# Even Lattices with Covering Radius $<\sqrt{2}$ 

Gabriele Nebe<br>Abteilung Reine Mathematik, Universität Ulm, 89069 Ulm, Germany<br>e-mail: nebe@mathematik.uni-ulm.de

## 1. Introduction

Let $L$ be a lattice in Euclidean space $V:=\mathbb{R} \otimes L$. Then the covering radius of $L$ is the smallest number $r \in \mathbb{R}$ such that the spheres with radius $r$ around all lattice points cover the whole space $V$.

The famous Leech lattice $\Lambda_{24}$, the unique even unimodular lattice of rank 24 with minimal distance 4 , has covering radius $\sqrt{2}$, as shown in [2] (see [3, Chapter 23]). This is the main observation that enables Conway to calculate the automorphism group of the 26 -dimensional even unimodular Lorentzian lattice $\Lambda_{24} \perp\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ ([1], see [3, Chapter 27]). The present article is motivated by a question of Richard Parker, who wants to have a list of all even lattices $L$ with covering radius $\leq \sqrt{2}$ to construct examples of Lorentzian lattices $L \perp$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ for which he can calculate the automorphism group. As a first step, the even lattices of covering radius $<\sqrt{2}$ are classified in this note.

If $L$ is an even lattice with covering radius $<\sqrt{2}$, then for every $v \in V$, there is a vector $l \in L$ with $(v-l, v-l)<2$, where $(v, w)$ denotes the scalar product of two vectors $v, w \in V$. In particular if $v=\frac{1}{2} w$ with $w \in L$, then $(w-2 l, w-2 l)<8$. Since $L$ is even, this means that every coset in $L / 2 L$ contains a vector of square length $\leq 6$. Let $\mu(L)$ denote the minimal $m$ such that every coset in $L / 2 L$ contains a vector of norm $\leq m$. The easy but crucial observation is stated in Lemma 1: If $L$ is an even lattice with $\mu(L) \leq 6$, then every norm 8 vector in $L$ gives rise to a norm 2 vector in $L$ which enables to classify these lattices according to the sublattices spanned by the vectors of norm 2 in $L .32$ of the lattices $L$ with $\mu(L) \leq 6$ are root lattices (Theorem 6), where the largest dimension is 10 , achieved by $E_{8} A_{2}$. For the other 51 lattices (given in Theorem 7) the root sublattice is not of full rank. This list

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag
of 83 lattices includes all even lattices with covering radius strictly smaller than $\sqrt{2}$. With MAGMA ([4]), one checks that all 83 lattices have covering radius $\leq \sqrt{2}$. 69 of these lattices have covering radius $<\sqrt{2}$. The 14 lattices with covering radius $=\sqrt{2}$ and $\mu(L) \leq 6$ are listed in Remark 8. I thank R. Parker for inspiring and helpful discussions.

## 2. The lattices $L$ with $\mu(L) \leq 6$

Throughout the whole note let $L$ be an even lattice, such that each coset of $L / 2 L$ contains a vector of norm $\leq 6$. In particular all non zero isotropic cosets of $L / 2 L$ contain vectors of norm 4. For even nonnegative integers $i$ let

$$
L_{i}:=\{x \in L \mid(x, x)=i\}
$$

be the set of norm $i$ vectors in $L$.
The first lemma is the crucial observation, since it constructs from a vector of norm 8 in $L$ a norm 2 vector in $L$.

Lemma 1. Let $w \in L_{8}$. Then either $w \in 2 L$ and $r:=\frac{1}{2} w \in L_{2}$ or there is a vector $v \in L_{4}$ such that $(v, w)=-2$ and $r:=\frac{1}{2}(v+w) \in L_{2}$. In the first case $(r, w)=4$ and in the second case $(r, w)=3$.
Proof. Assume that $w \notin 2 L$. Then the coset $w+2 L \in L / 2 L$ is isotropic and hence there is a vector $v \in L_{4}$ such that $v+w \in 2 L$. Replacing $v$ by $-v$ if necessary, one may assume that $(v, w) \leq 0$. Since $(v, w) \geq-4$ one gets

$$
4 \leq(v+w, v+w)=(v, v)+(w, w)+2(v, w)=12+2(v, w) \leq 12
$$

Now $(v+w, v+w)$ is divisible by 8 and therefore $(v+w, v+w)=8, \frac{1}{2}(v+w) \in L_{2}$, and $(v, w)=-2$.
Corollary 2. Let $v_{1}, v_{2} \in L_{4}$ with $\left(v_{1}, v_{2}\right)=0$. Then either
a) $r:=\frac{1}{2}\left(v_{1}+v_{2}\right) \in L_{2}$ or
b) there is $v \in L_{4}$ such that $r:=\frac{1}{2}\left(v+v_{1}+v_{2}\right) \in L_{2}$.

In case a) one has $\left(r, v_{1}\right)=\left(r, v_{2}\right)=2$.
In case b) after interchanging $v_{1}$ and $v_{2}$ if necessary, it holds that $\left(v, v_{1}\right)=-2,\left(v, v_{2}\right)=0$ and hence $\left(r, v_{1}\right)=1$ and $\left(r, v_{2}\right)=2$.
Proof. That only these two cases occur follows from Lemma 1 applied to $w:=v_{1}+v_{2}$. It remains to calculate the scalar products in case b). Since $v_{1}+2 L$ and $v_{2}+2 L$ generate an isotropic subspace of $L / 2 L$ and $v \in v_{1}+v_{2}+2 L$ by assumption, $\left(v, v_{1}\right)$ and $\left(v, v_{2}\right)$ are even. By Lemma $1,\left(v, v_{1}+v_{2}\right)=-2$ and hence, after interchanging $v_{1}$ and $v_{2}$ if necessary, $\left(v, v_{1}\right)=-2$ and $\left(v, v_{2}\right)=0$.

Let $R:=\left\langle L_{2}\right\rangle$ be the sublattice spanned by the vectors of norm 2 in $L$. Then $R$ is a root lattice and therefore an orthogonal sum of irreducible root lattices of type $A_{n}(n \geq$ 1), $D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}$. Define the orthogonal rank $\operatorname{OR}(M)$ of a root lattice $M$ to be the maximal number of pairwise orthogonal norm 2 vectors in $M$. One has $\operatorname{OR}\left(A_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$, $\operatorname{OR}\left(D_{n}\right)=2\left\lfloor\frac{n}{2}\right\rfloor, \operatorname{OR}\left(E_{6}\right)=4, \operatorname{OR}\left(E_{7}\right)=7$ and $\operatorname{OR}\left(E_{8}\right)=8$.

Corollary 3. The number of irreducible components of $R$ is $\leq 3$.
Proof. Let $R_{1} \perp R_{2} \perp R_{3} \perp R_{4} \leq R$ be the orthogonal sum of 4 components of $R$ and choose norm 2 vectors $r_{i} \in R_{i}(i=1, \ldots, 4)$. Then $v_{1}:=r_{1}+r_{2}$ and $v_{2}:=r_{3}+r_{4}$ are orthogonal vectors in $L_{4}$. Hence by Corollary 2 there is $r \in L_{2}$ such that $\left(r, v_{1}\right)>0$ and $\left(r, v_{2}\right)>0$. This contradicts the fact that the $r_{i}$ are in different components of $R$.

Corollary 4. If $\mathrm{OR}(R) \geq 4$, then $R$ contains a sublattice $D_{4}$. More precisely let $r_{i}$ ( $i=$ $1, \ldots, 4)$ be pairwise orthogonal norm 2 vectors in $R$. Then either $r:=\frac{1}{2}\left(r_{1}+r_{2}+r_{3}+r_{4}\right) \in R$ and $\left\langle r_{1}, r_{2}, r_{3}, r\right\rangle \cong D_{4}$ or there is $r \in R$ and $j \in\{1, \ldots, 4\}$ with $\left(r, r_{i}\right)=1$ for $i \neq j$ and $\left(r, r_{j}\right)=0$ such that $\left\langle r, r_{i} \mid i \neq j\right\rangle \perp\left\langle r_{j}\right\rangle \cong D_{4} \perp A_{1}$.

From this corollary one concludes that, if $\operatorname{OR}(R) \geq 4$, then $R$ has at most two irreducible components, and if it has two components, then one of them has orthogonal rank 1 , hence is $A_{1}$ or $A_{2}$.

Corollary 5. $R$ has no component $D_{m}$ with $m \geq 8, A_{m}$ with $m \geq 7$ and no orthogonal summand $X \perp A_{1}$ or $X \perp A_{2}$, where $X$ is one of $A_{6}, A_{5}, D_{7}$ or $D_{6}$.

Proof. Assume that $R$ has an orthogonal component $D_{m}$ with $m \geq 8$. View $D_{m}:=$ $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m} \mid \sum_{i=1}^{m} x_{i} \equiv 0(\bmod 2)\right\}$. Then $v=\left(v_{1}, \ldots, v_{m}\right)$ with $v_{i}=1$ for $i=1, \ldots, 8$ and $v_{i}=0$ for $i \geq 9$ is a vector of norm 8 in $D_{m}$. Hence by Lemma 1 there is a norm 2 vector $r \in D_{m}$ with $(r, v) \geq 3$. But there is no such vector.

The other cases are dealt with similarly: For $A_{m}=\left\{\left(x_{1}, \ldots, x_{m+1}\right) \in \mathbb{Z}^{m+1} \mid \sum_{i=1}^{m+1} x_{i}=\right.$ $0\}(m \geq 7)$ one takes $v=\left(1^{4},(-1)^{4}, 0^{m-7}\right)$, for $A_{5} \perp A_{j}$ and $A_{6} \perp A_{j}(j=1,2)$, one takes $v=\left(1^{3},(-1)^{3}(, 0)\right) \perp r$ where $r$ is a norm 2 vector in $A_{j}$ and for $D_{6} \perp A_{j}$ and $D_{7} \perp A_{j}$ $(j=1,2)$, one takes $v=\left(1^{6}(, 0)\right) \perp r$ where $r$ is a norm 2 vector in $A_{j}$.

Theorem 6. If $R$ has full rank in $L$ then $L=R$ is one of $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, D_{4}, D_{5}$, $D_{6}, D_{7}, E_{6}, E_{7}, E_{8}, A_{1}^{2}, A_{1}^{3}, A_{1} A_{2}, A_{1}^{2} A_{2}, A_{1} A_{2}^{2}, A_{2}^{2}, A_{2}^{3}, A_{1} A_{3}, A_{1} A_{4}, A_{1} D_{4}, A_{1} D_{5}, A_{1} E_{6}$, $A_{1} E_{8}, A_{2} A_{3}, A_{2} A_{4}, A_{2} D_{4}, A_{2} D_{5}, A_{2} E_{6}$, or $A_{2} E_{8}$.

Proof. For the irreducible root lattices $M$ one calculates

| $M$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | $A_{4}$ | $A_{5}$ | $A_{6}$ | $E_{6}$ | $E_{7}$ | $E_{8}$ | $D_{4}$ | $D_{5}$ | $D_{6}$ | $D_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu(M)$ | 2 | 2 | 4 | 4 | 6 | 6 | 4 | 6 | 4 | 4 | 4 | 6 | 6 |

For orthogonal sums, one clearly has $\mu\left(M_{1} \perp M_{2}\right)=\mu\left(M_{1}\right)+\mu\left(M_{2}\right)$. From this observation one finds that the root lattices $M$ with $\mu(M) \leq 6$ are the ones listed in the theorem. This proves the theorem in the case $L=R$.

Now assume that $R<L$ is a proper sublattice of finite index in $L$. Then

1) $L$ is an even overlattice of $R$ and hence contained in the dual lattice $R^{*}$ of $R$.

From the above corollaries it follows that:
2) The number of irreducible components of $R$ is $\leq 3$.
3) If $R$ contains a sublattice $A_{1}^{4}$ then it contains $D_{4}$. In particular $R$ has no component $A_{n}$ with $n \geq 7$ or $D_{n}$ with $n \geq 8$.
4) If the orthogonal rank of $R$ is $\geq 4$, then $R$ has at most 2 components and one of them is
$A_{1}$ or $A_{2}$.
The conditions 2), and 3) result in a finite list of possible root lattices $R$ which can be shortened with 4) and Corollary 5. For all entries $R$ in this list, there are either no even proper overlattices of $R$ or they contain new norm 2 vectors.
It remains to consider the case, that $R$ has not full rank in $L$. Here the following strategy is used:

Since $\operatorname{rank}(R)<n:=\operatorname{dim}(L)$, there is $v \in L-(2 L+R)$. Choose $v$ to be of minimal norm in its coset modulo $2 L+R$. Then $(v, v)=4$ or 6 and $|(v, r)| \leq 1$ for all norm 2 vectors $r$. Let $L^{\prime}:=\langle R, v\rangle$. If $F$ is a Gram matrix of $R$ with respect to a basis consisting of norm 2 vectors, then

$$
\left(\begin{array}{c|c}
F & 0 / \pm 1 \\
\hline 0 / \pm 1 & 4 / 6
\end{array}\right)
$$

is a Gram matrix of $L^{\prime}$.
With MAGMA ([4]) one constructs all such symmetric positive definite matrices (up to isometry) and checks whether $R$ is the sublattice of $L^{\prime}$ spanned by the norm 2 vectors in $L^{\prime}$ and for all $w \in L^{\prime}$ with $(w, w)=8$, there is a norm 2 vector $r \in R$ with $|(r, w)| \geq 3$, which is a property of any sublattice of $L$ that contains $R$ according to Lemma 1 . To continue, one takes $v^{\prime} \in L-\left(L^{\prime}+2 L\right)$ of minimal norm in its coset modulo $\left(L^{\prime}+2 L\right)$ and constructs all the possible Gram matrices of $L^{\prime \prime}:=\left\langle L^{\prime}, v^{\prime}\right\rangle$ etc. Note that $L$ is not necessarily equal to one of the lattices $L^{\prime}, L^{\prime \prime}, \ldots$ constructed like this but might be an overlattice of odd index.

With this procedure one arrives at the following theorem:
Theorem 7. Let $L$ be an even lattice with $\mu(L) \leq 6$. Let $R$ be its root sublattice and assume that $R$ has not full rank in $L$. If the corank of $R$ is 1 then $L=L_{j}(R)$ is represented by one of the following 27 decorated Dynkin diagrams:



A basis of $L$ with a given decorated Dynkin diagram consists of the respective fundamental roots of $R$ and an additional norm 4 vector $v$ which has scalar product -1 with all the fundamental roots surrounded by a box and 0 with the other ones. For the three lattices $L_{3}\left(A_{1}^{3}\right), L_{3}\left(A_{1}^{2}\right)$ and $L_{3}\left(A_{1}\right)$, this additional vector $v$ has norm 6 , which is indicated by changing the boxes to hexagons.

If the corank of $R$ is bigger than 1 , or $R=\{0\}$, then $L=L_{j}(R)$ is defined by one of the following 24 Gram matrices $F_{j}(R)$

$$
\begin{aligned}
& F_{2}\left(D_{4}\right)=\left(\begin{array}{rrrrrr}
2 & -1 & 0 & 0 & -1 & -1 \\
-1 & 2 & -1 & -1 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 1 \\
0 & -1 & 0 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0 & 4 & -1 \\
-1 & 0 & 1 & 0 & -1 & 4
\end{array}\right), \quad F_{11}(\{0\})=\left(\begin{array}{rrrrrr}
4 & -2 & -1 & 1 & -2 & -1 \\
-2 & 4 & -1 & -2 & 1 & 2 \\
-1 & -1 & 4 & -1 & -1 & 1 \\
1 & -2 & -1 & 4 & 1 & -1 \\
-2 & 1 & -1 & 1 & 4 & -1 \\
-1 & 2 & 1 & -1 & -1 & 4
\end{array}\right), \\
& F_{3}\left(A_{3}\right)=\left(\begin{array}{rrrrr}
2 & -1 & 0 & -1 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 \\
-1 & 0 & 0 & 4 & -1 \\
-1 & 0 & 0 & -1 & 4
\end{array}\right), \quad F_{4}\left(A_{1}^{3}\right)=\left(\begin{array}{rrrrr}
2 & 0 & 0 & -1 & -1 \\
0 & 2 & 0 & -1 & 0 \\
0 & 0 & 2 & 0 & -1 \\
-1 & -1 & 0 & 4 & -1 \\
-1 & 0 & -1 & -1 & 4
\end{array}\right) \text {, } \\
& F_{3}\left(A_{2}\right)=\left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 4 & -2 \\
0 & 0 & -2 & 4
\end{array}\right), \quad \quad F_{4}\left(A_{2}\right)=\left(\begin{array}{rrrr}
2 & -1 & 0 & -1 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 4 & -2 \\
-1 & 0 & -2 & 4
\end{array}\right), \\
& F_{5}\left(A_{2}\right)=\left(\begin{array}{rrrr}
2 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 4 & -1 \\
-1 & 0 & -1 & 4
\end{array}\right), \quad \quad F_{8}\left(A_{1}\right)=\left(\begin{array}{rrrr}
2 & 0 & -1 & 0 \\
0 & 4 & -1 & -2 \\
-1 & -1 & 4 & -1 \\
0 & -2 & -1 & 4
\end{array}\right),
\end{aligned}
$$

$F_{4}\left(A_{1}^{2}\right)=\left(\begin{array}{rrrr}2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4\end{array}\right)$,

$$
\begin{aligned}
& F_{5}\left(A_{1}^{2}\right)=\left(\begin{array}{rrrr}
2 & 0 & -1 & -1 \\
0 & 2 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right) \\
& F_{10}(\{0\})=\left(\begin{array}{rrrr}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right),
\end{aligned}
$$

$F_{9}(\{0\})=\left(\begin{array}{rrrr}4 & -2 & -2 & 1 \\ -2 & 4 & 1 & -2 \\ -2 & 1 & 4 & -2 \\ 1 & -2 & -2 & 4\end{array}\right)$,
$F_{4}\left(A_{1}\right)=\left(\begin{array}{rrr}2 & 0 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 4\end{array}\right)$,
$F_{5}\left(A_{1}\right)=\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 4 & -2 \\ 0 & -2 & 4\end{array}\right)$,
$F_{7}(\{0\})=\left(\begin{array}{rrr}4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4\end{array}\right)$,
$F_{8}(\{0\})=\left(\begin{array}{rrr}4 & -1 & -2 \\ -1 & 4 & -1 \\ -2 & -1 & 4\end{array}\right)$,
$F_{6}\left(A_{1}\right)=\left(\begin{array}{rrr}2 & 0 & -1 \\ 0 & 4 & -2 \\ -1 & -2 & 4\end{array}\right)$,
$F_{7}\left(A_{1}\right)=\left(\begin{array}{rrr}2 & 0 & -1 \\ 0 & 4 & -2 \\ -1 & -2 & 6\end{array}\right)$,
$F_{3}(\{0\})=\left(\begin{array}{rr}4 & -1 \\ -1 & 4\end{array}\right)$,
$F_{4}(\{0\})=\left(\begin{array}{rr}4 & -2 \\ -2 & 4\end{array}\right)$,
$F_{5}(\{0\})=\left(\begin{array}{rr}4 & -2 \\ -2 & 6\end{array}\right)$,
$F_{6}(\{0\})=\left(\begin{array}{rr}6 & -3 \\ -3 & 6\end{array}\right)$,
$F_{1}(\{0\})=(4)$,

$$
F_{2}(\{0\})=(6) .
$$

Remark 8. The lattices $L$ with $\mu(L) \leq 6$ and covering radius $=\sqrt{2}$ are $A_{2}^{3}, A_{2} \perp E_{6}$ and the 12 lattices $L_{1}\left(D_{7}\right), L_{1}\left(D_{6}\right), L_{2}\left(D_{4}\right), L_{3}\left(A_{2}\right), L_{3}\left(A_{1}^{3}\right), L_{4}\left(A_{1}^{3}\right), L_{4}\left(A_{1}^{2}\right), L_{7}\left(A_{1}\right), L_{6}(\{0\})$, $L_{9}(\{0\}), L_{10}(\{0\})$ and $L_{11}(\{0\})$ of Theorem 7.

All the other 69 even lattices $L$ with $\mu(L) \leq 6$ have covering radius $<\sqrt{2}$.

## References

[1] Conway, J. H.; The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. J. Alg. 80 (1983), 159-163.

Zbl 0508.20023
[2] Conway, J. H.; Parker, R. A.; Sloane, N. J. A.: The covering radius of the Leech lattice. Proc. Royal Soc. London A 380 (1982), 261-290.

Zbl 0496.10020
[3] Conway, J. H.; Sloane, N. J. A.: Sphere packings, lattices and groups. Springer Grundlehren 290 (3rd edition 1999).

Zbl 0915.52003
[4] The Magma Computational Algebra System for Algebra, Number Theory and Geometry, http://www.maths.usyd.edu.au:8000/u/magma/

