l. Let D1 ∈ P be
chosen so that l ∩D1 6= ∅ and l ∩D1 does not separate any other two members of l(∩)P
in l.
We now assume the contrary, i.e. t(D) ≥ 4. Then we may assume that there are at

least four neighbours of D1 in P. Since l is a supporting line of both D1 and S, it can
be easily shown that there are two translates D′ and D′′ of D with D′, D′′ /∈ P which
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do not overlap any neighbour of D1 in P and touch D1. These two translates and the
neighbours of D1 form a Hadwiger configuration of at least six translates of D1. But then
by the fact that in a planar packing with translates of a convex disc every member has
at most six neighbours if the disc is different from a parallelogram (see Grünbaum [5]),
there are exactly six members in this new configuration. We may choose D′ and D′′ to
be non-opposite to any neighbour of D1 in P (in fact, we can choose D′ and D′′ so that
the line determined by their centers encloses any sufficiently small nonzero angle with l).
This implies that there must be two opposite translates among the neighbours of D1 in P,
contradicting that l ∩D1 does not separate any other two members of l(∩)P in l.

Subcase 2. ∂D contains two nonoverlapping long segments having a common endpoint.

In this case it can be easily seen that there exists an affine transformation f : R2 → R2
for which V ⊆ f(D) ⊆ [−1, 1]2, where V is the union of the midpoints of the sides of the
square [−1, 1]2 and its two vertices (−1, 1) and (1,−1).
Let D′ = f(D), P ′ = {(P), and S′ = f(S). Consider a horizontal supporting line l of

S′, and a member D′1 ∈ P
′ chosen so that l∩D′1 does not separate any other two segments

of l(∩)P ′ in l. Without loss of generality we may assume that l = {(x1, x2) ∈ R2 | x2 = 1},
D′1 = D

′, and l′(∩)P ′ = ∅ for l′ = l ∩H−, where H− = {(x1, x2) ∈ R2 | x1 < −1}.
For every k ∈ R, let H+k be the closed halfplane defined as

H+k = {(x1, x2) ∈ R
2 | x1 ≥ k}.

Let s be the half-open segment

s = {(x,−1) ∈ R2 | −1 ≤ x < 1}.

We also introduce notations for some translates of D′:

D′k = D
′ + (k − 1, 0),

D′′k = D
′ + (k − 1,−2).

Let us assume the contrary, i.e. every member of P has at least four neighbours. Then
the same holds for every member of P ′ as well. It is clear that H+1 contains at most two
neighbours of D′1 in P

′, and if it contains exactly two neighbours, then these are D′3 and
D′′3 . It is also easy to see that at most two neighbours of D

′
1 intersect s. On the other

hand, any neighbour of D′1 either is contained in H
+
1 or intersects s. Therefore, since D

′
1

has at least four neighbours by assumption, we get that D′1 has exactly four neighbours
in P ′ and D′3, D

′′
3 , D

′′
1 are among them. Now we consider the neighbours of D

′
3: there are

exactly two which are not contained in H+3 . Thus there must be exactly two, D
′
5 and D

′′
5

contained in H+3 . Repeating similar arguments for D
′
i with i = 5, 7, 9, . . ., we obtain by

induction that D′i and D
′′
i are members of P for every positive odd number i. But this

contradicts the finiteness of P. Consequently, we get t(D) ≤ 3.

Next we show t(D) ≥ 3. We may assume that D is symmetric about the origin o ∈ R2.
Let us consider the packing of six translates of D with centers of the vertices of an affine
regular hexagon inscribed into 2D (for the existence of such a hexagon, see [4]). Then
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Figure 2. A translative packing of 7 circles with minimum kissing number 3

these six translates form a Hadwiger configuration of D with no gap. This means that
these six translates and D form a packing of seven translates of D in which every member
has at least three neighbours (Figure 2 shows the case when D is a circle). Consequently
t(D) ≥ 3. This example also shows that m(D) ≤ 7.
It remains to prove that m(D) ≥ 7. First we introduce a notion and notations. Then

we prove a lemma and its corollary which are needed for the proof of the lower bound.
Let K be a centrally symmetric convex body. By the relative length of a segment

s ⊆ R2 with respect to K we mean the ratio of the usual (Euclidean) length of s and the
half of the usual length of the longest chord of K parallel to s. For a, b ∈ R2, we write ab
for the segment with endpoints a and b. We introduce the notation (ab)K for the relative
length of the segment ab. Observe that ab ⊆ K is a long segment if and only if (ab)K > 1.
Note that the introduced notion of relative length coincides with the Minkowski metric in
which the unit ball is K. If x = (x1, x2) ∈ R2, then let πi(x) = xi for i = 1, 2.

Lemma 1. Let K be a centrally symmetric convex disc different from a parallelogram.
Then any pentagon inscribed into K and containing the center of K has a side which is a
long segment in K.

Corollary 2. Let K be a centrally symmetric convex disc different from a parallelogram.
Then there is a gap in every Hadwiger configuration of n translates of K for any 3 ≤ n ≤ 5.

Proof of Lemma 1. Consider an arbitrary pentagon inscribed into K which contains the
center of K, and has consecutive vertices p1, p2, . . . , p5 ordered counterclockwise.
First assume that ∂K does not contain a long segment. In this case it is easy to see

that we have (ab)K < (ac)K for any three distinct consecutive points a, b, c ∈ ∂K when b
is contained in the shorter component of ∂K \ {a, c} (cf. Lemma 2 of [9]). Let H be an
affine regular hexagon inscribed into K having the same center as K. For the existence of
such a hexagon, see [4]. It is clear that all sides of H have relative length 1 with respect
to K. Consider a partition of ∂K into five disjoint half-open arcs Ai connecting pi and
pi+1, and not containing pi+1, 1 ≤ i ≤ 5 (using the notation p6 = p1). Then there are
two consecutive vertices q, q′ of H which are contained in one of these half-open arcs, say,
in A1. We may assume that p1, q, q

′, p2 are consecutive points of ∂K with q
′ 6= p2 but

allowing q = p1. Then 1 = (qq
′)K ≤ (p1q′)K < (p1p2)K . Therefore p1p2 is a long segment

in K.
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Secondly, assume that ∂K contains a long segment. Then, by central symmetry, ∂K
contains two parallel long segments of equal length. Without loss of generality we may
assume that s1 = E1 ∩K and s−1 = E−1 ∩K are long segments in K, and s1, s−1 are the
vertical sides of the square [−1, 1]2, where Er is the vertical line Er = {(x1, x2) | x1 = r}
(r ∈ R).
Assume the contrary, i.e. (pipi+1)K ≤ 1 for every 1 ≤ i ≤ 5. Then it is clear that

pl ∈ s1 and pk ∈ s−1 for some not cyclically consecutive l and k. We may assume that
l = 1 and k = 3. Then it can be seen that π1(p2) = 0, which implies π2(pi) > 0 for i = 1, 3.
But from this follows that π1(p5) − π1(p4) > 1. However, this means that (p4p5)K > 1,
which is a contradiction. �

Proof of Corollary 2. Consider the centers of the translates in the Hadwiger configuration.
They form the vertices of a polygon P inscribed into ∂K ′, where K ′ is a homothetic copy
of K enlarged from the center of K by coefficient 2. Assume the contrary, that is, there
is no gap in the Hadwiger configuration. Then each side of P has relative length 1 with
respect to K ′. This clearly implies that the center of K ′ is contained in P . Consider a
pentagon P ′ inscribed into K ′ whose vertices contain the vertices of P . Then every side
of P ′ has relative length at most 1 with respect to K ′, contradicting Lemma 1. �

We now continue the proof of Theorem 1. We prove m(D) ≥ 7. Assume the contrary, that
is, there exists a packing P of at most six translates of D in which every member has at
least three neighbours.
First observe that sinceD is not a parallelogram, therefore in a Hadwiger configuration

of D at most two consecutive members can have a common point. By Corollary 2, this
implies that any member of P can have at most four neighbours. On the other hand, two
disjoint members of P can have at most two common neighbours, otherwise D has to be a
parallelogram, a contradiction (cf. Lemma 1 of [9]). This last observation, together with
Corollary 2, implies that for any D′ ∈ P, D′ has exactly three neighbours, and there are
exactly two members of P which are disjoint from D′, and these two members must be
touching. In particular, this shows |P| = 6.
Let the three neighbours of a member D1 ∈ P be D2, D3 and D4. Then D5, D6 ∈ P

are touching, each of them having two neighbours from N1 = {D2, D3, D4}. This means
that one of the members of N1, say D3 touches both D5 and D6. Since then D1, D5, D6
are neighbours of D3, this implies that D2 and D4 are neighbours but both are disjoint
from D3. Moreover, D2 must touch exactly one of the members D5, D6, say D6. Then D4
touches D5 but disjoint from D6.
Let qi be the center of Di (1 ≤ i ≤ 6). We may assume that D1 = D and q1 = o,

where o is the origin of R2. Let q′5 = q1q5∩∂(2D), and q′6 = q1q6∩∂(2D). Since (q1q4)2D =
(q5q4)2D = 1, therefore we have (q

′
5q4)2D ≤ 1. It can be obtained similarly that (q

′
5q3)2D ≤

1, (q′6q2)2D ≤ 1, and (q
′
6q3)2D ≤ 1. From (q2q4)2D = 1 follows that q3, q

′
5, q4, q2, q

′
6 form the

vertices of a pentagon inscribed into 2D with every side having relative length at most 1.
On the other hand, o is in the bounded region enclosed by the consecutively touching
members D3, D5, D4, D2, D6, therefore it is in the closed pentagon q3, q5, q4, q2, q6, and by
the definition of q′i, i = 5, 6, o is inside of the pentagon q3, q

′
5, q4, q2, q

′
6, too. But this

contradicts Lemma 1. This completes the proof of Theorem 1. �
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3. Proof of Theorem 2

Similarly to the proof of Theorem 1, we may assume that C is centrally symmetric. More-
over, by affine invariance, we may also assume that C = D× [−1, 1], where D is a centrally
symmetric convex disc.
We introduce two kind of maps. Let π : R3 → R2 be defined as π(x1, x2, x3) = (x1, x2),

and for any r ∈ R let fr : R2 → R3 be defined as fr(x1, x2) = (x1, x2, r). Let H be the
x1x2-plane, that is H = f0(R2).
First we prove that t(C) ≤ 13 if C is a parallelepiped, and that t(C) ≤ 10 otherwise.

Let C be a packing of finitely many translates of C. Consider a supporting plane H ′ of
conv(

⋃
C) parallel to H. Let

P = {π(C ′) | C ′ ∩H ′ 6= ∅, C ′ ∈ C}.

Then P is a planar packing of finitely many translates of D, so it has a member π(C1),
where C1 ∈ C, which has at most t(D) neighbours. Denote by H(D) the Hadwiger num-
ber of D which is defined as the maximum cardinality of the Hadwiger configurations of
translates of D.
Let H ′′ be a supporting plane of C1 parallel to H and different from H

′. Then
clearly, there are at most H(D) + 1 neighbours of C1 in C which intersect H ′′ but do not
intersect H ′. Since every neighbour of C1 in C intersects either H ′ or H ′′, we get that
t(C) ≤ t(D) + H(D) + 1. On the other hand, C is a parallelepiped if and only if D is
a parallelogram. We also know by Theorem 1 and by [5] that t(D) = 4 and H(D) = 8
for parallelograms, while t(D) = 3 and H(D) = 6 otherwise. These facts together imply
t(C) ≤ 13 if C is a parallelepiped, and t(C) ≤ 10 otherwise.

In the remaining part of the proof we give constructions for packings with finitely many
translates of the cylinder C where every member has at least t(C) neighbours. These
constructions complete the proof of Theorem 2. In the description of the constructions we
use the notation vert(A) for the vertex set of a convex polygon or convex polyhedron A.
We distinguish two cases.

Case 1. C is a parallelepiped.

We may assume that C = [−1, 1]3. We construct a packing of 392 translates of C where
every member has at least 13 neighbours. An outside view of the packing is shown in Figure
3 (note that the figure does not show that there is a “hole” inside). Clearly, it is enough to
construct a set S ⊆ Z3 of translation vectors of C containing only odd coordinates, since
then {C}+ S gives a packing.
Then the only remainig task is to check that every member in this packing has at least

13 neighbours. This becomes relatively easy, because of the highly symmetric structure of
the packing there are only few cases to check.
Here is the construction. Let O = 2Z+ 1, and

B1 =
(
[−5, 5]2 \ vert([−5, 5]2)

)
∩O2,

B2 =
(
[−3, 3]2 \ vert([−3, 3]2)

)
∩O2,
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B3 =
(
[−1, 1]2 ∩O2,

S1 = [−5, 5]
3 ∩O3,

S2 = f7(B1) ∪ f−7(B1),

S3 = f9(B2) ∪ f−9(B2),

I1 = [−3, 3]
3 ∩O3,

I2 = f5(B3) ∪ f−5(B3).

Let S′ = S1∪S2∪S3, I ′ = I1∪I2. Let S′′ and I ′′ be the set of all coordinate permutations
of the points of S′ and I ′, respectively. Let us define S = S′′\I ′′. Then {C}+S is a packing
with 392 translates of C. By symmetry it suffices to check that those members have at
least 13 neighbours whose translation vectors are the following: (1, 1, 9), (1, 3, 9), (1, 1, 7),
(1, k, 7), (3, k, 7), (1, k, 5), (3, k, 5), (5, 5, 5), for k = 3 and 5. We leave this verification to
the reader.
More visually (but less precisely), the construction can be described in this way:

Consider [−6, 6]3 formed by 63 = 216 translates of C = [−1, 1]3. Then consider a 6× 6× 1
grid of C without the 4 cubes at the corners, and put its copies, as “caps” onto the faces
of the cube [−6, 6]3. This gives additionally 6(62 − 4) = 192 cubes. Now, consider a
4 × 4 × 1 grid of C without the 4 cubes at the corners, and place its copies, as “caps”,
“in the middle” of the top of the previously placed larger “caps”. This gives additionally
6(42−4) = 72 cubes. Finally, from the middle of the packing remove the union of a 4×4×4
cubic grid and six 2 × 2 × 1 “caps” of cubes placed on the middle of the top of the faces
of the cube formed by the 4× 4× 4 grid. Thus the total number of cubes in the packing
is 216 + 192 + 72− 64− 24 = 392.

Figure 3. A translative packing of 392 cubes with minimum kissing number 13

Case 2. C is not a parallelepiped.

Consider an affine regular hexagon H inscribed into D. Without loss of generality we may
assume that H is a regular hexagon centered in the origin o ∈ R2 and with consecutive
vertices v and w. Then the planar lattice L spanned by 2v and 2w induces a lattice packing
{D}+ L where every member has exactly 6 neighbours.
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Now, the construction is the following. Let

Z1 = f7(2H ∩ L) ∪ f−7(2H ∩ L),

Z2 = f5(4H ∩ L) ∪ f−5(4H ∩ L),

Z3 = f3
(
(6H \ vert(6H)) ∩ (L \ {o})

)
∪ f−3

(
(6H \ vert(6H)) ∩ (L \ {o})

)
,

Z4 = f1
(
(6H \ (2H)) ∩ L

)
∪ f−1

(
(6H \ (2H)) ∩ L

)
.

Let Z =
⋃4
i=1 Zi. Then {C} + Z is a packing with 172 translates of C. An outside

view of the packing is shown in Figure 4 in the case when the base of the cylinder is a
regular hexagon (note that the figure does not show that there is a “hole” inside). To
prove that every member has at least 10 neighbours, by the high symmetry it suffices to
check this property for those members whose translation vectors are the following: f7(o),
f7(2v), f5(o), f5(2kv), f5(2v + 2w), f3(2kv), f3(2kv + 2w), f1(2(k + 1)v), f1(2kv + 2w),
for k = 1 and 2. We leave this verification to the reader. This completes the proof of
Theorem 2. �

Figure 4. A translative packing of 172 hexagonal cylinders with minimum kissing number 10

4. Concluding remarks

When D is a parallelogram, then from the proof of m(D) = 12 in Section 2 one can derive
without much effort that the configuration obtained from the 4×4 grid of D by leaving the
four translates at the corners is an essentially unique example for a packing with twelve
translates of D where every member has at least four neighbours. (By essential uniqueness
we mean that a configuration is unique up to simultaneous translations.)
Using similar methods as in the proof of the upper bounds for t(C) in Section 3, it

can be easily seen that t(Pd) ≤ (3d − 1)/2 for any d-dimensional paralleletope Pd, and
t(D × [0, 1]d−2) ≤ 3 + 7(3d−2 − 1)/2 for any convex disc D and d ≥ 2.
It seems very likely that the value of m(C) is relatively large for 3-dimensional convex

cylinders, let us say larger than 100. Currently we do not any extremal configurations for
3-dimensional convex cylinders with smaller number of translates than the above described
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ones with 392 and 172 translates for parallelepipeds and other 3-dimensional convex cylin-
ders, respectively.
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