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1. Introduction

In Cooperstein [4] the author determines the generating rank of the long-root geometries
associated to a classical group over a prime field. The case of arbitrary fields for these
geometries is first studied in Blok and Pasini [2] who give sharp bounds on these ranks. In
addition they prove that the line-grassmannian of the symplectic polar space associated to
the group Sp,,(F), which is not the long-root geometry of that group, over a prime field of
characteristic not 2 has generating rank 2n? — n — 1. The bounds given by Blok and Pasini
still involve the field, namely its degree over the prime field. Our result is the following.

Theorem 1. The line-grassmannian of the polar space associated to Sp,,, (IF) has generating

rank 2n® —n — 1 if F is a field with Char(F) # 2.

2. Preliminaries

A point-line geometry is a pair I' = (P, L) where P is a set whose elements are called ‘points’
and L is a collection of subsets of P called ‘lines’ with the property that any two points
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belong to at most one line. If P and £ are not mentioned explicitly, the sets of points and
lines of a point-line geometry I" are denoted P(I") and L(T).

A subspace of I is a subset X C P such that any line containing at least two points of
X entirely belongs to X. A hyperplane of T" is a subspace that meets every line.

The span of a set S C P is the smallest subspace containing S; it is the intersection of
all subspaces containing S and is denoted by (S)r. We say that S is a generating set (or
spanning set) for T if (S)r = P.

For a vector space W over some field F, the projective geometry associated to W is the
point-line geometry P(W) = (P(W), L(W)) whose points and lines are the 1-spaces of W
and the sets of 1-spaces contained in some 2-space.

A projective embedding of a point-line geometry I' = (P, L) is a pair (¢, W), where € is
an injective map P — P(W) that sends every line of £ onto a line of £(W), and with the
property that

(e(P))eow) = P(W).

The dimension of the embedding is the dimension of the vector space W. It is rather easy
to verify that for any generating set S and any embedding (¢, W) we have

dim(W) < |S].

In case of equality S has minimal size and we then call |S| the generating rank of T'. At the
same time then W provides the largest embedding for I'.

We briefly describe the particular geometries we will discuss in this paper. Let V be
a vector space over some field F. The projective line-grassmannian associated to V' is the
point-line geometry Gr(V,2) whose points are the 2-spaces of V' and whose lines are the sets
of lines [ such that p C [ C u for some 1-space p and 3-space wu.

Now suppose that V' has dimension 2n and is endowed with a non-degenerate symplectic
form (-,-). A subspace U of V is called totally isotropic (t.i.) with respect to the form (-,-) if
(u,v) = 0 for any two vectors u,v € U. The symplectic polar space is the point-line geometry
IT whose points are the t.i. 1-spaces of V and whose lines are the sets of t.i. 1-spaces contained
in some t.i. 2-space. We sometimes call t.i. 3-spaces planes.

The symplectic line-grassmannian is the point-line geometry A whose points are the t.i.
2-spaces and whose lines are the sets of t.i. 2-spaces [ such that p C [ C u for some t.i. 1-space
p and t.i. 3-space u. We often identify the line with the pair (p,u). We will call the points
and lines of A Points and Lines to distinguish them from the points and lines of II.

3. Proof of Theorem 1

We first recall a result on the generating rank of II and then define our minimal generating
set for A. Both are related to the apartments of II.

Let E = {e; | i = 1,2,...,2n} be a hyperbolic basis for V', i.e. we have (e;,€;) = 0p1i;
where ¢ is the Kronecker delta. The apartment A(E) corresponding to E is the collection
of t.i. subspaces of V' whose basis is a subset of E. For I,J C [n], introduce the following
notation

Erg=(eientj|i€1,j€ J)v.
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Then Ej; is t.i. if and only if 7N J = (. In fact
In the sequel we will drop [E from the notation if no confusion can arise.

Theorem 3.1. (Blok and Brouwer [1], Cooperstein and Shult [3]) The generating rank of
the polar space associated to Spy, (F) is 2n if Char(F) # 2.

The minimal generating set exhibited in both papers is simply the set of points in an apart-
ment. Note that the conclusion of the theorem is false if F has even characteristic.

Our minimal generating set S for the symplectic line-grassmannian A is defined as follows.

Let e be a point of II contained in E7g but not in E;p for any J C I. Then S is the
collection of lines of A, together with any n — 1 lines on e that span a t.i. n-space meeting
Erp only in e.

More explicitly, let e = e; + e3 + - - - + e,. Then, for S take

S={{eiej)v [1<1<j<2n,n+i#jtU{(e enyis1 —enpi)v [ 1 < i <n}

Note that S is a set of 2n? —n — 1 t.i. 2-spaces.
The first step in proving Theorem 1 is to show that A has a projective embedding of the
right dimension. The following result is well-known (for a generalization see e.g. Shult [6]).

Lemma 3.2. The line-grassmannian of the polar space associated to Sp,,(F) (any charac-
teristic) has a projective embedding of dimension 2n* —n — 1.

Proof. The embedding is afforded by a hyperplane in the exterior square A2V of the vector
space V underlying the polar space. The hyperplane corresponds to the symplectic form for
which all embedded polar lines are isotropic.

Let us make this more explicit. It is well-known and easy to verify that the projective
line-grassmannian Gr(V,2) has a projective embedding (¢, A?V)

(,y)v +— (TAY)ry.

By definition of A?V, the ¢-image of Gr(V,2) spans P(A?V).

The embedding ¢ restricts to an embedding of the symplectic line grassmannian A into
some hyperplane of A?V. The vector space A*V has a basis {e; Ae; | 1 < i < j < 2n}.
Suppose z = 3.-" z;e; and y = S.-", yie;. Then

TS Z (xiy; — z9:)e; N e;.
1<i<j<2n
Now our symplectic form looks like

n

(1’7 y) = Z(%%ﬂ' - $n+zyz)

=1
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Hence a 2-space of V' is t.i. if and only if its ¢-image belongs to the hyperplane

H = { Z Ui, €4 A €; ‘ Zumﬂ = O}
1

1<i<j<2n i=

We only have to show that (¢(A))y = H. This is true because the images of the elements in
S are linearly independent.
Thus (¢, H) is a projective embedding for A of dimension 2n? —n — 1. O

For the moment let S C P(A) be an arbitrary set of Points. A point p of II is called S-full
whenever all lines on p are contained in (S),. The following lemma is essentially proved in
Blok and Pasini [2, Lemma 5.1], but we will prove it here for the reader’s convenience.

We will denote the orthogonality relation between subspaces of V' with respect to the
symplectic form by L. Two subspaces X and Y of V with dim(X) < dim(Y) are called
opposite if dim(X+NY) = dim(Y) — dim(X).

Lemma 3.3. Suppose that a line | contains two S-full points.
(a) If s is S-full and r is the unique point on I collinear to s, then r is S-full.

(b) In particular, if there exists a line m opposite to | all points of which are S-full, then
all points in I are S-full.

Proof. Suppose that p and g are S-full points on [ and that s is an S-full point on m. Let r
be the point s+ N 1.

The subgeometry A, of A consisting of lines and planes on 7 is isomorphic to a symplectic
polar space of type Spy(,_1)(F).

The set H of lines in [+ containing r forms a hyperplane of A,. Now H is a maximal
subspace of A, and so together with the line rs, which doesn’t belong to H, it generates A,.
Thus in order to show that r is S-full it suffices to show that both H and rs belong to (S)x.

Clearly rs belongs to (S) because s is S-full.

As for H, let k be any line on r contained in I+ and let u be the plane on [ and k. Then,
for any point t # r on k, the lines tp and tq belong to (S), (because p and ¢ are S-full) hence
so does k, as these three Points lie on the Line (¢, u).

We are done. O

Proof (of Theorem 1). We will first prove that the set S defined at the beginning of this
section is a generating set for A. For n = 2 this is easy to verify. For n > 3 we do this
by showing that all points of II are S-full. In the following ‘points’, ‘lines’, and ‘planes’
refer to points, lines, and planes of II unless otherwise specified. First we note that, since
Char(F) # 2, the points of II contained in a given apartment span II by Theorem 3.1. As
this also applies to the symplectic polar space of t.i. lines and planes on a given point we get
that all points of A are S-full. In particular, all lines (e;, e)y are in the span of S. In turn,
by the same principle, also e is S-full. Similarly, every point of II contained in E;; is S-full,
for every i € I.

We now show that every point on every line of A is S-full. Consider i < j € I. Call
x = FEy,;, & = Eig, y = Ey;, § = Ejp, and let yo be any point on E;; \ {y,y}. Denote
Y = E@7{i7j} and i]j = E{i,j}ﬂ'
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Note that e is not collinear to x or y since it is not contained in F ;g for any proper subset
J C I. Thus by Lemma 3.3 with [ = zy and s = e we see that there is a point zy € zy\ {z, y}
that is S-full.

Now each point 2’ on E;; \ {z} lies on a line with y, which is opposite to zy. Let 2’ be
the unique point on z'yg collinear to z5. Then by Lemma 3.3 with [ = 'y and s = 2, since
x',yo, and zg are S-full, also 2z’ is S-full. For 2’ = = we set z/ = x which is also S-full.

Let H = {2/ | ' € E;;}. Clearly H = {20,940} N E{ij},1i. is a hyperbolic line. Note
that for all 2’ € E;; \ {2} the line z'y, is opposite to Zy. For each 2’ € H let Z be the unique
point on Zy collinear to z’. Again by Lemma 3.3 with [ = Zg and s = 2’ we find that Z is
S-full. For 2’ = & the unique point on Zy collinear to 2z’ is 2 = Z, which is also S-full. The
hyperbolic line H is opposite to 23 in the sense that H N2y = 0 and H* N 2gy = (). This is
because 2’ # 1’ except if ' = z and because if 2/ = z, then 2" N #§ = § whereas if 2/ = 2,
then 2/ N 4§ = #. Therefore the map 2’ — £ is a bijection between the points of H and the
points of Zg. Hence, all points of 2 = Ey; j, ¢ are S-full.

Now by Lemma 3.3 applied with [ = zy and m = 2§ we find that all points of zy = Ey 1,
are S-full.

By the same token, all points contained in any line of A are S-full.

As the points of A span II by Theorem 3.1, and every line of II is opposite to some line
of A, using Lemma 3.3 repeatedly, we find that in fact all points of II are S-full. Thus S is
a generating set for A of size 2n%2 — n — 1.

Since A has a natural embedding of dimension 2n? —n — 1 by Lemma 3.2, it follows that
its generating rank is 2n? —n — 1. O

Note. An alternative generating set for the symplectic line-grassmannian was found by
Cooperstein [5]. He constructs a generating set for n = 2,3 and then inductively defines
one for all n > 3. The main ingredient is the observation that, given a subspace U of V' of
dimension 2(n—1) on which the symplectic form is non-degenerate, the set of lines meeting U
forms a geometric hyperplane of the symplectic line-grassmannian. Again, this construction
only works in odd characteristic since it also uses Theorem 3.1.

By Lemma 3.2 the generating rank in any characteristic is at least 2n?> — n — 1. Note
that for n = 2 this is the actual generating rank, even in even characteristic.
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