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Abstract. Let M be a closed connected oriented topological 4-manifold with
fundamental group π1. Let Λ be the integral group ring of π1. Suppose that
f : M → P is a degree one map inducing an isomorphism on π1. We give a
homological condition on the intersection forms λZM and λ

Λ
M under which M is

homotopy equivalent to a connected sum P#M ′ for some simply-connected closed
(non-trivial) topological 4-manifoldM ′. This gives a partial solution to a conjecture
of Hillman [16] on the classification of closed 4-manifolds with vanishing second
homotopy group. Then some splitting results for closed 4-manifolds with special
homotopy complete the paper.
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1. Introduction

Let M4 be a closed connected orientable topological 4-manifold with fundamental group
π1 = π1(M). We assume that all manifolds have a CW-structure with one 4-cell and one
0-cell, hence the 3-skeleton M (3) of M is obtained from M by removing an open 4-cell.
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Let Λ = Z[π] be the integral group ring of π. If [M ] ∈ H4(M ;Z) ∼= Z is the fundamental
class of the orientation, then there are Poincaré duality isomorphisms

∩[M ] : Hq(M ; Λ)→ H4−q(M ; Λ)

where H∗(M ; Λ) ∼= H∗(C∗(M̃) ⊗Λ Λ) ∼= H∗(M̃) is the integral homology of the universal

covering M̃ of M .
The first goal of the paper is to study when M is homotopy equivalent to a connected

sum P#M ′, where M ′ is a simply-connected non-trivial closed 4-manifold (by non-trivial we
mean that M ′ is not homeomorphic to the standard 4-sphere). It would be interesting to
do this when the manifold P is minimal in some sense. Section 4 will be devoted to state
precisely the concept of minimality on P , and to find such minimal models for many classes
of closed topological 4-manifolds with special homotopy. A result along this line is contained
implicitly in Theorem 10.3 of [10] (corrected version as given in [23] and [24]), and a sketch
of the relevant consequence of that theorem will be presented in Section 3. However, we shall
prove our result in an independent way by using only standard techniques from obstruction
theory (with local coefficients).
Suppose there exists a degree one map

f : M → P

between closed topological 4-manifolds which induces an isomorphism on π, i.e. f∗ : π1(M) ∼=
π1(P ).
Then we have split exact sequences

0 −−−→ Kq(f,Λ) −−−→ Hq(M ; Λ)
fΛ∗−−−→ Hq(P ; Λ) −−−→ 0

where Kq(f,Λ) denotes the kernel of f
Λ
∗ . The same holds for other (local) coefficients; in

particular, we have split exact sequences

0 −−−→ Kq(f,Z) −−−→ Hq(M ;Z)
fZ∗−−−→ Hq(P ;Z) −−−→ 0.

Moreover, for q = 2, these sequences give splittings of the intersection forms (over Λ or Z,
respectively), and K2(f,Λ) is stably Λ-free (and s-based), i.e. K2(f,Λ) ⊕ Λr ∼= Λs for some
non-negative integers r and s (see [26]). Moreover, we have the isomorphism of Λ-modules

K2(f,Λ) ∼= K2(f,Z)⊗Z Λ.

By the celebrated work of Freedman [8] (see also [9] and [10]) there is a simply-connected
closed topological 4-manifoldM ′ realizing the restriction of the integral intersection form λZM
on K2(f,Z), i.e.

λZM |K2(f,Z)
∼= λZM ′ .

Up to homeomorphism, there are at most two such M ′; exactly two in the case of an odd
intersection form, and they are M ′ and the unique non-smoothable 4-manifold homotopy
equivalent to M ′.
Our first result is the following
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Theorem 1. With the above notation, let f : M → P be a degree one map which induces
an isomorphism on the fundamental group π = π1. Then M is homotopy equivalent to a
connected sum P#M ′ if and only if

λΛM |K2(f,Λ)
∼= λZM |K2(f,Z) ⊗Z Λ.

The following conjecture was stated by Hillman in [16].

Conjecture. Suppose that π = π1(M) is torsion free and infinite, and π2(M) ∼= 0. Then
M is topologically homeomorphic to a connected sum of aspherical closed 4-manifolds and
factors S1 × S3.

Using Theorem 1 we give a partial solution of the conjecture, up to homotopy type.

Theorem 2. Let M4 be a closed connected orientable topological 4-manifold such that π1 is
torsion free and infinite, and π2(M) ∼= 0. Then M is homotopy equivalent to a connected
sum of aspherical closed 4-manifolds with factors S1 × S3.

As a consequence of Theorem 1, we also obtain simple alternative proofs of well-known
algebraic characterizations of S1× S3, R4/Z4 ∼= S1× S1× S1× S1, and an S2-bundle over the
torus among closed orientable 4-manifolds.

Theorem 3. A closed connected orientable 4-manifold M is topologically homeomorphic to
S1×S3 (resp. R4/Z4, and an S2-bundle over the torus) if and only if the Euler characteristic
of M vanishes and π1(M) ∼= Z (resp. Z4, and Z2).

For other results on connected sum decomposition of 4-manifolds we refer to [11], [16], [17],
[20], and [23]–[25]. A splitting theorem for homotopy equivalent smooth 4-manifolds can be
found in [6].

2. Proof of Theorem 1

Let π = π1(M) be the fundamental group of M . Suppose there exists a degree one map
f :M → P inducing an isomorphism on π. We are going to construct a map

α : P (3) = P\
◦

D4 →M

such that the composition

P (3)
α

−−−→ M
f

−−−→ P

is homotopic to the inclusion P (3) ⊂ P . Since π ∼= π1(P ), there is a map from the wedge
∨S1 ' P (1) to M such that the composition with f : M → P is the canonical inclusion.
There is an obstruction map

H2(P̃
(2), P̃ (1))→ π = π1(M)
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for extending over the 2-skeleton of P . Composing this map with

f∗ : π1(M)→∼=
π1(P )

yields that we can extend it over the 2-skeleton of P , i.e. there is a map P (2) →M inducing
an isomorphism on π. We extend it to P (3) by using obstruction theory with local coefficients.
The obstruction is an element θ ∈ H3(P ; π2(M)).
Since there are isomorphisms

π2(M) ∼= π2(M̃) ∼= H2(M̃) ∼= H2(M ; Λ) ∼= H2(P ; Λ)⊕K2(f,Λ)

and K2(f,Λ) is stably Λ-free, we have

H3(P ; π2(M)) ∼= H
3(P ;H2(M ; Λ)) ∼= H1(P ;H2(M ; Λ))

∼= TorΛ1 (Z, H2(M ; Λ)) ∼= TorΛ1 (Z, H2(P ; Λ)⊕K2(f,Λ))
∼= TorΛ1 (Z, H2(P ; Λ)) ∼= H1(P ;H2(P ; Λ)) ∼= H3(P ; π2(P )).

So the obstruction θ ∈ H3(P ; π2(M)) corresponds bijectively to the obstruction

θ ∈ H3(P ; π2(P ))

for extending the composite map

P (2)
α

−−−→ M
f

−−−→ P

to a map P (3) → P . But f ◦α is homotopic to the inclusion P (2) ⊂ P which extends to P (3).
Then we have θ = 0, and there is a map

α : P (3) →M

such that the diagram

M
f

−−−→ P

α

x
∥∥∥

P (3) −−−→
i
P

commutes, up to homotopy.
In fact, the obstructions for homotopy are in

H2(P ; π2(M)) ∼= H0(P ; π2(M)) ∼= 0

and
H3(P ; π3(M)) ∼= H1(P ; π3(M)).

Looking at the diagram

π3(M)
f∗−−−→ π3(P )

epi

y
yepi

H3(M ; Λ)
fΛ∗−−−→
epi

H3(P ; Λ)
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it follows that f∗ is onto. So it is possible to construct an extension

α : P (3) →M

such that f ◦ α is homotopic to the inclusion P (3) ⊂ P .
Now we construct a map

β :M ′\
◦

D4 = (M ′)(3) →M.

Recall the split exact sequence

0 −−−→ K2(f,Z) −−−→ H2(M ;Z)
fZ∗−−−→ H2(P ;Z) −−−→ 0.

We have a splitting of the integral intersection forms

λZM
∼= λZP ⊕ λ

Z
M |K2(f,Z).

By Freedman’s theorem, there is a simply-connected closed topological 4-manifold M ′ such
that

λZM ′
∼= λZM |K2(f,Z).

Of course, M ′\
◦

D4 = (M ′)(3) is homotopy equivalent to a wedge ∨rS2, and

H2(M
′;Z) ∼= K2(f,Z) ∼= ⊕rZ

is Z-free. Since

H2(M
′;Z) ∼= ⊕rZ ⊂ H2(M ;Z) ∼= H2(M̃)⊗Λ Z ∼= π2(M)⊗Λ Z,

we can represent a set of generators of H2(M
′;Z) by maps of 2-spheres intoM (compare also

with [7]). Then there exists a map

β : M ′\
◦

D4 = (M ′)(3) ' ∨rS2 →M.

Obviously, the induced homomorphism

β∗ : H2((M
′)(3))→ H2(M)

is injective. Thus we have constructed a map

ϕ = α ∨ β : P (3) ∨ (M ′)(3) →M.

Since the wedge P (3) ∨ (M ′)(3) is homotopy equivalent to

(P#M ′)(3) = (P#M ′)\
◦

D41,

we have a map (also denoted by ϕ)

ϕ : (P#M ′)(3) →M.
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In general, the map ϕ can not be extended over P#M ′. The obstruction for extending
ϕ to a map from P#M ′ to M is a cohomology class

ξ ∈H4(P#M ′; π3(M)) ∼= H0(P#M
′; π3(M))

∼= TorΛ0 (Z; π3(M)) ∼= π3(M)⊗Λ Z
∼= Γ(π2(M))⊗Λ Z

where Γ(π2) is the quadratic Γ-functor applied to the abelian group π2(M) ∼= H2(M ; Λ) (see
[26] and [27]). Moreover, Γ(π2) is a Λ-submodule of π2 ⊗Λ π2 (the module of symmetric
tensors) and the induced homomorphism

Γ(π2)⊗Λ Z→ π2 ⊗Λ π2

is injective. Now ξ is the homotopy class

ϕ∗([∂D
4
1]) = (α ∨ β)∗([∂D

4
1]) ∈ Γ(π2(M))⊗Λ Z.

This class induces an intersection form λΛM which is compatible with the splitting of the
second homology Λ-module

H2(M ; Λ) ∼= H2(P ; Λ)⊕K2(f,Λ).

From the description of the top-dimensional obstruction given in [1] and [12], it follows that
ξ corresponds in π2 ⊗Λ π2 to the difference of Λ-forms

λΛM |K2(f,Λ) − (λ
Z
M |K2(f,Z) ⊗Z Λ)

which is trivial by hypothesis. Now the injectivity of the homomorphism from Γ(π2) ⊗Λ Z
into π2 ⊗Λ π2 implies that ξ is trivial as requested. So ϕ extends to a map from P#M ′ to
M , also denoted by ϕ. By construction, the extended map ϕ : P#M ′ →M is of degree one,
and induces isomorphisms on πi for any i ≤ 2. Hence ϕ is a homotopy equivalence by the
Whitehead theorem. This completes the proof.

3. An alternative proof

We show that Theorem 1 can be obtained as a relevant consequence of Theorem 10.3 of [10]
(corrected version as given in [23] and [24]). The goal of Section 10.3 in [10] is to determine
when a closed topological 4-manifold M can be expressed as a connected sum M ′#P , where
M ′ is a closed simply-connected topological 4-manifold. The hypothesis are given in terms
of intersection and self-intersection forms on π2(M). If M is homeomorphic to a connected
sum M ′#P , then there is an isomorphism

π2(M) ∼= (π2(M
′)⊗ Λ)⊕ π2(P ),

where Λ = Z[π1(M)] as usual. Intersection numbers on the first summand are given by

λΛM(x⊗ a, y ⊗ b) = λ
Z
M ′(x, y)ab,
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where denotes the canonical anti-automorphism of Λ. Similarly, we have

µΛM(x⊗ a) = µ
Z
M ′(x)aa.

Abstracting this, Freedman and Quinn said in [10] that a Λ-homomorphism from π2(M
′)⊗Λ

to π2(M) preserves λ and µ if the intersection numbers of images are given by the expressions
written above. Since λ in π2(M

′) is non-singular, the homomorphism is an injection onto a
direct summand of π2(M).
The following is Theorem 10.3 (part 1) of [10].

Theorem 4. Let M ′ be a closed simply-connected topological 4-manifold, and suppose that
π1 = π1(M) is good. Let

π2(M
′)⊗ Λ→ π2(M)

be a Λ-monomorphism which preserves λ and µ. If either the second Stiefel-Whitney class
w2 is zero on π2(M) or w2 does not vanish on the subspace of π2(M), perpendicular to the
image, then there is a decompositionM ∼=

TOP
M ′#P inducing the given decomposition of π2. If

w2 6= 0 does vanish on the perpendicular subspace, then exactly one of M or ∗M decomposes.

We recall briefly the definition of ∗M as given in [10], Section 10.4. Let M be a closed
connected topological 4-manifold with good fundamental group. If w2 : π2(M) → Z2 is
trivial, then ∗M =M . If w2 is nontrivial, then ∗M is the closed topological 4-manifold with
a homeomorphism (∗M)#CP 2 ∼= M#(∗CP 2) which preserves the decompositions of π2.
Here ∗CP 2 is the unique non-smoothable simply-connected closed 4-manifold with integral
intersection form (1) and Kirby-Siebenmann invariant ks = 1 (also called the fake CP 2).
Note that if ∗M is not homeomorphic to M , then it has the opposite Kirby-Siebenmann
invariant. However, there is a canonical homotopy equivalence from ∗M to M .

Now we sketch how Theorem 1 can be derived from Theorem 4. Applying the sum-stable
version of Theorem 4, we see that there is a connected sum decomposition (without any
restriction on the fundamental group)

M#r(S2 × S2) ∼=
TOP
M ′#Q,

for some non-negative integer r. Here π2(M
′) represents K2(f,Λ). Then we have a degree

one map
f# id :M#r(S2 × S2) ∼= M ′#Q→ P#r(S2 × S2).

Attaching 3-cells to kill off π2(M
′) (use the procedure described in [21]) produces a map

g : (M ′ ∪ { 3-cells })#Q→ P#r(S2 × S2).

However, M ′ ∪{ 3-cells } can be chosen to be homotopy equivalent to the standard 4-sphere
S4. Hence we get a map

g′ : Q→ P#r(S2 × S2).
This map induces isomorphisms on π1 and π2, and it is of degree one. So g

′ is a homotopy
equivalence by the Whitehead theorem. Therefore, M#r(S2 × S2) is homotopy equivalent
to a connected sum M ′#P#r(S2 × S2). This homotopy equivalence preserves the subspace
spanned by the last summand. Then attaching 2r 3-cells to kill off π2(r(S2 × S2)) ∼= ⊕2rZ
produces a homotopy equivalence from M to M ′#P as required. This completes the proof.
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4. Splitting results

Let M4 be a closed connected orientable topological 4-manifold. This section is devoted
to construct a degree one map f : M → P where the manifold P is very simple (that is,
minimal) and in some sense depends on the fundamental group π1(M). This permits to
apply Theorem 1 for many interesting classes of closed topological 4-manifolds. First, we
state precisely our concept of minimality on P . Let π be a group, and let M(π) denote
the class of closed connected orientable topological 4-manifolds M such that π1(M) ∼= π. A
manifold P ∈ M(π) is said to be minimal if for every manifold M ∈ M(π) there exists a
degree one map fromM to P . If P is minimal, then it is unique, up to homotopy equivalence.
In fact, suppose that there are maps f :M → P and g : P →M of degree one which induce
isomorphisms on fundamental groups, i.e. f∗ : π1(M) ∼= π1(P ) ∼= π and g∗ : π1(P ) ∼=
π1(M) ∼= π. Then we have the split exact sequences

0 −−−→ K2(f,Λ) −−−→ H2(M ; Λ)
fΛ∗−−−→ H2(P ; Λ) −−−→ 0

and

0 −−−→ K2(g,Λ) −−−→ H2(P ; Λ)
gΛ∗−−−→ H2(M ; Λ) −−−→ 0

where Λ = Z[π], up to obvious identification. Then it follows that k2(f,Λ) ∼= K2(g,Λ) ∼= 0.
Thus f is a homotopy equivalence by the Whitehead theorem.

4.1. Free groups. Let M be a closed connected orientable topological 4-manifold with
fundamental group π1(M) ∼= ∗pZ (the free product of p factors Z). Define P to be the
connected sum of p factors S1 × S3, i.e. P = p(S1 × S3). Following [3], we construct a
degree one map f : M → p(S1 × S3). Choosing an isomorphism from π = π1(M) onto
∗pZ yields a basis (e1, . . . , ep) of H1(M ;Z). Let (u1, . . . , up) be the dual basis in H1(M ;Z) ∼=
Hom(H1(M ;Z),Z), and let (v1, . . . , vp) be the Poincaré dual basis in H3(M ;Z) of (e1, . . . , ep),
respectively. Then we have ui ∪ vj = δi jωM , where ωM ∈ H4(M ;Z) is the dual of the
fundamental class [M ] ∈ H4(M ;Z). SinceH1(M ;Z) ∼= [M, S1] andH3(M ;Z) ∼= [M,K(Z, 3)],
we have a map

φ =

p∏

i=1

(ui × vi) :M →
p∏

i=1

(S1 ×K(Z, 3)).

Since K(Z, 3) can be obtained from S3 by attaching cells of dimension ≥ 5, we can always
assume that

φ :M →
p∏

i=1

(S1 × S3).

As shown in [3], this map factorizes, up to homotopy, to a degree one map

f :M → p(S1 × S3),

i.e. there is a diagram

M
φ

−−−→
∏p
i=1(S1 × S3)∥∥∥
x

M −−−→
f

p(S1 × S3),
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which commutes, up to homotopy.
Now we can apply Theorem 1 to obtain the following

Theorem 5. Let M4 be a closed connected orientable topological 4-manifold with π1 ∼= ∗pZ
for some p > 0. Let M ′ be the closed simply-connected 4-manifold obtained from M by
killing the fundamental group. Then M is simple homotopy equivalent to the connected sum
M ′#p(S1 × S3) if and only if

λΛM
∼= λZM ⊗ Λ(∼= λ

Z
M ′ ⊗ Λ).

Proof. Since π1 is torsion free, the intersection forms on H2(M ;Z) and H2(M ′;Z) are the
same, i.e. H2(M ;Z) ∼= H2(M ′;Z) and λZM ∼= λZM ′ (see [2] for the proof). In particular, M
determines uniquely M ′ by Freedman’s classification theorem. The exact sequences

0 −−−→ K2(f,Λ) −−−→ H2(M ; Λ)
fΛ∗−−−→ H2(p(S1 × S3); Λ) ∼= 0

and

0 −−−→ K2(f,Z) −−−→ H2(M ;Z)
fZ∗−−−→ H2(p(S1 × S3);Z) ∼= 0

imply that K2(f,Λ) ∼= H2(M ; Λ) and K2(f,Z) ∼= H2(M ;Z) ∼= H2(M ′;Z). Now we can apply
Theorem 1. Finally, we observe that in our case any homotopy equivalence is simple because
the Whitehead group of ∗pZ is trivial (see [22]). �

The proof of Theorem 1 also shows thatM (3) =M4\
◦

D4 is homotopy equivalent to the wedge
(M ′)(3) ∨ (p(S1 × S3))(3). But p(S1 × S3)(3) has the homotopy type of a bouquet ∨p1(S1 ∨ S3),
and (M ′)(3) = M ′\

◦

D4 has the homotopy type of a wedge of q 2-spheres, where q is the
rank of H2(M ;Z) ∼= H2(M ′;Z). So M (3) is homotopy equivalent to a bouquet of spheres of
dimensions 1, 2, and 3.
This gives a simple alternative proof of the main theorem of [20]. In fact, we have

Theorem 6. Let M4 be a closed connected orientable topological 4-manifold whose funda-
mental group is a free group ∗pZ of rank p. Then the punctured manifold obtained from M
by removing an open 4-cell has the homotopy type of a bouquet ∨pS1 ∨p S3 ∨q S2, where q is
the rank of the second integral homology group of M .

Finally, we observe that the group ∗pZ is good for p = 1. So we can apply surgery theory to
obtain the following characterization theorem (see also [18] and [19]).

Theorem 7. Let M4 be a closed connected orientable 4-manifold with π1 ∼= Z. Let M ′ be
the simply-connected manifold obtained from M by killing the fundamental group. Then M is
topologically homeomorphic to the connected sum M ′#(S1× S3) if and only if λΛM ∼= λZM ⊗Λ.
In particular, M is topologically homeomorphic to S1 × S3 if the Euler characteristic of M
vanishes.
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Note that Hambleton and Teichner have constructed in [13] an example of closed topological
4-manifoldM with π1 ∼= Z which is not the connected sum of S1×S3 with a simply-connected
4-manifold. This means that the nonsingular hermitian form λΛM over the group ring Λ = Z[Z]
can not be extended from the integers, i.e. λΛM is not isomorphic to λ

Z
M ⊗Z Λ.

4.2. Surface groups. Let M4 be a closed connected oriented spin topological 4-manifold
whose fundamental group is isomorphic to that of a closed connected aspherical surface F ,
i.e. π1(M) ∼= π1(F ). Since F is aspherical, we have that F ' K(π1, 1), where ' means
homotopy equivalent to. Let cM :M → F be a classifying map. Following [5], we construct a
degree one map f : M → F × S2. By Lemma 2.1 of [5], there exists a map j : F → M such
that the composite map

F
j

−−−→ M
cM−−−→ F

is homotopic to the identity map. Now define u = j∗[F ] ∈ H2(M ;Z). By Lemma 2.5 of [5],
there exists a map g :M → S2 such that g∗(ωS2) = PD−1(u), where ωS2 generates H2(S2;Z),
and PD denotes the Poincaré duality. Now the product map f = cM × g : M → F × S2 is
proved to have degree one (see [5] for more details). If M is not spin, we have a degree one
map from M to F ×

∼
S2 (the twisted S2-bundle over F ). So Theorem 1 applies to give the

following theorem (which is related to some results of [14] and [15]).

Theorem 8. LetM4 be a closed connected oriented spin topological 4-manifold with π1(M) ∼=
π1(F ), where F is a closed aspherical surface. Then M is simple homotopy equivalent to a
connected sum M ′#(F × S2) if and only if

λΛM |K2(f,Λ)
∼= λZM |K2(f,Z) ⊗ Λ.

In particular, if χ(M) = 2χ(F ), then M is simple homotopy equivalent to F × S2.

Note that any homotopy equivalence is simple because the Whitehead group of π1(F ) is
trivial (see [22]).
If F is the torus, then the fundamental group π1 ∼= Z ⊕ Z is good so s-cobordisms are

topologically products. This gives the following characterization:

Theorem 9. LetM4 be a closed connected oriented topological manifold with π1(M) ∼= Z⊕Z.
Let M ′ be the simply-connected manifold obtained from M by killing the fundamental group.
Then M is topologically homeomorphic to the connected sum of M ′ with an S2-bundle over
the torus if and only if the homological condition of Theorem 8 holds. In particular, a closed
connected orientable topological 4-manifold M is homeomorphic to an S2-bundle over the
torus if and only if π1(M) ∼= Z⊕ Z and χ(M) = 0.

4.3. Asphericity. Let M4 be a closed connected oriented topological 4-manifold having
the fundamental group of a fixed closed aspherical 4-manifold X4. Let f : M → X be the
classifying map of the universal covering. As proved in [4], Proposition 2.3, the map f is of
degree one if and only if the k-invariant k3M ∈ H

3(K(π1, 1); π2(M)) vanishes. Observe that
K(π1, 1) ' X. Under this hypothesis, Theorem 1 gives the following consequence:
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Theorem 10. LetM4 be a closed connected oriented topological 4-manifold whose fundamen-
tal group is that of a fixed closed connected aspherical 4-manifold X. Assume that k3M = 0
(or equivalently, the classifying map f : M → X is of degree one). Then M is homotopy
equivalent to a connected sum of a closed simply-connected 4-manifold M ′ with X if and only
if

λΛM |K2(f,Λ)
∼= λZM |K2(f,Z) ⊗ Λ.

4.4. Four-manifolds with π2 ∼= 0. Let M4 be a closed connected orientable topological
4-manifold with π = π1(M) torsion free and infinite, and π2(M) ∼= 0. By Specker’s lemma
(see for example [15]), it follows that π is isomorphic to a free product of factors Z with
groups having one end (of course, some factors may be absent). Assume for example that
π ∼= ρ ∗ (∗pZ), p > 0, where the group ρ has one end. By surgery we can kill off the part
∗pZ. This yields a closed connected aspherical 4-manifold Y such that π1(Y ) ∼= ρ. This
claim can be proved by an iterative procedure on p. So for simplicity we assume p = 1.
Let N be the compact 5-manifold obtained from M × I (I = [0, 1]) by attaching a 2-handle
along the loop which generates the factor Z in π1(M) ∼= ρ ∗Z. Then N has vanishing second
homotopy group since π2(M) ∼= 0. The other end of the cobordism N is the closed connected
4-manifold Y obtained from M by surgery along the generator of the factor Z. So N is
also obtained from Y × I by attaching a 3-handle. This implies that both N and Y have
fundamental groups isomorphic to ρ. We look now at the homology and cohomology exact
sequences (with compact supports) of the covering spaces Yρ ⊂ Nρ with covering group ρ
(to simplify notation we suppress coefficients in the (co)homology modules, and write ZZ for
the group ring of the integers). Then H2(N,M) is a free ZZ[ρ]-module on one generator;
it injects into H1(M) as a direct summand. Dually the map from H

1(M) to H2(N,M) is
a split epimorphism of modules. So the map from H2(N,M) to H2(N) (and hence that
from H2(N, Y ) to H2(Y )) is zero. By duality, the map from H3(N, Y ) to H2(Y ) is zero.
Since H3(N) ∼= 0, it follows that H2(Y ) vanishes as Z[ρ]-module. But we took coefficients
in the group ring of the fundamental group of Y , so the module H2(Y ) is isomorphic to
π2(Y ). This implies that π2(Y ) ∼= 0. Then Y is aspherical since π1(Y ) ∼= ρ has one end and
π2(Y ) ∼= 0. Moreover, we have the isomorphism H2(M) ∼= H2(Y ) (between integral second
homology groups), and λZM

∼= λZY (see [2]). Since k
3
M ∈ H

3(K(π, 1); π2(M)) vanishes (in fact,
the cohomology group is trivial as π2(M) ∼= 0), we have a degree one map f1 : M → Y . By
the procedure described in 4.1, we can construct a degree one map f2 :M → p(S1 × S3). So
there is a degree one map f = f1#f2 : M → Y#p(S1 × S3) which induces an isomorphism
on the fundamental group. The exact sequences

0 −−−→ K2(f,Λ) −−−→ H2(M ; Λ) ∼= π2(M) ∼= 0

and

0 −→ K2(f,Z) −→ H2(M ;Z)
fZ∗−→
∼=
H2(Y#p(S1 × S3)) ∼= H2(Y ) −→ 0

imply that K2(f,Λ) ∼= K2(f,Z) ∼= 0. So the homological condition of Theorem 1 is trivially
verified. Then M is homotopy equivalent to the connected sum of the closed connected
aspherical 4-manifold Y with copies of S1 × S3. This proves Theorem 2. If π is good, then
M is topologically homeomorphic to a connected sum of closed aspherical 4-manifolds and
factors S1×S3. This gives evidence for the validity of Hillman’s conjecture stated in Section 1.
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