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Abstract. In the present paper we study isometric actions on compact symmet-
ric spaces for which the principal orbits are tubular hypersurfaces around totally
geodesic singular orbits. We show that in these cases the symmetric space can be
thought of as a compact tube the radius of which is determined by the curvature
tensor. Since the constant principal curvatures of the tubular orbits can explic-
itly be expressed, we obtain a simple method to determine volumes of symmetric
spaces by using volumes of lower dimensional ones. Finally, we discuss the classical
irreducible symmetric spaces of types I and II, each of which admits such special
hyperpolar actions.
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1. Introduction

Recall some basic concepts on isometric actions which will be used throughout the paper.
Regarding an isometric action α : L × N → N of a compact connected Lie group L on a
Riemannian manifold N, a closed (totally geodesic) submanifold C is said to be a section if
C intersects orthogonally all the orbits of L, and in this case α is called polar. An isometric
action is said to be hyperpolar if it admits sections which are flat totally geodesic subman-
ifolds. In symmetric spaces the actions of isotropy subgroups present evident examples for
hyperpolar ones.
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Concerning the origin of the subject, first R. Bott and H. Samelson studied the so–called
variationally complete actions on symmetric spaces in the paper [4].

L. Conlon has effectively discussed the variationally complete actions and the hyperpolar
ones (see [8] and [9]). The connection of them is rather close, and Conlon has proved that
a hyperpolar action is variationally complete. The classification of hyperpolar actions on
Euclidean spaces was accomplished by J. Dadok (see [10]).

Let us take a Riemannian symmetric space G|K of compact type. A connected subgroup L of
the compact Lie group G is called symmetric if there exists an involutive automorphism ρ of
G such that L coincides with the identity component of Gρ = {g∈G | ρ(g) = g}. R. Hermann
has pointed out that the action of a symmetric subgroup L on G|K admits flat sections (see
[15] and [16]). Later, using the construction of Hermann, J. Szenthe presented examples for
hyperpolar actions on compact Lie groups (see [23]).
Concerning closed subgroups of G which are not symmetric, E. Heintze, R. S. Palais,

C. L. Terng and G. Thorbergsson have given some sufficient and necessary conditions for an
action to be hyperpolar in the paper [13]. Using these criteria, A. Kollross has completely
classified the hyperpolar isometric actions on compact symmetric spaces (see [19]). It is
important to remark that cohomogeneity one isometric actions on compact symmetric spaces
are always hyperpolar (see [13]).

Let G|K be a simply connected symmetric space of compact type and let σ denote the
corresponding involution of G. In this paper we study the isometric action of the symmetric
subgroup L on G|K provided that σ and ρ commute, furthermore, the codimension of the
principal orbits is equal to one and the orbit L(o) of the point o = K is singular. We show
that in this case the orbits of L coincide with the tubular hypersurfaces around the totally
geodesic orbit L(o) (see Proposition 4). The whole symmetric space G|K can be thought of as
a compact tube the radius r of which is determined by the curvature tensor (see Theorem 1).
Moreover, the other singular orbit consists of those points whose distance from L(o) equals
r (see Proposition 5). Since the principal curvatures of these tubular hypersurfaces can
explicitly be expressed (see Proposition 6), we can compute the volumes of the principal
orbits using some results of the paper [12] by A. Gray and L. Vanhecke. This yields a simple
method to compute the volumes of compact symmetric spaces from the volumes of lower
dimensional ones (see Section 4). Finally, we apply the idea described in Sections 3 and
4 to irreducible symmetric spaces of types I and II. Mention must be made that K. Abe
and I. Yokota have already determined the volumes of all the irreducible compact symmetric
spaces using a different technique (see [1]).
Throughout this paper N = G|K presents a d-dimensional (simply connected) symmetric

space of compact type with the relevant Riemannian metric 〈 , 〉 and with the Levi-Civita
connection ∇. The exponential map in N defined on the tangent bundle TN will be denoted
by Exp and the Riemannian curvature tensor by R. We refer to the well-known book [14]
of S. Helgason for basic concepts and facts on symmetric spaces. Concerning submanifolds,
the basic concepts, which are used here, can be found in the books [11] and [18]. We always
take the inherited Riemannian metrics and the induced connections on the submanifolds of
N . As usual, the normal vector bundle of a given submanifold M will be denoted by ν(M).
Considering a smooth normal vector field ζ on M , Aζ will denote the shape operator of M
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with respect to ζ.

2. Hyperpolar actions of special symmetric subgroups

Let us take such a Riemannian symmetric pair (G,K) of compact type, where K is con-
nected. This means that G is a connected compact semisimple Lie group and there exists an
involutive automorphism σ : G → G such that K coincides with the identity component of
the closed subgroup Gσ. This induces an involution dσ of the semisimple Lie algebra g of G.
Considering the eigenspaces of dσ with respect to the eigenvalues 1 and −1, we obtain the
Cartan decomposition

g = k+ p, (1)

where k coincides with the Lie algebra of the subgroup K.
Henceforth we denote the coset space G|K by N and the special coset K by o, too. We

can take the smooth left action α : G×G|K → G|K defined by the equality α(g, hK) = ghK
for g, h∈G. It is well-known that the coset space G|K can be equipped with a Riemannian
metric such that the above action α turns into isometric and G|K turns into a symmetric
space. Therefore the elements of G can be considered as isometries of N, since to each
element g∈G we can assign the isometry αg : G|K → G|K, where αg(hK) = ghK holds for
hK∈G|K.
As it is well-known, the subspace p can be regarded as the tangent space ToN of N = G|K

at o = K. Namely, considering the natural smooth mapping π : G → G|K defined by
π(g) = gK, its tangent linear map Teπ at the identity element e presents an isomorphism
between p and ToN . Denoting by exp the exponential map of the Lie algebra g onto G and
by Expo the exponential map of the tangent space ToN onto N, it is important to remark
that the equality

exp(Y )K = Expo(Teπ(Y ))

is valid for any Y ∈p. In this paper p and ToN are considered to be identified by Teπ.
Then concerning the Riemannian curvature tensor at o, for any vectors v1, v2, v3 in p the

relation

R(v1, v2)v3 = −
[
[v1, v2], v3

]
(2)

is valid, where [ , ] denotes the bracket operation in the Lie algebra g.

Hereafter we assume that G is simply connected. This implies that the closed subgroup Gσ is
connected (see Chapter VII, Theorem 8.2 in [14]) and the symmetric space N is also simply
connected. Let B denote the Killing form of the Lie algebra g. It is well-known that the
quadratic form B is negative definite. In this paper we assume that for a positive number c
the equality

〈 v1, v2 〉o = −c ·B(v1, v2) (v1, v2∈p) (3)

holds, where 〈 , 〉o denotes the inner product on the tangent space ToN = p. Notice that the
above relation (3) is valid if the symmetric space G|K is irreducible.
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Let us take an involutive automorphism ρ of G such that ρ commutes σ (ρ 6= σ) and
the symmetric subgroup L = Gρ. In the following we study the inherited isometric action
α : L × N → N . Observe that since L is a compact Lie group, all the orbits of L are
submanifolds in N (see [5; pp. 301–303]). By the eigenspaces of the induced involution dρ
of g we get another decomposition g = l + n, where l coincides with the Lie algebra of L.
Obviously, since the involutions dσ and dρ commute, the equalities

l = l ∩ k+ l ∩ p, p = p ∩ l+ p ∩ n (4)

are valid, and the components of p are orthogonal with respect to the inner product.

Concerning differentiable actions, basic notions and facts can be found in the book [17].
First we determine the tangent space of the orbit L(o) at the point o. For this reason we
introduce some further notation. By the Cartan decomposition (1) an arbitrary vector X in
g can uniquely be written in the form X = Xk +Xp, where Xk∈k and Xp∈p.
It is obvious that the tangent space ToL(o) is spanned by the tangent vectors ω̇X(0) of

the smooth curves ωX : R → N (X ∈ l), where ωX(t) = αexp(tX)(o) = π ◦ exp(tX) is valid
for t∈R. Clearly, the tangent vector ω̇X(0) (X∈ l) coincides with the component Xp. Hence,
the decomposition (4) of l implies the following assertion.

Proposition 1. The tangent space ToL(o) coincides with l ∩ p, which is a Lie triple system
in p.

Since l ∩ p is a Lie triple system in p, Expo(l ∩ p) is a totally geodesic submanifold in N.
Using the equality Expo(Y ) = α(exp(Y ), o) which is valid for any Y ∈p, by Proposition 1 we
obtain that Expo(l ∩ p) coincides with the orbit L(o). Moreover, observe that the isotropy
subgroup Lo = { g∈L | αg(o) = o } equals L ∩K.
For simplicity, hereafter the totally geodesic orbit L(o) will be denoted byM, too. There-

fore we get ToM = l ∩ p and νoM = n ∩ p, where νoM denotes the normal complementary
subspace of ToM.
It is reasonable to consider the involution τ = σ ◦ ρ of G. Hence, we can take the

symmetric subgroup H = Gτ and its action on N . Denoting by h the Lie algebra of H, we
obtain that h ∩ p = n ∩ p holds. As in the case of L(o), it can easily be seen that the orbit
H(o) coincides with the totally geodesic submanifold Expo(h ∩ p).
Let us take a maximal abelian subspace c in n ∩ p and the totally geodesic submanifold

C = Expo(c). This means that C is a maximal dimensional flat totally geodesic submanifold
in the symmetric space H(o). The following result, which is essentially due to Hermann,
verifies that the isometric action α : L×N → N is hyperpolar (for proof see [16] or [13]).

Proposition 2. The flat torus C intersects orthogonally all the orbits of L.

Clearly, the relations dσ(l) = l, dσ(h) = h, exp ◦ dσ = σ ◦ exp immediately imply that
L and H are invariant subgroups of σ. Considering the restrictions of σ to these compact
subgroups, we obtain that L ∩K = Lσ|L = Hσ|H = H ∩K is valid.
As it is well-known, a connected (totally geodesic) submanifold M is called reflective if

there exists an involutive isometry of N such that M is a component of its fixed point set.
Lists of reflective totally geodesic submanifolds in irreducible symmetric spaces are given
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in the papers [20] and [7]. It is not difficult to show that L(o) and H(o) are reflective
submanifolds in N (for details see [26]). The above statements can be summarized in the
following proposition.

Proposition 3. (L,L ∩K) and (H,H ∩K) present Riemannian symmetric pairs with the
involution σ. The orbits L(o) = Expo(p ∩ l) and H(o) = Expo(p ∩ n) are reflective totally
geodesic submanifolds in N, which are isometric with the symmetric spaces L|L ∩ K and
H|H ∩K, respectively.

Regarding an arbitrary element g ∈L, it is evident that the tangent linear map Tαg of the
isometry αg leaves the normal vector bundle ν(M) invariant. Hence, we can take the smooth
action Tα : L × ν(M) → ν(M) of the symmetric subgroup L on ν(M) which is defined by
Tα(g, w) = Tαg(w) for g∈L and w∈ν(M). In what follows, ExpM will denote the restriction
of Exp to the normal bundle ν(M). Applying geodesics in N which intersect orthogonally
M = L(o), it can easily be seen that the relation

αg ◦ ExpM = ExpM ◦ Tαg (5)

is valid for each g∈L.

3. Cohomogeneity one isometric actions on compact symmetric spaces

Recall that the cohomogeneity of the action α is equal to the codimension of the principal
orbits of L. By Proposition 2 we obtain that this number is equal to one if and only if H(o)
is a symmetric space of rank one.
Henceforth RP n, CP n and QP n will denote the n-dimensional real, 2n-dimensional com-

plex and 4n-dimensional quaternion projective spaces, respectively. Furthermore, Sn and Cay
will denote the n-dimensional sphere and the Cayley projective plane. It is well-known that
they present the compact symmetric spaces of rank one, furthermore, in these symmetric
spaces all the geodesics are closed and have the same length.

Assume that the rank of the symmetric space H(o) = Expo(νoM) is equal to one and the
dimension of L(o) is less than d − 1, where d denotes the dimension of N. Then the closed
geodesics in H(o) which pass through o are sections of α.
We can consider the isometric action of the isotropy subgroup Ho = H ∩ K on the

symmetric space H(o), which is a totally geodesic submanifold in N. Then the orbits of
H∩K = L∩K in H(o) coincide with the geodesic spheres around o. It follows from this that
the smooth action Tα : L× ν(M)→ ν(M) is transitive on the set of unit vectors in ν(M).
Let us introduce now the notation

M̃ t = { ExpM(w) | w∈ν(M), ‖w‖ = t } (t > 0)

and call M̃ t the tubular hypersurface of radius t around M. The above statement concerning
Tα and the relation (5) verify that M̃ t is an orbit of L for any t > 0. Therefore the following
assertion is true.
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Proposition 4. If the cohomogeneity of the action α : L × N → N is equal to one and
L(o) is a singular orbit, then the other orbits of L coincide with the tubular hypersurfaces
around L(o).

Hereafter we always assume that the cohomogeneity of the isometric action α is equal to one
and the totally geodesic orbit L(o) is singular.
Our purpose is to show that N can be regarded as a compact tube around L(o) = M

and to determine the radius r of this tube using the curvature tensor R. Let us take a unit
vector w ∈ νqM (q ∈ M) and the self-adjoint endomorphism Rw : TqN → TqN defined
by Rw(v) = R(v, w)w (v ∈ TqN). Since νqM is the tangent space of a totally geodesic
submanifold in N , νqM and TqM are invariant subspaces of Rw. Furthermore, it is important
to observe that in this case the eigenvalues of Rw do not depend on the choice of the unit
vector w in ν(M).

Let us fix now a unit vector u in νoM and the geodesic γ : R → N defined by γ(τ) =
Expo(τu) (τ ∈R). By Proposition 2 the closed geodesic C = γ(R) is a section of the action
α. Concerningthe orbits of L, Proposition 4 implies that L(γ(t)) = L(γ(−t)) = M̃ t (t > 0)
is valid.
The eigenvalues of Ru in ToM, which are non-negative numbers, will be denoted by

ai (i = 1, . . . , s) and their multiplicities will be denoted by mi, respectively.
Let λ be the maximal sectional curvature of the symmetric space H(o) = Exp(νoM)

with rank one. Then the eigenvalues of Ru in νoM are b1 = λ, b2 =
1
4
λ, b3 = 0 with

the multiplicities k1, k2, k3 (k3 = 1), respectively. Obviously, k2 = 0 is valid if H(o) is a
space of constant curvature. Moreover, k1 = 1, k1 = 3 and k1 = 7 hold provided that
H(o) = CP n, H(o) = QP n and H(o) = Cay, respectively. (For details concerning the
compact symmetric spaces of rank one see Chapter 3 of the book [2].)

Let h be the arc length of the closed geodesics in H(o). Then h = 2π√
λ
holds provided that

H(o) is not a real projective space. In the case of H(o) = RP n (n ≥ 2) we get h = π√
λ
.

Let us consider the positive number r defined by the following relation

r = minimum
( { π

2
√
ai
| ai 6= 0 (i = 1, . . . , s)

}
∪
{ h
2

} )
. (6)

We can take the open tubular neighborhood

νr(M) = { w | w∈ν(M), ‖w‖ < r }

of radius r in the normal bundle ν(M).

In order to prove Theorem 1, which verifies that N has a tubular structure around L(o) =M,
we need some results concerning M -Jacobi vector fields along normal geodesics (for details
see [3; pp. 220–238]).
Let N be a connected compact Riemannian manifold with dimension d and let M be a

connected compact submanifold of N. Take a point o of M and a unit vector u in the normal
subspace νoM. Then we can consider the geodesic γ : R→ N, where γ(t) = Expo(tu) holds
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for t ∈R. Recall that a Jacobi vector field ξ : R → TN along γ is called M -Jacobi if the
conditions

〈 ξ(t), γ̇(t) 〉 = 0 for t∈R, ξ(0) ∈ ToM, ∇uξ + Au(ξ(0)) ∈ νoM

are satisfied, where Au denotes the shape operator of M with respect to u. The M -Jacobi
vector fields along γ form a (d − 1)-dimensional linear space which we denote by J (γ,M).
As usual, if a vector w in ν(M) is a critical point of ExpM , then w (respectively ExpM(w))
is said to be a focal point of M in ν(M) (respectively in N). It is well-known that the vector
tu (t 6= 0) is a focal point of M if and only if there exists a non-trivial M -Jacobi vector field
ξ along γ such that ξ(t) = 0 holds. If the vector εu (ε > 0) is a focal point of M such that
τu is not a focal one for any τ ∈(0, ε), then εu is called a first focal point of M.

On the other hand, the point γ(ε) for some ε > 0 is said to be the minimum point of M
along γ if the following two conditions are satisfied:
Considering any value t∈ [0, ε], the distance between M and γ(t) is equal to t. Furthermore,
if t > ε is valid, then the distance between M and γ(t) is less than t.
Concerning minimum points of submanifolds, we can state the assertion below the proof

of which is analogous to the proof of the theorem characterizing the cut points of a given
point (see [3; pp. 237–238]). To give a complete proof we have to use the fact that M is a
compact submanifold of N.

Lemma 1. If γ(ε) (ε > 0) yields the minimum point of M along γ, then at least one of the
following statements is true.
(1) The vector εu is a first focal point of M.
(2) There is a unit vector w∈ν(M) different from u such that ExpM(εw) = γ(ε) holds.

Let us return to the discussion of the cohomogeneity one isometric action α : L × N → N.
The following theorem verifies that the simply connected symmetric space N is a compact
tube of radius r around L(o) =M.

Theorem 1. The restriction of ExpM to νr(M) is a diffeomorphism, and the relation
ExpM(ν

r(M)) ∪ L(γ(r)) = N is valid.

Proof. First we show that the smooth map ExpM : ν
r(M) → N is regular by using the

method of M -Jacobi vector fields. Since the submanifold L(o) = M is totally geodesic, the
shape operator Au vanishes. Let us take a non-zero vector vi (i = 1, . . . , s) in ToM such that
Ru(vi) = ai vi holds and the parallel vector field ηi along γ, where ηi(0) = vi. Then the vector
field ξi : R→ TN defined by ξi(t) = cos(

√
ai t) ηi(t) is M -Jacobi. Moreover, let v̂j (j = 1, 2)

be a non-zero vector in νoM such that Ru(v̂j) = bj v̂j, and consider the parallel vector field η̂j
along γ, where η̂j(0) = v̂j. Obviously, the vector field ξ̂j defined by ξ̂j(t) = sin(

√
bj t) η̂j(t) is

alsoM -Jacobi. These vector fields generate the linear space J (γ,M). Regarding the formula
(6) which presents the radius r, we can see that for any non-trivial M -Jacobi vector field ξ
along γ the relation ξ(t) 6= 0 is valid provided that t ∈ (0, r). Since L acts transitively on
the set of unit vectors in ν(M) by the tangent linear maps, we obtain that the restriction of
the smooth map ExpM to ν

r(M) is regular. Moreover, Proposition 4 implies that the orbits
L(γ(t)) = M̃ t (0 < t < r) are (d− 1)-dimensional.
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After this we prove that the map ExpM : ν
r(M) → N is injective which follows from the

statement below.

Considering a point p = γ(t) (0 < t < r), the distance between M and p is equal to t and
γ([0, t]) presents the unique minimizing geodesic segment which joins M and p.

Indirectly, suppose that the above assertion is not true for some t ∈ (0, r). Since τu is not
a focal point of M for any τ ∈ (0, t), by Lemma 1 this implies that we can find a number
ε (ε ≤ t) and a unit vector w∈νqM (q∈M, q 6= o) such that ExpM(εu) = ExpM(εw)
holds. Assume that ε is the least positive number having this property. Then the orbit
M̃ τ = L(γ(τ)) (0 < τ < ε) is principal and the isotropy subgroup Lγ(τ) does not depend
on the choice of τ ∈ (0, ε). Since L(o) = L(γ(0)) is a singular orbit, the isotropy subgroup
Lγ(τ) is included in Lo = L ∩ K. Let us take now an element g ∈ L such that Tαg(w) = u
holds. Since αg(q) = o and αg(γ(ε)) = γ(ε) are true, we obtain that the isotropy subgroup
Lγ(ε) of L at the point γ(ε) is larger than Lγ(τ) because g is not contained by Lo. Therefore
we have got the (d − 1)-dimensional orbit L(γ(ε)) which is not principal. However, since
the symmetric space N is simply connected, by one of the results of Conlon all the maximal
dimensional orbits of L are principal (see Proposition 2.2 in [8]). This contradiction verifies
that γ presents the unique minimizing geodesic segment which joins M and γ(t). Since the
action Tα : L× ν(M) → ν(M) is transitive on the set of unit vectors of ν(M), the relation
(5) implies that the mapping ExpM is injective on ν

r(M).

It remained only to prove the second assertion of the theorem. We can easily show that the
distance of each point of N from the submanifold M is not greater than r. Considering a
point p of N, let χ : [0, δ]→ N be a minimizing geodesic segment which joinsM and p, where
χ̇(0) = w is a unit vector in ν(M) and χ(δ) = p. Then the relations δ ≤ π

2
√
ai
(i = 1, . . . , s)

hold since the vector τw (0 < τ < δ) is not a focal point ofM, furthermore, δ ≤ h
2
is also valid.

It follows from this that the inequality δ ≤ r is true. Therefore the set ExpM(νr(M)) ∪ M̃ r

coincides with the symmetric space N.
Finally, observe that in consequence of the above facts the elements of M̃ r are minimum

points of the submanifold L(o) =M.

The following proposition shows that the symmetric subgroup L has two singular orbits.

Proposition 5. L(γ(r)) = M̃ r is another singular orbit of L.

Proof. Considering an element X ∈ l and a point p ∈ N, let us take the smooth curve
ωX,p : R → N defined by ωX,p(τ) = αexp(τX)(p) for τ ∈R. Denoting by ω̇X,p(0) the tangent
vector of this curve at 0, we get

TpL(p) = { ω̇X,p(0) | X∈ l }.

Regarding an element X ∈ l, we can take the vector field ξX : R → TN along the fixed
geodesic γ, where ξX(t) = ω̇X,γ(t)(0) is valid. It is well-known that the transversal vector fields
of a geodesic variation are Jacobi vector fields along the geodesics. Consider the geodesic
variation ΓX : R×(−ε, ε)→ N of γ defined by ΓX(t, τ) = αexp(τX)(γ(t)), where ε is a positive
number and t ∈R, τ ∈ (−ε, ε). Then ξX coincides with the transversal vector field of this
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geodesic variation, and it can be seen that ξX is an M -Jacobi vector field along γ. Therefore
we obtain the equality

Tγ(t)M̃
t = { ξ(t) | ξ∈J (γ,M) } (t > 0). (7)

The relations (6) and (7) imply that if either H(o) is not a real projective space or 2r < h
holds, then γ(r) is a focal point of L(o) = M. Hence, the codimension of the submanifold
L(γ(r)) is greater than one.
Finally, assume that H(o) = RP n holds and γ(r) is an antipodal point of o = γ(0) on

the closed geodesic C. Regarding the isotropy subgroup of L at γ(r), it can easily be seen
that the orbit L(γ(r)) is not principal. As we mentioned it in the proof of Theorem 1, since
N is simply connected, all the maximal dimensional orbits of L are principal. This implies
that the orbit L(γ(r)) is singular, and L(γ(r)) consists of the focal points of M.

Remark 1. The even integer h
r
presents the number of points of the intersection of the

circle C = γ(R) and a principal orbit L(γ(t)) = M̃ t (0 < t < r).

Let ζ denote the smooth unit normal vector field on the hypersurface M̃ t (0 < t < r)
defined by the condition ζ(γ(t)) = γ̇(t). Clearly, the shape operator Ãζ of M̃

t has constant
eigenvalues, which are called principal curvatures of M̃ t. Using the endomorphism Ru, we
can explicitly express these eigenvalues by the following statement which is a special case of
Theorem 1 given in the paper [25]. Notice that by our notational convention b1 = λ and
b2 =

1
4
λ hold in Proposition 6 described below.

Proposition 6. The constant principal curvatures of the hypersurface M̃ t = L(γ(t))
(0 < t < r) are µi(t) =

√
ai tan(

√
ai t) (i = 1, . . . , s) with multiplicities mi and µ̂j(t) =

−
√
bj cot(

√
bj t) (j = 1, 2) with multiplicities kj, respectively.

4. Volumes of tubular hypersurfaces around L(o)

In this section first we review some basic formulae concerning volumes of tubes around a
compact submanifold. For details and proof see the paper [12] and the book [11].
Let N be an orientable complete Riemannian manifold with dimension d and let M be

an m-dimensional connected orientable submanifold with compact closure (1 ≤ m ≤ d− 2).
Denote by k the codimension of M in N (k = d−m). Assume that the restriction of ExpM
to νr(M) is a diffeomorphism for a suitable number r (r > 0). Let us take a unit vector
u∈νqM and the normal geodesic γ defined by γ(t) = ExpM(tu) for t∈R. Denote by ωN the
volume form of N and by ων the canonical volume form of the normal bundle ν(M). Then
for a suitable number ϑu(t) the equality

(ExpM)
∗ωN (tu) = ϑu(t) · ων(tu)

holds, where (ExpM)
∗ωN denotes the transform of ωN by ExpM . The mapping ϑu : R→ R

is called the infinitesimal change of volume function corresponding to u. Obviously, ϑu(0) = 1
is valid. Denote by Tr Ãγ̇(t) the trace of the shape operator of the tubular hypersurface M̃

t
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with respect to γ̇(t). Then the restriction of the function ϑu to (0, r) satisfies the differential
equation

ϑ′u(t)

ϑu(t)
= −
k − 1

t
− Tr Ãγ̇(t) (0 < t < r). (8)

The volume of the hypersurface M̃ t (0 < t < r) is given by the formula

vol(M̃ t) = tk−1 ·

∫

M

(∫

Sk−1[1]

ϑu(t) du
)
dm, (9)

where Sk−1[1] denotes the unit spheres in the normal subspaces νqM (q∈M) and du denotes
the volume forms on them, furthermore, dm denotes the volume form of M.
We can apply the above formulae to cohomogeneity one hyperpolar actions discussed

in the preceding section. In this case the tubular hypersurfaces around M = L(o) are
isoparametric and the function ϑu does not depend on the choice of the unit vector u.
Using Proposition 6 and the equation (8), we can easily verify the equality

ϑ(t) = 2k2 λ
1−k
2 t1−k · sink1(

√
λ t) · sink2(

1

2

√
λ t) ·

s∏

i=1

cosmi(
√
ai t), (10)

where k1 + k2 = k − 1. Notice that the above expression (10) can be regarded as a special
case of Proposition 3.1 of the paper [21]. Concerning the volumes of the principal orbits
L(γ(t)) = M̃ t (0 < t < r), the relation (9) implies

vol(M̃ t) = vol(M) · vol(Sk−1[1]) · tk−1ϑ(t). (11)

Hence, by Theorem 1 we obtain the equality

vol(N) =

∫ r

0

vol(M̃ t) dt = vol(M) · vol(Sk−1[1]) ·

∫ r

0

tk−1ϑ(t) dt. (12)

SinceM = L(o) is a lower dimensional symmetric space, the above formula presents a simple
method for computation of volumes of several symmetric spaces.

Remark 2. K. Abe and I. Yokota have computed the volumes of all the compact irreducible
symmetric spaces in a different way (see [1]). Their method is based on the results of S. A.
Broughton (see [6]).

Remark 3. Assume that N = G|K is an irreducible compact symmetric space with
dimension d. Then the Riemannian metric of N is given by the equality (3). Let κ be the

maximal sectional curvature in N. It is clear that in this case the products κ
d
2 ·vol(N) and

κ
m
2 ·vol(M) do not depend on the choice of the positive factor c.
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5. Examples for special cohomogeneity one isometric actions on irreducible sym-
metric spaces of type I

In this section we apply the earlier results of the paper to classical irreducible symmetric
spaces of type I. Some concrete hyperpolar actions on the classical structures will be discussed
in detail.
We always take an action α : L × N → N such that M = L(o) is a totally geodesic

singular orbit of the symmetric subgroup L and H(o) is a symmetric space of rank one.
Hence, the closed geodesics in H(o) which pass through o present sections of α, furthermore,
by Theorem 1 N is a compact tube around L(o). Among others, we compute the radii of the
tubes and the functions ϑ : (0, r) → R which determine the volumes of the principal orbits
by the relation (11).
As earlier, κ and λ will denote the maximal sectional curvatures of N = G|K and H(o),

respectively. On several occasions the maximal curvature of a given symmetric space will be
indicated as a subscript (for instance Nκ, H(o)λ).
Using the isotropy subgroups, we get evident examples for isometric actions on the sym-

metric spaces of rank one, where the principal orbits coincide with the geodesic spheres.
Therefore we consider only those Grassmannian manifolds the ranks of which are not less
than 2.

Concerning matrix Lie groups, we use the notation of the book [14] (in particular, see Chapter
X). Regarding an element X of the complex matrix group Gl(n,C), X̄ and XT will
denote its conjugate and its transpose, respectively. Furthermore, Es will denote that matrix
in Gl(n,C), where the entry in s-th row and s-th column is equal to 1 and all the other
entries vanish. The identity element of Gl(n,C) will be denoted by In. Moreover, we shall
use the notation
Ip,q = (E1 + · · ·+ Ep)− (Ep+1 + · · ·+ En) with p+ q = n,

Jn =

(
0 In
−In 0

)
and Fp,q =

(
Ip,q 0
0 Ip,q

)
, where Fp,q, Jn ∈Gl(2n,C). The isomorphism

of two Lie groups will be denoted by the sign ≈.

5.1. Compact symmetric spaces SU(n)|SO(n) (n ≥ 3) of type AI

In this case we have the equalities G = SU(n), σ(X) = X̄ for X∈G and K = Gσ = SO(n).
For simplicity, the symmetric space SU(n)|SO(n) will be denoted by AI(n). Let us take the
involutive automorphism ρ : G → G defined by ρ(X) = In−1,1XIn−1,1, which commutes σ.
Then we obtain the symmetric subgroups L = Gρ = S(Un−1 × U1) , H = Gτ ≈ SO(n) and
L ∩K = S(On−1 ×O1).
In order to characterize the orbit L(o) we need the vector Z = i(E1+· · ·+En−1−(n−1)En)

of l ∩ p and the subspace a = { X ∈ l ∩ p | B(X,Z) = 0 } which is a Lie triple system in
p. Then Expo(a) is a totally geodesic submanifold in N which is isometric with AI(n− 1)κ.

The closed geodesic S1 = Expo(RZ) has the arc length l (S
1) =

√
2n(n− 1)πκ−

1
2 . It can be

shown that L(o) = M is covered by the product of Expo(a) and Expo(RZ), more precisely,
M is isometric with (AI(n− 1)κ × S

1)|Zn−1, where Zn−1 denotes the cyclic group of order
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n− 1. Therefore we get

vol(M) = vol(AI(n− 1)κ) ·

√
2n

√
n− 1

π κ−
1
2 .

It is easy to verify that H(o) coincides with the real projective space RP n−1λ .
Using the equality (2), we can determine the eigenvalues of the restricted endomorphism

Ru|ToM (and their multiplicities), which are a1 = κ (m1 = 1), a2 =
1
4
κ (m2 = n − 2) and

a3 = 0. Furthermore, by virtue of (6) and (10) it can be shown that the equalities

κ =
1

c · n
, λ =

1

4
κ, r =

π

2
√
κ
, ϑ(t) =

1

(
√
κ t)n−2

sinn−2(
√
κ t) cos(

√
κ t)

hold. Finally, by the relation (12) we obtain the recursive formula

vol(AI(n)κ) = vol(AI(n− 1)κ) · vol(S
n−2[1]) ·

√
2n

(n− 1)
3
2

π κ−
n
2 (n ≥ 3),

where vol(AI(2)κ) = 4πκ−1 is true because of AI(2) = S2.

5.2. Compact symmetric spaces SU(2n)|Sp(n) (n ≥ 3) of type AII

In this case the equalities G = SU(2n), σ(X) = JnX̄J
T
n for X∈G and

K = Sp(n) = SU(2n) ∩ Sp(n,C) are valid. For brevity, AII(n) will denote the symmetric
space SU(2n)|Sp(n). Consider the involution ρ defined by ρ(X) = Fn−1,1XFn−1,1 for X∈G,
which satisfies the condition σ ◦ ρ = ρ ◦ σ. Therefore we get the symmetric subgroups L ≈
S(U2n−2 × U2), H ≈ Sp(n) and L ∩K ≈ Sp(n− 1)× Sp(1).
For describing the orbit L(o) we need the vector

Z = i(E1 + · · ·+ En−1 − (n− 1)En) + i(En+1 + · · ·+ E2n−1 − (n− 1)E2n)

and the subspace a = { X∈ l ∩ p | B(X,Z) = 0 } which is a Lie triple system in p. Then the
totally geodesic submanifold Expo(a) is isometric with AII(n− 1)κ.

As in the previous case, we obtain that L(o) =M is isometric with (AII(n− 1)κ×S
1)|Zn−1,

where S1 = Expo(RZ). The other totally geodesic orbit H(o) coincides with the 4(n − 1)-
dimensional quaternion projective space QP n−1λ .
The eigenvalues of the self-adjoint operator Ru in ToM are a1 = κ (m1 = 1), a2 =

1
4
κ (m2 = 4n − 8) and a3 = 0. Considering the relations (6) and (10), by straightforward
calculation we get

κ =
1

c · 4n
, λ = κ, r =

π

2
√
κ
, ϑ(t) =

1

(
√
κ t)4n−5

sin4n−5(
√
κ t) cos(

√
κ t).

Hence, (12) and the equality vol(S4n−5[1]) = 2π2n−2

(2n−3)! imply the formula

vol(AII(n)κ) = vol(AII(n− 1)κ) ·

√
2n

√
n− 1

π2n−1

(2n− 2)!
κ
3
2
−2n (n ≥ 3).

Remark that vol(AII(2)κ) = π3κ−
5
2 holds because AII(2) = S5 is true.
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5.3. Compact symmetric spaces SU(p+q)|S(Up×Uq) (p ≥ q ≥ 2) of type AIII

We need the Lie group G = SU(n) with n = p+q, the involution defined by σ(X) = Ip,qXIp,q
forX∈G and the symmetric subgroupK = S(Up×Uq). The complex Grassmannian manifold
SU(p+ q)|S(Up×Uq) will be denoted by GC(p, q). Let us consider the involution ρ : G→ G,
where ρ(X) = In−1,1XIn−1,1. Hence, we get the symmetric subgroups L = S(Un−1 × U1)
and H ≈ S(Up+1 × Uq−1). It can be seen that L(o) =M is isometric with GC(p, q − 1)κ, and
H(o) presents the 2p-dimensional complex projective space CP pλ .
The eigenvalues of the restricted endomorphism Ru|ToM are a1 =

1
4
κ (m1 = 2q−2) and

a2 = 0. Moreover, we can verify the equalities

κ =
1

c (p+ q)
, λ = κ, r =

π
√
κ
, ϑ(t) =

22p−1

(
√
κ t)2p−1

sin2p−1(
1

2

√
κ t) cos2q−1(

1

2

√
κ t).

5.4. Compact symmetric spaces SO(p + q)|SO(p)× SO(q) (p ≥ q ≥ 2) of type
BDI

Let us consider the Lie group G = SO(n) with n = p + q, the involution defined by
σ(X) = Ip,qXIp,q for X ∈ SO(n) and the identity component K = SO(p)× SO(q) of the
subgroup Gσ. The oriented real Grassmannian manifold SO(p+ q)|SO(p)× SO(q) will be
denoted by GR(p, q). Take the involution ρ : G → G, where ρ(X) = In−1,1XIn−1,1 is valid.
Then the identity components of the symmetric subgroups Gρ and Gτ are L = SO(n − 1)
and H ≈ SO(p + 1) × SO(q − 1), respectively. It can be seen that L(o) = M is isometric
with GR(p, q − 1)κ provided that q ≥ 3 holds, and L(o) =M coincides with the sphere S

p of
constant curvature κ

2
if q = 2 is valid. H(o) always gives the p-dimensional sphere Spλ.

The eigenvalues of the restricted endomorphism Ru|ToM are a1 =
1
2
κ (m1 = q− 1) and

a2 = 0. By means of the relations (6) and (10) it can be shown that the equalities

κ =
1

c (p+ q − 2)
, λ =

1

2
κ, r =

π

2
√
λ
, ϑ(t) =

1

(
√
λ t)p−1

sinp−1(
√
λ t) cosq−1(

√
λ t)

are valid.

5.5. Compact symmetric spaces SO(2n)|U(n) (n ≥ 3) of type DIII

In this case we have G = SO(2n), σ(X) = JnXJ
T
n for X ∈ G and K = Gσ ≈ U(n). For

simplicity, the symmetric space G|K will be denoted by DIII(n). Let us take the involution
ρ : G → G defined by ρ(X) = Fn−1,1XFn−1,1, which commutes σ. Then we obtain the
symmetric subgroups Gρ ≈ S(O2n−2 × O2) and H = Gτ ≈ U(n). Consider the identity
component L ≈ SO(2n − 2) × SO(2) of Gρ and its isometric action on DIII(n). It can
be seen that L(o) = M is isometric with DIII(n− 1)κ. Moreover, H(o) coincides with the
complex projective space CP n−1λ .
The eigenvalues of the self-adjoint operator Ru in ToM are a1 =

1
4
κ (m1 = 2n − 4) and

a2 = 0. Furthermore, we can verify the relations

κ =
1

c (2n− 2)
, λ = κ, r =

π
√
κ
, ϑ(t) =

1

(
√
κ t)2n−3

sin2n−3(
√
κ t).
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If we calculate the volume of DIII(n) (n ≥ 3) by using the equality (12), then DIII(2) = S2

and vol(DIII(2)κ) = 4πκ−1 are needed.

5.6. Compact symmetric spaces Sp(n)|U(n) (n ≥ 2) of type CI

In this case the equalities G = Sp(n), σ(X) = X̄ for X ∈G, K = Gσ ≈ U(n) are valid.
Henceforth, the symmetric space G|K will be denoted by CI(n). Consider the involutive
automorphism ρ : G→ G defined by ρ(X) = Fn−1,1XFn−1,1. Then we obtain the symmetric
subgroups L = Gρ = Sp(n − 1) × Sp(1), H = Gτ ≈ U(n) and L ∩K ≈ U(n − 1) × U(1).
The totally geodesic orbitM = L(o) is isometric with the product CI(n−1)κ×S2κ, and H(o)
presents the complex projective space CP n−1λ .
Using the equality (2), we can show that the eigenvalues of the self-adjoint operator

Ru|ToM are a1 =
1
2
κ (m1 = 2), a2 =

1
8
κ (m2 = 2n − 4) and a3 = 0. By virtue of the

relations (6) and (10) we obtain

κ =
1

c (n+ 1)
, λ =

1

2
κ, r =

π

2
√
λ
, ϑ(t) =

1

(
√
λ t)2n−3

sin2n−3(
√
λ t) cos2(

√
λ t).

Concerning the formula (12) on the volume of CI(n)κ (n ≥ 2), observe that CI(1) = S2 is
valid.

5.7. Compact symmetric spaces Sp(p + q)|Sp(p) × Sp(q) (p ≥ q ≥ 2) of type
CII

Let us consider the Lie group G = Sp(n) with n = p+q, the involution σ(X) = Fp,qXFp,q for
X ∈ Sp(n) and the symmetric subgroup K = S(p) × Sp(q). The quaternion Grassmannian
manifold Sp(p + q)|Sp(p) × Sp(q) will be denoted by GQ(p, q). It is reasonable to take the
involution ρ : G → G, where ρ(X) = Fn−1,1XFn−1,1 is valid. Hence, we get the symmetric
subgroups L = Sp(n−1)×Sp(1) and H ≈ Sp(p+1)×Sp(q−1). It can be seen that L(o) =M
is isometric with GQ(p, q − 1)κ provided that q ≥ 3 holds, and L(o) =M coincides with QP

p

having the maximal curvature κ
2
if q = 2 is valid. Moreover, H(o) gives the quaternion

projective space QP pλ .
The eigenvalues of the restricted endomorphism Ru|ToM are a1 =

1
8
κ (m1 = 4q−4) and

a2 = 0. Furthermore, we can verify the equalities below

κ =
1

c (n+ 1)
, λ =

1

2
κ, r =

π
√
λ
, ϑ(t) =

24p−1

(
√
λ t)4p−1

sin4p−1(
1

2

√
λ t) cos4q−1(

1

2

√
λ t).

As in the other cases, by means of the relation (12) the volume of GQ(p, q)κ can be expressed
from the value vol(GQ(p, q − 1)κ).

Finally, some results of Section 5 are summarized in the following table.
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N L M = L(o) H(o) κ
λ

r

AI(n) S(Un−1 × U1) (AI(n− 1)× S1)|Zn−1 RP n−1 4 π

4
√
λ

AII(n) S(U2n−2 × U2) (AII(n− 1)× S1)|Zn−1 QP n−1 1 π

2
√
λ

GC(p, q) S(Un−1 × U1) GC(p, q − 1) CP p 1 π√
λ

GR(p, q) SO(n− 1) GR(p, q − 1) Sp 2 π

2
√
λ

DIII(n) SO(2n− 2)× SO(2) DIII(n− 1) CP n−1 1 π√
λ

CI(n) Sp(n− 1)× Sp(1) CI(n− 1)× S2 CP n−1 2 π

2
√
λ

GQ(p, q) Sp(n− 1)× Sp(1) GQ(p, q − 1) QP p 2 π√
λ

Table 1.

6. Examples for special cohomogeneity one isometric actions on irreducible sym-
metric spaces of type II

Let us consider a connected compact Lie group G with semisimple Lie algebra g. Regarding
the product group Ĝ = G×G, we can take the smooth action α̂ : Ĝ×G→ G which is defined
by α̂((g1, g2), h) = g1h(g2)

−1 for g1, g2, h∈G. Endow G with a biinvariant Riemannian metric
〈 , 〉 which is derived from the inner product

〈 , 〉e = −c ·B (c∈R, c > 0)

on the tangent space TeG = g at the identity element e. Then G turns into a symmetric
space of compact type, and the mappings Expe, exp defined on g coincide.
On the other hand, we can take the canonical involution σ̂ : Ĝ → Ĝ defined by

σ̂(g1, g2) = (g2, g1) for g1, g2 ∈G. Then the subgroup of the fixed elements coincides with
4G = { (g, g) | g∈G }, and (Ĝ,4G) presents a special Riemannian symmetric pair. As it
is well-known, the coset space Ĝ|4G can naturally be identified with G.

For simplicity, assume that G is simply connected. Let us consider an involutive automor-
phism ρ of G and the connected compact subgroup L = Gρ. Then we can take the symmetric

subgroup L̂ = L× L of Ĝ and the inherited isometric action α̂ : L̂×G→ G. Using the for-
malism of Section 2, in this case we have N = G, o = e, M = L̂(e) = L and νeM = n. It
can be seen that the totally geodesic submanifold exp(n) coincides with the orbit Ĥ(e) of the
other symmetric subgroup Ĥ = { (g, ρ(g)) | g∈G } . Obviously, the maximal dimensional
flat totally geodesic submanifolds of Ĥ(e) which pass through e are sections of α̂.

Recall that the irreducible symmetric spaces of type II are the compact Lie groups with
simple Lie algebras. In this paper we consider only the classical matrix groups SU(n) (n ≥
3), Sp(n) (n ≥ 2) and SO(n) (n ≥ 5). Although the Lie group SO(n) is not simply
connected, we can apply the method described in Section 3 to SO(n), too. Using the relevant
cohomogeneity one actions, it can be seen that the symmetric spaces SU(n), Sp(n) and
SO(n) are compact tubes around the “totally geodesic orbits” S(Un−1×U1), Sp(n−1)×Sp(1)
and SO(n− 1), respectively.
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Some results relating to these special symmetric spaces are summarized in the following
table, where r denotes the radius of the tube, furthermore, κ and λ denote the maximal
sectional curvatures of G and Ĥ(e), respectively.

G 1
c·κ L = L̂(e) Ĥ(e) κ

λ
r

SU(n) 4n S(Un−1 × U1) CP n−1 1 π

2
√
λ

Sp(n) 4(n+ 1) Sp(n− 1)× Sp(1) QP n−1 2 π

2
√
λ

SO(n) 4(n− 2) SO(n− 1) RP n−1 2 π

2
√
λ

Table 2.

Concerning the functions ϑ : (0, r)→ R which present the volumes of the principal orbits by
the equality (11), we obtain

ϑ(t) =
1

(
√
λ t)2n−3

sin2n−3(
√
λ t) cos(

√
λ t) if G = SU(n),

ϑ(t) =
1

(
√
λ t)4n−5

sin4n−5(
√
λ t) cos3(

√
λ t) if G = Sp(n),

ϑ(t) =
1

(2
√
λ t)n−2

sinn−2(2
√
λ t) if G = SO(n).

Hence, among others we can verify the following recursive formulae

vol(SU(n)κ) = vol(SU(n− 1)κ) ·

√
2n

(n− 1)
3
2 (n− 2)!

πn κ
1
2
−n (n ≥ 3),

vol(Sp(n)κ) = vol(Sp(n− 1)κ) ·
22n−1

(2n− 1)!
π2n κ

1
2
−2n (n ≥ 2).

Regarding the above relations, observe that SU(2) = Sp(1) = S3 and vol(S3κ) = 2π
2κ−

3
2 are

valid.
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