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Abstract. We show that in d-dimensional Euclidean space the maximum number
of non-overlapping translates of a d-dimensional convex body K that can touch
K and can lie in a closed supporting half-space of K is always at most 2 ·3d−1−1,
with this bound to be reached only if K is an affine image of a d-cube. Such one-
sided Hadwiger configurations occur at the boundary of finite packings or near
the holes in packings of density 0, so this implies that in d-dimensional Euclidean
space any k+-neighbour packing by translates of a d-dimensional convex body has
positive density for all k ≥ 2·3d−1; and there is a (2·3d−1−1)+-neighbour packing
by translates of a d-cube that has density 0. (A packing is called a k+-neighbour
packing if each packing element has at least k neighbours.) This answers an old
question of L. Fejes Tóth (1973).

1. Introduction

All packings considered in this note will be packings by translates of a convex body (i.e.
of a compact convex set with nonempty interior) in d-dimensional Euclidean space with
d ≥ 2. Packings with restrictions on the number of neighbours of each body were studied
in a number of papers, see e.g. [6, section 7] for a survey. By a k+-neighbour packing we
mean a packing by translates in which each translate touches at least k other translates of
the packing. k+-neighbour packings of a given convex body C are of course only possible
if k is at most the Hadwiger number of C, which is the maximum number of neighbours
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of C in any packing by translates of C. For several special sets C, and numbers k, it has
been studied whether there are finite k+-neighbour packings, or infinite packings of this
kind of density 0, or whether any k+-neighbour packing has positive density. It is known
that in the plane, for any C that is not a parallelogram, there are finite 3+-neighbour
packings, that any 4+-neighbour packing is infinite but possibly of density 0, and that any
5+-neighbour packing has positive density (this follows, e.g., quite simply from the angular
measure constructed in [2], in which each interior angle of the graph of touching pairs is at
least π3 ). For parallelograms there are finite 4

+-neighbour packings, 5+-neighbour packings
of density 0. Moreover, any 6+-neighbour packing has positive density. Perhaps it is not
surprising that in the plane also the minimum density of 5+-neighbour packings is known
[10]. In 3-space, these questions were studied for the ball. There is a 6-neighbour packing
of 240 congruent balls constructed by G. Wegner (see [6]), but the existence of finite 7+ and
8+-neighbour packings is open. It is known that any 9+-neighbour packing of congruent
balls has to be infinite [9], but density 0 is possible, and any 10+-neighbour packing has
to be of positive density [4], [11], [1]. Also the minimum number of balls in such a finite
k+-neighbour packing was studied [5].
For several of the above mentioned theorems one has to show that a k+-neighbour

packing of translates of a convex body C has positive density. This is done by proving
that it is impossible to have all k neighbours of C ‘on one side’ of C. For if the packing
has density 0, then there must be arbitrary large spherical ‘holes’ in the packing. More
exactly, for any r > 0 there must be a ball B of radius larger than or equal to r with the
property that B does not intersect any of the translates of C in the packing but, it touches
at least one translate of C in the packing say, C itself. Then, by compactness, it must be
possible to choose k translates (C+ ti)

k
i=1 of C and one hyperplane h such that each of the

C + ti touches C, they form a packing, and they are all contained in one closed half-space
h+ bounded by h, and C touches h. Equivalently, there are non-overlapping translates
C + t1, . . . , C + tk of C that all touch C and a nonzero vector v such that 〈v, ti〉 ≥ 0 for
all i, where 〈 〉 denotes the standard inner product of the given Euclidean space. We call
such a packing a one-sided Hadwiger configuration, and the maximum k for which such a
packing exists the one-sided Hadwiger number of C. So the one-sided Hadwiger number
of C is the maximum number of translates of C that can touch C in a packing, if all the
translates are contained in a closed supporting half-space of C.

Theorem. If C is a convex body in d-dimensional Euclidean space, then the one-sided
Hadwiger number of C (i.e. the maximum number of non-overlapping translates of C that
can touch C and can lie in a closed supporting half-space of C) is at most 2 · 3d−1 − 1.
Moreover, this bound is reached only if C is an affine d-cube.

Corollary. If C is a d-dimensional convex body, then any k+-neighbour packing by trans-
lates of C with k ≥ 2 ·3d−1 must have a positive density in d-dimensional Euclidean space.
Moreover, there is a (2 ·3d−1−1)+-neighbour packing by translates of an affine d-cube with
density 0 in d-dimensional Euclidean space.

Remark 1. The Corollary answers an old question of L. Fejes Tóth raised in [3].
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2. Proof of the Theorem

Let C = C+ t0, C+ t1, . . . , C+ tk be a one-sided Hadwiger configuration, with the normal
vector v. Note first that we can assume C to be centrally symmetric, replacing it by
1
2 (C + (−C)), which preserves the packing property, touching pairs, and one-sidedness.

As in the classical proof for the Hadwiger number [8], we use that
⋃k
i=0(C + ti) ⊆ 3C.

Let the whole configuration be scaled such that the normal vector v of the hyperplane
{p | 〈p, v〉 = −1} touching C and containing the whole arrangement in one halfspace is a
unit vector. Then, if h(x) denotes the hyperplane {p | 〈p, v〉 = x}, C is between h(−1)
and h(1) and touches both, and all C + ti are between h(−1) and h(3). Let Vold−1(·)
(resp., Vold(·)) denote the (d − 1)-dimensional (resp., d-dimensional) volume measure.

Then
∫ 1
−1Vold−1(C ∩ h(x))dx = Vold(C), and

∫ 3

−1
Vold−1

(( k⋃

i=0

(C + ti)
)
∩ h(x)

)
dx = (k + 1)Vold(C). (1)

Next we write the above integral as a sum of two integrals from -1 to 0 and from 0 to 3,
and estimate them separately. First, notice that

∫ 3

0

Vold−1

(( k⋃

i=0

(C + ti)
)
∩ h(x)

)
dx ≤

∫ 3

0

Vold−1

(
3C ∩ h(x)

)
dx =

1

2
3dVold(C). (2)

Second, for the estimation in what follows we need a bound for the intersection volume
function f(x) := Vold−1(C ∩ h(x− 1)), 0 ≤ x ≤ 1. By its definition f(0) = 0, f is positive
and monotone increasing on ]0, 1], and by the Brunn-Minkowski inequality the function

(f(·))
1
d−1 is concave.

Lemma. If f is a function on [0, 1] with the properties f(0) = 0, f positive and mono-
tone increasing on ]0, 1], and f(x) = (g(x))k for some concave function g, then h(y) :=
1
f(y)

∫ y
0
f(x)dx is strictly monotone increasing on ]0, 1].

Let now ai := 〈v, ti〉 for i = 0, . . . , k, then the Lemma implies the following:

∫ 0

−1
Vold−1

(( k⋃

i=0

(C + ti)
)
∩ h(x)

)
dx =

k∑

i=0

∫ 0

−1
Vold−1

(
(C + ti) ∩ h(x)

)
dx

=
k∑

i=0

∫ 1

0

Vold−1

(
C ∩ (h(x− 1)− ti)

)
dx =

k∑

i=0

∫ 1−ai

0

f(x)dx

≤
k∑

i=0

∫ 1

0

f(x)dx
f(1− ai)

f(1)
=

∫ 1

0

f(x)dx
1

f(1)

k∑

i=0

f(1− ai)

=

∫ 1

0

f(x)dx
1

f(1)

k∑

i=0

Vold−1

(
C ∩ h(−ai)

)
=

∫ 1

0

f(x)dx
1

f(1)

k∑

i=0

Vold−1

(
(C + ti) ∩ h(0)

)
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=

∫ 1

0

f(x)dx
1

f(1)
Vold−1

(
(
k⋃

i=0

(C + ti)) ∩ h(0)
)
≤

∫ 1

0

f(x)dx
1

f(1)
Vold−1

(
3C ∩ h(0)

)

=
1

2
Vold(C)

1

Vold−1(C ∩ h(0))
Vold−1

(
3C ∩ h(0)

)
=
1

2
3d−1Vold(C).

Combining this with equations (1) and (2) we get

(k + 1)Vold(C) ≤
1

2
3dVold(C) +

1

2
3d−1Vold(C),

so k ≤ 2 · 3d−1 − 1 as claimed in the Theorem.

To prove that equality can only be reached for affine d-cubes, notice first that, by the strict
monotonicity in the Lemma, all those ai that correspond to translates C + ti contributing
nontrivially to the above integral have to be 0. So there are many translates who have
their centers in h(0), and only these contribute to

⋃
i(C + ti) ∩ h(0). Hence these (d−1)-

dimensional intersections are all translates of C∩h(0), and in the equality case they have to
tile 3C ∩h(0), which implies that these intersections are translates of a (d−1)-dimensional
affine cube [8]. Also there is only the obvious way to tile the (d−1)-dimensional affine cube
3C ∩ h(0) by 3d−1 translates of C ∩ h(0), so the set of translation vectors {ti | ti ∈ h(0)}
is centrally symmetric. But then the translates

{C + ti | ti ∈ h(0)} ∪ {C + ti | ti /∈ h(0)} ∪ {C + (−ti) | ti /∈ h(0)}

= {C + ti} ∪ {C + (−ti)}

form a packing that exactly tiles 3C, so C is a convex body with Hadwiger number 3d− 1,
thus it is an affine d-cube.

Proof of the Lemma. Without loss of generality we can assume that f is differentiable. To
prove that h(y) := 1

f(y)

∫ y
0
f(x)dx is monotone increasing, we have to show that h′ ≥ 0 or

equivalently
∫ y
0
f(z)dz ≤ (f(y))2

f ′(y) . Keep now y > 0 fixed.

If f = gk for some concave g, then there is a linear function l(z) = (b1 + b2(z − y))

with b1 = (f(y))
1
k and b2 =

f ′(y)

k(f(y))
k−1
k

such that g(z) ≤ l(z), and so f(z) ≤ (l(z))k. So for

all z we have

f(z) ≤

(
(f(y))

1
k +

f ′(y)

k(f(y))
k−1
k

(z − y)

)k
= f(y)

(
1 +
f ′(y)

kf(y)
(z − y)

)k
.

Integrating this we obtain

∫ y

0

f(z)dz ≤

∫ y

0

f(y)
(
1 +
f ′(y)

kf(y)
(z − y)

)k
dz =

k

k + 1

(f(y))2

f ′(y)

(
1−
(
1−
yf ′(y)

kf(y)

)k+1)
.

Now since the first factor of the expression on the right is smaller than one, it is sufficient
to show that the last factor is also smaller than one. Suppose this is not true, then
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(
1− yf

′(y)
kf(y)

)k+1
< 0. Consider now

(
1+ f ′(y)

kf(y) (z− y)
)k+1

as function of z: This is positive

for z = y and by the assumption negative for z = 0, so there must be a z0 ∈]0, y[ with(
1+ f ′(y)

kf(y) (z0− y)
)k+1

= 0, but then also f(z0) ≤ f(y)
(
1+ f ′(y)

kf(y) (z0− y)
)k
= 0. However,

by the assumption of the Lemma we have f(z0) > 0 for all z0 6= 0, a contradiction. This
proves the Lemma.

Remark 2. The key inequality of the proof, 1
f(1−ai)

∫ 1−ai
0

f(x)dx ≤ 1
f(1)

∫ 1
0
f(x)dx, which

is here obtained from the Brunn-Minkowski inequality by the Lemma, can also be deduced
in several different ways, using the Schwarz-symmetrization (which reduces to check the
inequality for centrally symmetric convex bodies C that are solids of revolution with an
additional plane symmetry whose symmetry hyperplane is orthogonal to the axis of rev-
olution), or using the Prekopa-Leindler inequality. We thank K. Swanepoel for pointing
out that last possibility.

Remark 3. The Corollary (resp., the Theorem) can be extended in a straightforward
way to obtain a generalization of a theorem of L. Fejes Tóth and Sauer [7] on higher-order
neighbours in packings. They define in a packing each body as 0-neighbour of itself, and a
convex body B as k-neighbour of A if B is neighbour of a k− 1-neighbour of A, but not of
a neighbour of smaller order. Equivalently, B is k-neighbour of A, if the distance of A and
B in the graph of touching pairs of the packing is k. Now our extension of the Corollary
is as follows. If in a packing of translates of a convex body in d-dimensional Euclidean
space each translate has more than (k+1) · (2k+1)d−1 j-neighbours with 0 ≤ j ≤ k, then
the packing must have positive density. The case k = 1 is the Corollary proved above. [7]
proves this claim only for translates of affine cubes, whereas our result holds for arbitrary
translative packings.

Remark 4. We mention the following open problem. Find the smallest positive integer
n(d) with the property that if C is an arbitrary convex body in Euclidean d-space, then the
maximum number of non-overlapping translates of C that can touch C and can lie in an
open supporting half-space of C is at most n(d). Obviously, n(d) < 2 ·3d−1−1. Moreover,
it is clear from the definition of n(d) that any k+-neighbour packing of translates of a
convex body in Euclidean d-space with k ≥ n(d) + 1 must be an infinite packing.
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