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Abstract. In this paper we examine subalgebras on two generators in the univari-
ate polynomial ring. A set, S, of polynomials in a subalgebra of a polynomial ring
is called a canonical basis (also referred to as SAGBI basis) for the subalgebra if
all lead monomials in the subalgebra are products of lead monomials of polynomi-
als in S. In this paper we prove that a pair of polynomials {f, g} is a canonical
basis for the subalgebra they generate if and only if both f and g can be written
as compositions of polynomials with the same inner polynomial h for some h of
degree equal to the greatest common divisor of the degrees of f and g. Especially
polynomials of relatively prime degrees constitute a canonical basis. Another spe-
cial case occurs when the degree of g is a multiple of the degree of f . In this case
{f, g} is a canonical basis if and only if g is a polynomial in f .

1. Canonical bases for subalgebras

When studying subalgebras of the polynomial ring it is important to construct convenient
bases which can be used for example to determine whether a given element is in the subal-
gebra. Given a finite set of generators for an ideal it is algorithmic to construct a so-called
Gröbner basis for the ideal which has this property.
The concept of SAGBI basis, where SAGBI is an abbreviation for Subalgebra Analog to

Gröbner Bases for Ideals, was introduced by Kapur and Madlener [5] and independently by
Robbiano and Sweedler [9]. They also present a method for constructing such bases given a
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set of generators for a subalgebra of a multivariate polynomial ring. In general this method
is not algorithmic but when dealing with subalgebras of k[x], the polynomial ring in one
variable, it can be shown to terminate after a finite number of steps.
Here we will take a closer look at how this construction algorithm works in the case of two

generators. The objective is to find a direct criterion for determining if a pair of polynomials
is a SAGBI basis.

2. Basic definitions and notation

Let k[x] denote the polynomial ring in one variable with coefficients in the field k. For
convenience we will assume that k is of characteristic zero throughout this paper, even though
some of the results hold for arbitrary characteristic. The terms in k[x] are the elements xj, j ∈
N. A term multiplied by an element of the field is called a monomial. The terms are naturally
ordered by the rule xj � xk if j > k. The lead term of a polynomial f is denoted lt(f) and
the lead monomial lm(f). For a set S ⊆ k[x] we let lt(S) = {lt(f)|f ∈ S}. The subalgebra
A of k[x] generated by S (and containing the field k) is denoted k[S], since it consists of all
polynomials in the elements of S. An S-power product is a finite product of elements in S.
If P is an S-power product we let exp(P ) denote the corresponding exponent function on S.
In other words if P =

∏m
i=1(fi)

di , all fi different elements of S, then exp(P )(fi) = di and
exp(P ) is zero on all other elements of S.
We can now define our main concept SAGBI basis.

Definition 1. Let A be a subalgebra of k[x], the polynomial ring in one variable, and S ⊆ A.
S is a SAGBI basis for A if the lead term of every element in A is an lt(S)-power product.

Remark. If S is a SAGBI basis for A then A must be the subalgebra generated by S. This
can be seen in the following way. It is clear that k[S] ⊆ A since A is a subalgebra. Given an
element a ∈ A we know that the lead term is an lt(S)-power product. After subtraction of the
corresponding S-power product, p1, we get a new element a− p1 in A with lower lead term.
Continuing this process we will eventually end up with an element b = a− p1− p2− . . .− pn
of k ⊆ k[S] since the degree of the lead term decreases strictly in each subtraction. Hence
a = p1 + p2 + . . . + pn + b ∈ k[S]. This shows that A = k[S]. Henceforth we will use the
convention to say that S is a SAGBI basis, without specifying a subalgebra, when S is a
SAGBI basis for k[S].

Remark. Note that the truth of the condition in the definition of SAGBI basis as well as
k[S] is unaffected by multiplying the polynomials in S by non-zero constants. When checking
if a set is a SAGBI basis we may therefore assume that all polynomials are monic. Whenever
convenient we will use this fact without any further comment. By the same kind of argument
we find that we may assume that the constant terms of the polynomials are zero.
What we need now is a procedure for testing if a set is a SAGBI basis. Such a procedure

can be found in the paper by Robbiano & Sweedler ([9]). They deal with the more general
case of subalgebras of k[x1, x2, . . . , xn]. Even though we will follow their approach closely
some smaller simplifications will be possible when working with the univariate case. For
a convenient description of the testing procedure we first have to introduce the concept of
critical pairs.



A. Torstensson: Canonical Bases for Subalgebras on Two Generators . . . 567

Definition 2. Let A be a subalgebra of k[x]. Then a pair (P1, P2) of A-power products is a
critical pair of A if lt(P1) = lt(P2). If a ∈ k is such that lm(P1) = a lm(P2) we define the
T -polynomial of (P1, P2) as T (P1, P2) = P1 − aP2.

Remark. The T -polynomial is constructed in such a way that the lead term of T (P1, P2) is
smaller than the lead terms of P1 and P2.

Definition 3. If S is the set of critical pairs of A then T ⊆ S is said to generate S if for
each (P1, P2) in S there exist (Qi, Ri) with either (Qi, Ri) ∈ T or (Ri, Qi) ∈ T such that
exp(P1) =

∑
imi exp(Qi) and exp(P2) =

∑
imi exp(Ri) for some mi in k.

From [9] we have the following theorem.

Theorem 4. Let S be a subset of k[x] and let T be a set which generates the critical pairs
of S. Then S is a SAGBI basis if and only if for each critical pair (P1, P2) in T there exist
λi in k and S-power products Qi with lt(Qi) < lt(P1) = lt(P2) such that

T (P1, P2) =
∑

i

λiQi. (1)

Let us now consider the case of two polynomials f, g in one variable. In this case we can find
a particularly simple set of generators for all critical pairs. If deg(f) = n and deg(g) = m
and n′ = n/(n,m), m′ = m/(n,m) then it is easy to see that (fagb, f cgd) is a critical pair
exactly when (a, b, c, d) = (a, b, a−m′r, b+ n′r) for some integer r. Thus a set of generators
for the critical pairs is given by {(fm

′
, gn

′
)}
⋃
{(fagb, fagb)|a, b ∈ N} since we can write

(a, b, a − m′r, b + n′r) as (a − rm′, b, a − rm′, b) + r(m′, 0, 0, n′). Observe that all elements
(fagb, fagb) trivially satisfy the condition in Theorem 4 so {f, g} is a SAGBI basis if and
only if (fm

′
, gn

′
) satisfies the condition.

We conclude this section with a lemma which shows that the SAGBI basis property is
preserved by composition. Here we only prove the simplest case of two polynomials in one
variable which suffices for our needs. A more general result can be found in Nordbeck [7].

Lemma 5. If {F,G} ⊆ k[x] is a SAGBI basis and h any polynomial in k[x] then {f =
F ◦ h, g = G ◦ h} is also a SAGBI basis.

Proof. Let the degrees of F and G be n and m, d = (n,m) and n′ = n/d, m′ = m/d.
According to Theorem 4 and the comment thereafter we can find cij such that

Fm
′
−Gn

′
=
∑
cijF

iGj

where the summation is over (i, j) with i deg(F ) + j deg(G) < deg(F )m′ = dn′m′. After the
substitution x = h(x) we get the identity

fm
′
− gn

′
=
∑
cijf

igj

Here we see that i deg(f) + j deg(g) < dn′m′ deg(h) = deg(f)m′ by multiplying the previous
inequality by deg(h). This proves that {f, g} is a SAGBI basis by Theorem 4 using the
observation

deg(f)

(deg(f), deg(g))
=

deg(h) deg(F )

deg(h)(deg(F ), deg(G))
= n′

and similarly for g. �
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3. A motivating example

Let us first, in order to understand some of the ideas used later on, look at the case when f
is a polynomial of degree two.

Proposition 6. If f, g ∈ k[x] with deg(f) = 2 and deg(g) odd then {f, g} is a SAGBI basis.

Proof. Let deg(g) = 2k + 1,
f = x2 + a1x+ a0

g = x2k+1 + b2kx
2k + · · ·+ b1x+ b0.

We may assume that a1 = 0 since {f, g} is a SAGBI-basis if {f ◦ Θ−1, g ◦ Θ−1} is, where
Θ(x) = x+ a1

2
, by Lemma 5.

According to the definition {f, g} is a SAGBI-basis if the lead term of any polynomial in
f and g is a product of lead terms of f and g, that is either is of degree greater than 2k or
of even degree. Assume that {f, g} is not a SAGBI basis. Then there must be a polynomial
p(x, y) such that p(f(x), g(x)) is of odd degree less than 2k. Since any polynomial in {f, g}
is a polynomial in {x2, g} it follows that {x2, g} is no SAGBI basis. Thus, it suffices to show
that {x2, g} is a SAGBI basis.
Using the algorithm for verification of SAGBI bases given in the previous section we only

have to check that g2 − x4k+2 can be written as a polynomial in g and x2 where the degree
of each term, regarded as polynomial in x, is less than 4k+2. Let g0 and g1 be the even and
odd parts of g respectively. Note that g0 is a polynomial in x

2. Then we can write

g2 − x4k+2 = g20 + 2g0g1 + g
2
1 − x

4k+2 = 2g0g − g
2
0 + g

2
1 − x

4k+2

which gives our desired representation since g21 is even and the lead monomials of g
2
1 and

x4k+2 cancel so that the degree requirement is fulfilled. �

When g is of even degree the situation is slightly more complicated.

Proposition 7. If f, g ∈ k[x] with f = x2 + a1x + a0 and deg(g) even then {f, g} is a
SAGBI-basis if and only if h(x) = g(x− a1

2
) is an even polynomial.

Remark. The condition that h(x) is even is equivalent to g being a polynomial in f : If

g(x) =
s∑

i=0

αif(x)
i =

s∑

i=0

αi((x+
a1

2
)2 −

a21
4
+ a0)

i

then

h(x) = g(x−
a1

2
) =

s∑

i=0

αi(x
2 −
a21
4
+ a0)

i

which is clearly even. If, on the other hand,

g(x−
a1

2
) =

s∑

i=0

α2ix
2i
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then we can find βi such that

g(x−
a1

2
) =

s∑

i=0

β2i(x
2 −
a21
4
+ a0)

i

in other words

g(y) =
s∑

i=0

β2if(y)
i

so g is a polynomial in f .

Proof. Let deg(g) = 2k,
f(x) = x2 + a1x+ a0,

g(x) = x2k + b2k−1x
2k−1 + · · ·+ b1x+ b0,

and again let Θ(x) = x+ a1
2
. Using our Lemma 5 for composition with both Θ and Θ−1 we

conclude that {f, g} is a SAGBI basis if and only if {f ◦Θ−1, g ◦Θ−1} is.
In this case the SAGBI basis verification consists of checking if g ◦ Θ−1 − (f ◦ Θ−1)k or

equivalently h = g ◦Θ−1 is an even polynomial. �

In the next section we will generalize the first case here to the statement that any pair of
polynomials in k[x] with degrees that are relatively prime constitute a SAGBI basis.

4. Polynomials of relatively prime degrees

In the proof of Proposition 6 we used the fact that we could (uniquely) write g = g0 + g1
where g0 is an even and g1 an odd polynomial. For the general case we use a generalization of
this fact stated in the proposition below. The proof is a standard argument in commutative
algebra, but we include it for the sake of completeness.

Proposition 8. Let f be a polynomial of degree n. Then

k[x] = k[f ]⊕ xk[f ]⊕ x2k[f ]⊕ · · · ⊕ xn−1k[f ].

Proof. We first note that {1, x, x2, . . . , xn−1} generates k[x] as k[f ] module since x satisfies
the degree n polynomial F (f, y) = f(y)− f ∈ k[f ][y]. To show that {1, x, x2, . . . , xn−1} is a
set of free generators we observe that if we have

q0(f) + q1(f)x+ · · ·+ qk(f)x
k = 0,

by reducing the exponents of the lead terms in each qi(f)x
i modulo n we find that they are

all incongruent. Hence there can be no cancellation of lead terms on the LHS and it follows
that all qi must be zero. We conclude that {1, x, x2, . . . , xn−1} is a free generating set. �

The following lemma gives a convenient alternative to the condition on the non-trivial T-
polynomial given in the SAGBI test theorem.
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Lemma 9. Let f, g ∈ k[x] be of relatively prime degrees n and m respectively. If there are
polynomials pi such that

gn = pn−1(f)g
n−1 + pn−2(f)g

n−2 + · · ·+ p1(f)g + p0(f) (2)

then {f, g} is a SAGBI basis.

Proof. By Theorem 4 it suffices to show that the T -polynomial T (f, g) = gn − fm has
a representation of the form (1). We will see that the above equality will give us such a
representation after finding a term fm on the RHS and moving it to the LHS. We first note
that the greatest exponents of x in the different terms on the RHS all are incongruent modulo
n. The lead term in gn is xmn. Due to the incongruency, the only place on the RHS where
we can find such a term is p0(f). It follows that p0 is of degree m so p0(f) contains the term
fm that we are looking for. It only remains to check that the degree requirement in (1) is
satisfied, that is that all {f, g}-power products on the RHS are of degree less than mn. It
is enough to check the lead terms in each pi(f)g

i. After removal of fm from p0(f) the lead
term is of degree at most (m−1)n. Since all the lead terms left on the RHS have incongruent
exponents they cannot cancel each other. On the other hand the lead term on the LHS after
subtracting fm is of degree less than mn. Hence the terms on the RHS must also be of degree
less than mn so we have a representation of T (f, g) of the desired form. �

We have now gathered all the tools we need to prove the main theorem of this section.

Theorem 10. If f, g ∈ k[x] are of degrees that are relatively prime then {f, g} is a SAGBI
basis.

Proof. Let n and m be the degrees of f and g respectively. According to Lemma 9 it is
enough to prove the existence of polynomials p0, p1, . . . , pn−1 such that

gn = pn−1(f)g
n−1 + pn−2(f)g

n−2 + · · ·+ p1(f)g + p0(f) (3)

We know from Proposition 8 that k[x] is a finitely generated k[f ]-module that has a generating
set of cardinality n. By Proposition 2.4 in [2] g is integral over k[f ] and from the proof given
there it is clear that the degree of the equation g satisfies equals the number of generators of
k[x]. In other words equation (3) holds. �

One natural question to ask given a set of generators is whether they generate the whole of
k[x] or not. In terms of SAGBI bases this is the question whether a SAGBI basis contains
an element of degree one or not. The above theorem immediately gives us a partial answer
to this question in the case of two generators.

Corollary 11. If f, g in k[x] are of degrees at least two that are relatively prime then k[f, g] 6=
k[x].

Proof. By Theorem 10 {f, g} is a SAGBI basis of k[f, g]. Hence all elements in k[f, g] have
a lead term that is a product of lt(f) and lt(g) so x cannot be in the subalgebra. �

A generalization of this can be found in [1] (Theorem 9.11, p. 71). Here it is proven that if
k[f, g] = k[x] then we must have either deg(f)| deg(g) or deg(g)| deg(f). An example of such
polynomials is k[xn, xnk + x] = k[x]. The condition of one degree dividing the other is not
sufficient for generating k[x] as the example k[xn, xnk] = k[xn] 6= k[x] shows.
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5. A general criterion

In this section we will prove a general criterion for pairs of polynomials to form a SAGBI basis,
but first we examine another special case. The general criterion is a natural generalization
of the discoveries we will make about this special case.
In the previous section we considered pairs of polynomials such that the degrees had no

common factor. We will now turn to the case at the other extreme, when one degree divides
the other.

Theorem 12. Let f, g ∈ k[x] be such that deg(f)| deg(g). Then {f, g} is a SAGBI-basis if
and only if g is a polynomial in f .

Proof. Let deg(f) = n and deg(g) = m = nk. We once again use the unique representation
of g as g = g0(f) + xg1(f) + x

2g2(f) + · · · + xn−1gn−1(f) from Lemma 8. By Theorem 4 a
criterion for being a SAGBI-basis is that the T-polynomial

g − fk = (g0(f)− f
k) + xg1(f) + x

2g2(f) + · · ·+ x
n−1gn−1(f)

has a representation of the form (1), in this case that it is a polynomial in f of degree less
than k. By the uniqueness part of Lemma 8 this is possible exactly when g is a polynomial
in f . �

Let d = (deg(f), deg(g)). Note that in both cases treated above, d = 1 and d = deg(f), the
condition for being a SAGBI basis is that there is a polynomial h of degree d such that both
f and g can be written as polynomials in h. (When d = 1 this condition is trivially satisfied
since we may choose h as x.) Our main theorem is that this generalizes to arbitrary degrees.
To prove that a given SAGBI basis has this form we will use a result from [6] (Lemma 1.33,
p.136) saying that for any field between k and k(x) that contains some polynomial of positive
degree, one can find a polynomial that generates this intermediate field. We will combine
that result with the following:

Lemma 13. For any polynomial h ∈ k[x] we have k[h] = k(h) ∩ k[x].

Proof. The inclusion k[h] ⊆ k(h)∩ k[x] is clear. Let f ∈ k(h)∩ k[x] so there are polynomials
a and b such that f = a◦h

b◦h . Note that deg(f) = deg(a) deg(h) − deg(b) deg(h) and hence
deg(h)| deg(f). We will show that f ∈ k[h] by induction on the degree of f . Assume that
deg(f) < deg(h). Then deg(f) = 0 so the statement f ∈ k[h] holds in this case. For f
of higher degree there is a γ with deg(f) = γ deg(h). Then we can find a c ∈ k such that

f̃ = f−chγ has lower degree than f . By the induction hypothesis it follows that f̃ = a◦h
b◦h−ch

γ

is in k[h] and hence f is. �

Remark. Note that the above lemma cannot be generalized to several generators. For
instance k[x2, x3] 6= k(x2, x3) ∩ k[x] since x = x3

x2
∈ k(x2, x3) ∩ k[x] but x 6∈ k[x2, x3] by

Corollary 11.

Theorem 14. Let f, g ∈ k[x] and d = (deg(f), deg(g)). Then {f, g} is a SAGBI basis if and
only if there is a polynomial h ∈ k[x] of degree d and polynomials F,G such that f = F ◦ h
and g = G ◦ h.
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Proof. The sufficiency follows from our earlier results: The degree of F and G are relatively
prime so they form a SAGBI basis by Theorem 10. Now we only have to invoke Lemma 5 to
see that {f, g} is a SAGBI basis.
The proof of the necessity relies on a result from [6] that any field between k and k(x)

containing a nonconstant polynomial has a single generator lying in k[x]. Applying this result
to k(f, g) we find a polynomial h such that f, g ∈ k[x] ∩ k(h) so f, g ∈ k[h] by Lemma 13.
Hence there are polynomials F and G such that f = F ◦ h and g = G ◦ h. It only remains to
show that h is of degree d. It is obvious that deg(h)| deg(f), deg(g) and hence deg(h)|d. On
the other hand h = P (f, g)/Q(f, g) for some polynomials P and Q. Now the fact that {f, g}
is a SAGBI basis ensures that the lead terms of P (f, g) and Q(f, g) are {lt(f), lt(g)}-power
products. But then their degrees in x must be linear combinations of deg(f) and deg(g) and
hence divisible by d. It follows that d| deg(P (f, g)) − deg(Q(f, g)) = deg(h). We have seen
above that deg(h)|d so clearly we can draw our desired conclusion deg(h) = d. �

Note that the proof for the necessity holds for an arbitrary (finite) number of polynomials.
The sufficiency, on the contrary, does not hold even for three polynomials as the following
example shows.

Example. The set {x2 − x, x3, x5} is not a SAGBI basis even though the degrees of the
polynomials have no common factor. (Note that the degrees are even pairwise relatively
prime in this example.) For instance x5 − (x2 − x)x3 − (x2 − x)2 − 2x3 + (x2 − x) = −x is a
polynomial in x2 − x, x3 and x5 with lead term −x which obviously cannot be written as a
product of the lead terms of the generators.
Next we will see that a simple representation of the T-polynomial of {f, g} is related to

F and G being polynomials of a simple type.

Theorem 15. If the only non-trivial T-polynomial of {f, g} is zero then f and g are both
powers of a polynomial of degree (deg(f), deg(g)).

Proof. Let n = deg(f), m = deg(g), d = (n,m), n′ = n/d and m′ = m/d. Then the condition
in the theorem is that fm

′
= gn

′
. Let f =

∏n
i=1(x − αi) and g =

∏m
j=1(x − βj). Then any

root γ of f of multiplicity j is a root of multiplicity m′j of fm
′
= gn

′
. Now any root of gn

′

must have multiplicity n′k for some k. It follows from m′j = n′k that m′|k and n′|j so γ has
multiplicity a multiple of n′m′. Since this holds for any root fm

′
= gn

′
=
∏t
i=1(x − γi)

m′n′ji

so we find that both f and g are powers of
∏t
i=1(x− γi)

ji . �

If we want to check if a given pair of polynomials is a SAGBI basis the following characteri-
zation of when a polynomial can be written as a composition may be useful.

Proposition 16. Let h be a polynomial of degree d and f a polynomial of degree n = dn′

with zeroes α1, α2, . . . , αn. Then f is of the form F ◦ h for some polynomial F if and only
if there are β1, β2, . . . , βn′ such that the zeroes of f can be partitioned into n

′ multisets Mi
where Mi contains the zeroes of h(x)− βi.

Proof. Assume that f = F ◦ h where F (x) =
∏n′
i=1(x− βi). Then f(x) =

∏n′
i=1(h(x)− βi) so

h(αi) = βj for some j that is αi is a zero of h(x) − βj. Divide out this factor and continue
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in the same way. It follows that [h(α1), h(α2), . . . , h(αn)] and [(β1, d), (β2, d), . . . (βn′ , d)] are
equal as multisets.
For the other direction we assume that there are βi’s such that h(x) − βi has d zeroes

among the αi’s. Then
∏n′
i=1(h(x) − βi) =

∏n
i=1(x − αi) = f(x) and hence f = F ◦ h where

F =
∏n′
i=1(x− βi). �

Remark. This gives us another criterion for {f, g} of degrees 2 and 2k to be a SAGBI
basis. We know that it is equivalent to g being a polynomial in f . According to the above
proposition the latter is equivalent to the possibility to partition the zeroes of g into pairs
(β2j−1, β2j) such that f(x) − γj = (x − β2j−1)(x − β2j) for some γj. That is to say that
β2j−1 + β2j = α1 + α2 where α1 and α2 are the zeroes of f .
For polynomials where the gcd of the degrees is 2 some calculations for polynomials of

low degrees suggested a different description of all pairs of polynomials that are SAGBI bases.
Next we will describe this alternative condition and show that it is equivalent to the condition
given in Theorem 14 above.

Theorem 17. If both f and g are of even degree then both of them are polynomials in some
polynomial of degree 2 if and only if there is a constant s such that

f = f0 −
∞∑

k=1

αk+1s
kf
(k)
0 (x)

(k + 1)!

and

g = g0 −
∞∑

k=1

αk+1s
kg
(k)
0 (x)

(k + 1)!

where f0 and g0 are the even parts of f and g respectively and αk the Genocchi numbers.

Remark. The Genocchi numbers can be defined by αk = 2(1 − 2k)Bk where Bk are the
more well known Bernoulli numbers or by their exponential generating function 2x

1+ex
(See for

example [4].)

Proof. From the definition 2x
1+ex

=
∑∞
k=1

αkx
k

k!
using that α1 = 1 it follows that(

1+e−x

2

)(
1−
∑∞
k=1

αk+1x
k

(k+1)!

)
= 1. If we substitute x by sD that is multiplication by s and

differentiation with respect to x we get an identity between operators where the second factor
applied to f0 is the RHS of the condition on f stated in the theorem. Hence the condition

is equivalent to the existence of an s such that
(
1+e−sD

2

)
(f) = f0. (Here 1 denotes the

identity operator.) The left hand side evaluated in x is just f(x)+f(x−s)
2

so the condition in the

theorem can be formulated as follows. There exists an s such that f(x)+f(x−s)
2

= f(x)+f(−x)
2

and g(x)+g(x−s)
2

= g(x)+g(−x)
2

. By factorization of the identity f(−x) = f(x − s) it is easy to
realize that this is equivalent to the possibility to partition the zeroes of f into pairs with
sum −s. This concludes the proof by the remark after Proposition 16. �
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We will make some general remarks on the nature of the condition in the above theorem but
let us first examine an example.

Example. We will describe all SAGBI bases {f, g} where f and g are of degrees 4 and 6
respectively. Combining the above theorem with Theorem 14 we know that {f, g} is a SAGBI
basis if and only if

f = f0 −
4∑

k=1

αk+1s
kf
(k)
0 (x)

(k + 1)!
= f0 +

sf ′0
2
−
s3f

(3)
0

24

and

g = g0 −
6∑

k=1

αk+1s
kg
(k)
0 (x)

(k + 1)!
= g0 +

sg′0
2
−
s3g

(3)
0

24
+
s5g

(5)
0

240

Letting f = x4+ a3x
3+ a2x

2+ a1x+ a0 and g = x
6+ b5x

5+ b4x
4+ b3x

3+ b2x
2+ b1x+ b0 the

conditions are
f = x4 + 2sx3 + a2x

2 + (a2s− s
3)x+ a0

and
g = x6 + 3sx5 + b4x

4 + (2sb4 − 5s
3)x3 + b2x

2 + (sb2 − s
3b4 + 3s

5)x+ b0

or equivalently there exists an s such that a3 = 2s, a1 = a2s−s3, b5 = 3s, b3 = 2sb4−5s3, b1 =
sb2 − s3b4 + 3s5. As we can see the coefficients of the even terms in f and g and s can be
chosen freely but then all coefficients of the odd terms are uniquely determined. Thus all
SAGBI basis {f, g} with monic polynomials of degrees 4 and 6 can be parameterized by 6
parameters. If we do not require the polynomials to be monic we get 8 parameters since we
may multiply f and g by arbitrary constants. This example suggests that the above theorem
gives a convenient criterion both for generating SAGBI bases with two elements of given
(appropriate) degrees and for checking if two given polynomials constitute a SAGBI basis.

Corollary 18. All SAGBI bases {f, g} where deg(f) = 2u and deg(g) = 2v, (u, v) = 1 can
be parameterized by u+ v + 3 parameters.

Proof. By Theorem 14 the condition in Theorem 17 gives a SAGBI basis criterion when
deg(f) = 2u, deg(g) = 2v and (u, v) = 1. We just have to show that the conditions on f and
g are such that s and all coefficients of even terms (there are u + v + 2 such terms) can be
chosen freely but all odd coefficients are uniquely determined after these choices have been
made. Let us therefore take a closer look at the condition on f :

f = f0 −
2u+1∑

k=1

αk+1s
kf
(k)
0 (x)

(k + 1)!
(4)

It is easy to see that all αk for odd k ≥ 3 are zero. (Just check that the generating function
of αk becomes even after removal of α0 + α1x = x or equivalently that

2x
1+ex
− x is even.)

This means that we only have to sum over odd k in (4). But then all derivatives of f0 in the
sum are of odd order and hence give odd polynomials. It follows that all coefficients of even
powers of x are equal on both sides for any f . Let us compare coefficients of odd powers of
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x. Let f =
∑2u
i=0 aix

i and t be an odd number between 1 and 2u − 1. The coefficient of xt

on the LHS is at. The RHS equals

f0 −
2u+1∑

k=1

αk+1s
k

(k + 1)!

u∑

l= k+1
2

a2l
(2l)!

(2l − k)!
x2l−k

so the coefficient of xt equals

−
2u−t∑

k=1

αk+1s
k

k + 1

(
t+ k
t

)
at+k

Equating the coefficients on both sides we get an expression for at in s and ar for even r > t.
We may of course reformulate the condition on g in the same way so this proves that we may
choose all u+ v + 2 coefficients of even powers and the parameter s arbitrarily and that this
determines f and g. �

Corollary 19. The monic polynomials of degree 2k that can be written as F ◦ h for some h
of degree 2 are those of the form

f0 −
∞∑

k=1

αk+1s
kf
(k)
0 (x)

(k + 1)!

where f0 is any even polynomial of degree 2k, s the coefficient of x in h and αk the Genocchi
numbers.

Proof. This follows from Theorem 17 by letting g be of degree 2 since the condition on g
stated in the theorem is that the coefficient of x equals s. �

6. A remark on the non-commutative case

SAGBI bases can also be defined for subalgebras of the non-commutative polynomial ring
in a similar fashion. In that setting we have to redefine concepts like critical pairs and T-
polynomials in a suitable way. This is done in Nordbeck [8]. In connection with our discussion
it is interesting to mention the following result on subalgebras with two generators in the
non-commutative polynomial ring which is mentioned in [3].

Theorem 20. Let A be a subalgebra of k〈X〉, the non-commutative polynomial ring in n
variables, generated by two elements f and g. Then either A is a free subalgebra or A is
contained in a subalgebra generated by one element.

Proof. If the generators commute then they are both contained in the centralizer of f which
is a one generator subalgebra by Bergman’s centralizer theorem. (Theorem 6.7.7 in [3].)
Otherwise A is free on f and g by corollory 6.7.4 in [3]. �

In the language of SAGBI bases this can be interpreted in the following way. If there exist
no critical pairs then {f, g} is a SAGBI basis. Also A is free on the generators {f, g} for if we
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have a relation that f and g satisfies r(f, g) = 0 then we must have at least two equal lead
monomials on the LHS that cancel. Hence we have found a critical pair contradictory to our
assumption. On the other hand if we have a critical pair that can be represented in a way
corresponding to (1) then this gives us a relation. This shows that for a subalgebra generated
by a two element SAGBI basis freeness is equivalent to the non-existence of product relations
between the lead terms of the generators.
The above theorem combined with our earlier results gives a description of two element

SAGBI bases in k〈X〉:

Theorem 21. The set {f, g} ⊆ k〈X〉 is a SAGBI basis if and only if:

• There are no critical pairs for {f, g}.

• There is h ∈ k〈X〉 and a SAGBI basis {F,G} ⊆ k[x] with f = F ◦ h and g = G ◦ h.

Proof. Assume that {f, g} is a SAGBI basis. By the discussion above either there are no
product relations between the lead words or the subalgebra 〈f, g〉 is contained in a subalgebra
〈h〉 generated by one element. In the latter case we can write f = F ◦ h, g = G ◦ h for some
polynomials F,G. If there is a T-polynomial T (F,G) then we get a representation of type
(1) of it by replacing h by x in the representation of T (f, g) = T (F ◦ h,G ◦ h) and hence
{F,G} is a SAGBI basis.
Conversely if {F,G} ⊆ k[x] is a SAGBI basis then it follows from Nordbeck [7] that

{f = F ◦ h, g = G ◦ h} is a SAGBI basis. �
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