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Abstract. We consider and classify those five dimensional hypersurfaces with
affine normal parallel cubic form. The problem is firstly reduced to the classification
of a certain class of solutions to the equation of Monge-Ampère type det (∂ijf) =
±1. Then, it is used the so-called “method of algorithmic sequence of coordinate
changes”, in order to achieve the latter.
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1. Introduction

The problem of classifying hypersurfaces with affine normal parallel cubic form, which are
not hyperquadrics, was first considered, and solved for dimension n = 2, by Nomizu and
Pinkall in [5]. See also the book by Nomizu and Sasaki, [6], where a different method of proof
is presented. We summarize their result as follows:

Theorem A. Let X :M2 → E3 be a nondegenerate surface with parallel cubic form, ∇C = 0,
which is not a quadric, i.e., C does not vanish identically on M . Then X(M) is affinely
congruent to the Cayley Surface, i.e., expressible as the graph function t3 = t1t2 + t

3
1.
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The next known result on the topic is the article by L. Vrancken (for dimension n = 3),
exposed in [7], and stated here as:

Theorem B. Let X : M3 → E4 be a nondegenerate hypersurface with parallel cubic form,
∇C = 0, which is not a hyperquadric, C does not vanish identically on the hypersurface.
Then X(M) is affinely congruent to one of the following graph immersions

a) t4 = t1t2 + t
2
3 + t

3
1.

b) t4 = t1t2 + t
2
1t3 + t

2
3.

In a previous article [4] we introduced a new method of approaching the solution to the
problem, different to the ones previously used by the other mentioned authors. We called
it “algorithmic sequence of coordinate changes” and it consists, basically, in referring the
hypersurface to a suitable linear coordinate system of the ambient space, and then making
algorithmic adjustments into the Hessian matrix so that this can be integrated, fairly easily, to
obtain the graph function representing the hypersurface. With this approach the classification
depends strongly on two integer constants, that we labeled k and r, with 1 ≤ k ≤ n/2,
1 ≤ r ≤ n− 1, where n = dimension of the immersed manifold. Moreover, in that article we
presented new proofs of the previously stated results and, then, extended the classification
to dimension n = 4, by proving:

Theorem C. Let X : M4 → E5 be a nondegenerate hypersurface with parallel cubic form,
∇C = 0, which is not a hyperquadric, C does not vanish identically on the hypersurface.
Then X(M) is affinely congruent to one of the following graph immersions:

a) For k = r = 1: t5 = t1t2 + t
3
1 + t

2
3 + t

2
4.

b) For k = 1, r = 2: t5 = t1t2 + t
2
1t3 + t

2
3 + t

2
4.

c) The case where k = 1, r = 3 is not possible, i.e., it does not exist any non degenerate
hypersurface immersion with the required geometrical properties in the case where k = 1,
r = 3.

d) For k = 2, r = 1: t5 = t1t2 + t
3
1 + t3t4.

e) For k = r = 2 we have the following subcases:

e11) t5 = t1t2 +
a
6
t31 +

b
2
t21t3 +

c
2
t1t
2
3 + t3t4 +

d
6
t33.

e12) t5 = t1t2 +
c
2
t1t
2
3 + β

c
2
t2t
2
3 + t3t4 +

d
6
t33.

f) For k = 2, r = 3: t5 = t1t2 +
a
2
t2t
2
3 + t3t4 +

b
2
t21t3 +

c
2
t1t
2
3 +

d
6
t31 +

e
6
t33.

In each of cases e) and f) the constants must be related among them in order to fulfill the
condition that the maximal rank of the complementary matrix equals respectively 2 and 3,
i.e., r = 2, 3.

It is the object of this paper to further extend the classification to the case of dimension
n = 5, by proving the following:

Main Theorem. Let X : M5 → E6 be a nondegenerate hypersurface with parallel cubic
form, ∇C = 0, which is not a hyperquadric, C does not vanish identically on the hypersurface.
Then X(M) is affinely congruent to one of the following graph immersions:
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a) For k = r = 1: t6 = t1t2 +
1
6
t31 +

1
2
(t23 + t

2
4 + t

2
5).

b) For k = 1, r = 2: t6 = t1t2 + t
2
1t3 +

1
2
(t23 + t

2
4 + t

2
5).

c) The case where k = 1, r = 3 is not possible, i.e., it does not exist any non degenerate
hypersurface immersion with the required geometrical properties in the case where k = 1,
r = 3.

d) The same situation happens with the case where k = 1, r = 4, i.e., it does not exist any
non degenerate hypersurface immersion with the required geometrical properties in the
case where k = 1, r = 4.

e) For k = 2, r = 1: t6 = t1t2 +
1
6
t31 + t3t4 +

1
2
t25.

f) For k = r = 2 we have the following subcases:

f1) t6 = t1t2 +
1
6
a1t
3
1 +

1
2
a3t
2
1t3 +

1
2
b3t1t

2
3 + t3t4 +

1
6
d3t
3
3 +

1
2
t25.

f2) t6 = t1t2 +
1
2
a3t1t

2
3 −

1
2
b2a3t2t

2
3 + t3t4 +

1
2
t25.

g) For k = 2, r = 3 we have the following subcases:

g1) t6 = t1t2 +
1
2
at2t

2
3 +

1
6
bt31 +

1
2
ct21t3 +

1
2
dt1t

2
3 + t3t4 +

1
2
t25.

g2) t6 = t1t2 +
1
6
a1t
3
1 +

1
2
a3t
2
1t3 +

1
2
a5t
2
1t5 + c5t1t3t5 + t3t4 +

1
6
f3t
3
3 +

1
2
f5t
2
3t5 +

1
2
t25.

g3) t6 = t1t2 +
1
2
a3t
2
1t3 +

1
2
a4t
2
1t4 +

1
2
c3t1t

2
3 + t3t4 +

1
6
f3t
3
3 +

1
2
t25.

h) For k = 2, r = 4: t6 = t1t2 +
1
2
c1t
2
1t4 + e1t1t3t5 + t3t4 +

1
2
e4t
2
3t5 +

1
2
g1t1t

2
3 +

1
6
g4t
3
3 +

1
2
h1t
2
1t3 +

1
2
t25.

In each of cases f), g) and h) the constants must be related among them in order to fulfill the
condition that the maximal rank of the complementary matrix equals respectively 2, 3 and 4,
i.e., r = 2, 3, 4.

Remark. In previous papers we also referred to the cubic form C, alternatively, as the
second fundamental form IIua, even though it is indeed a (0, 3)-tensor. The reason for this is
because this form, together with the first fundamental form Iua (pseudo-Riemannian metric),
determine the geometry of the immersed manifold. In particular, the fundamental existence
and uniqueness theorems [1, 2]. However, in the current work no question regarding those
matters arises. Thus, we refer presently to that (fundamental) geometrical object as just the
cubic form C.

2. Summary of auxiliary results

The following properties of the class under consideration were proved in [6]. They can also
be proved by a different method [1, 2, 3, 4]. We include their statement here for the sake of
completeness:

Proposition 2.1. Let X : Mn → En+1 be a nondegenerate hypersurface with parallel cubic
form, ∇C = 0, which is not a hyperquadric, C 6= 0. Then the following properties hold:

1) X(M) is an improper affine hypersphere.
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2) X(M) is expressible in the form of Monge, i.e., a graph immersion and with respect to
a suitable affine system of coordinates the graph function f satisfies a Monge-Ampère
type equation det (fij) = ±1. Moreover, it is representable as a polynomial function of
degree exactly equal to three.

3) The following geometrical objects associated with X(M) are all vanishing: IIIga = 0,
∧

Ric = 0, R = L = J = 0.

4) The first fundamental form Iua is indefinite.

It turns out, too, that the conditions expressed by property 2) in the above Proposition are
characterizing. In fact, we also proved, in [4], the following complementary result:

Proposition 2.2. Let X :Mn → En+1 be a nondegenerate hypersurface which is expressible
in the form of Monge, i.e., a graph immersion with respect to some affine system of coordi-
nates in the ambient space, such that the graph function f is a polynomial function of degree
exactly equal to three and satisfies the Monge-Ampère type equation det (fij) = ±1. Then,
X(M) is an improper affine hypersphere with parallel cubic form, ∇C = 0, which is not a
hyperquadric, i.e., with C 6= 0.

We summarize next the method of algorithmic sequence of coordinate changes. To begin
with, we apply the characterizing properties described by Propositions 2.1 and 2.2. Thus,
by means of a translation, if necessary, we may assume that a linear system of coordinates
has been chosen in the ambient space in such a way that the origin of coordinates lies in
the hypersurface X(M), that the hyperplane on which X(M) is projectable is precisely
the tangent hyperplane T0(X(M)) to X(M) at that point, and that the last coordinate
is chosen in the (constant) direction of the affine normal vector field en+1. We denote by
(t1, t2, . . . , tn, tn+1) such an affine system of the vector space E, and represent the immersed
hypersurface by equation

X (t1, t2, . . . , tn) = (t1, t2, . . . , tn, f (t1, t2, . . . , tn)) ,

with the point (t1, t2, . . . , tn) varying in an open, connected subset U ⊂ T0(X(M)), this last
being obviously identifiable with Rn. By the choices made we have that

f (0, . . . , 0) = f1 (0, . . . , 0) = · · · = fn (0, . . . , 0) = 0 (2.1)

All of the remaining affine changes of coordinates shall occur in the tangent hyperplane and
be of a linear nature, i.e., given by a system of linear equations like

t∗i =
∑
aki tk, t

∗
n+1 = tn+1.

Most usually the change shall be unimodular, i.e., with det
(
aki
)
= 1, although we may allow,

occasionally, a rescaling in order to make the exposition less involved.
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Once such a change is made, in the new coordinate system, conditions expressed by
equations (2.1) remain unchanged, and the Hessian matrix H(f) changes to

H∗(f) = PH(f)P t, (2.2)

where the matrix P is nonsingular and P t denotes the transpose of P . Now, it is well-known
that, since P is expressible as a product of elementary matrices, the product to the left by
P is equivalent to performing the corresponding row elementary operations to H(f), and
the product to the right by P t is obtained by performing the equivalent kinds of column
elementary operations, both in the same order of execution. Thus, to obtain H∗(f) from
H(f) we may do so by means of the following row and column elementary operations, which
we define next:

1) Rij interchanges rows i and j. Cij interchanges columns i and j.

2) Ri+
∑
aijRj, with j 6= i, substitutes the i-th row by the linear combination as indicated.

Similarly, the notation for columns shall be indicated by Ci +
∑
aijCj.

Obviously, these two kinds of elementary operation are unimodular. The third kind consists
of multiplying a row, and the corresponding column by a nonzero constant. This produces a
rescaling.
In [4], we also proved the following procedural result:

Lemma 2.3. Let X :Mn → En+1 be a nondegenerate hypersurface with parallel cubic form,
∇C = 0, which is not a hyperquadric, C 6= 0. Then there exists an affine coordinate system
in the ambient space such that X(M) is expressible in the form of Monge (i.e., by means of
a graph function f) and such that the corresponding Hessian matrix is given by

H(f) = (fij) = Jk + (xij)

where Jk is a matrix with k ( ≥ 1) blocks of the form

[
0 1
1 0

]
, in diagonal position, occupying

the first 2k diagonal entries the (possible) remaining diagonal elements are equal to 1, and
with all of the rest of entries equal 0; while all of the entries of the matrix (xij) are linear
functions of the (domain) coordinates t1, t2, . . . , tn, i.e., xij =

∑
aijktk. Moreover, the matrix

of linear functions (xij) is everywhere singular, whose maximal rank r is attained on an open,
dense subset of the domain, and we have 1 ≤ r ≤ n− 1.

The two positive integers k, with 1 ≤ k ≤ n/2, and r, with 1 ≤ r ≤ n− 1, are characteristic
of, and determined by, each hypersurface with the required geometrical properties of having
parallel second fundamental form with respect to the affine normal connection, i.e., ∇C = 0,
and not being a hyperquadric, i.e., with C 6= 0. Thus, we emphasize again here that these
two numbers play an essential role in the classification procedure.

3. Proof of the main theorem

From Lemma 2.3 we have two possible values for k = 1, 2 ; and four for r = 1, 2, 3, 4.
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Cases a) k = r = 1; and b) k = 1, r = 2; are quite similar to the same labeled cases in
Theorem C. Thus we omit their proofs.

c) The third possible case corresponds to the values k = 1, r = 3. By Lemma 2.3 we can
first reduce the Hessian matrix to





x11 1 + x12 x13 x14 x15
1 + x12 x22 x23 x24 x25
x13 x23 1 + x33 x34 x35
x14 x24 x34 1 + x44 x45
x15 x25 x35 x45 1 + x55




(3.1)

We define the vectors Xi := (x1i, x2i, x3i, x4i, x5i). Then, it is easy to see, by means of suitable
elementary operations, that the present case can be reduced to three subcases, labeled as:
c1), c2) and c3).

c1) Let us assume, first, that the vectors X1, X2 and X3 are linearly independent on an open,
dense subset of the domain, represent the remaining ones by Xi = ai1X1 + ai2X2 + ai3X3,
i = 3, 4, and perform into the Hessian matrix defined by expression (3.1) the elementary
operations suggested by the latter equality, i.e., Ri− ai1R1− ai2R2− ai3R3 and Ci− ai1C1−
ai2C2 − ai3C3, i = 3, 4, to obtain





x11 1 + x12 x13 −a42 −a52
1 + x12 x22 x23 −a41 −a51
x13 x23 1 + x33 −a43 −a53
−a42 −a41 −a43 b44 b45
−a52 −a51 −a53 b45 b55




,

where b44 = 1+2a41a42+ a
2
43, b45 = a41a52+ a42a51+ a43a53, b55 = 1+2a51a52+ a

2
53. Besides,

the 2×3 submatrix (aij) must be different from zero (otherwise the Hessian determinant
vanishes), and (the determinant of the 2×2 submatrix) |bij| = 0. From this we have two
subcases c11) (bij) = 0 or c12) (bij) 6= 0.

In the first subcase, c11), we must also have a41 6= 0, a42 6= 0, a51 6= 0, a52 6= 0. Then, we
perform into the latter expression of the Hessian matrix the elementary operations R4+

a42
a52
R5,

C4+
a42
a52
C5; R2+

a51
a52
R1, C2+

a51
a52
C1; R3+

a53
a52
R1, C3+

a53
a52
C1; the entries −a41, −a43 transformed

into a′41, a
′
43, and one of these must be different from zero. It is easy to see that, by suitable

further elementary operations, we can get the Hessian transformed, first into





x11 1 + x12 b13 + x13 0 1
1 + x12 b22 + x22 b23 + x23 1 0
b13 + x13 b23 + x23 b33 + x33 0 0
0 1 0 0 0
1 0 0 0 0




,

and then, by also using the fact that the determinant of the latter 4 = b33 + x33, and hence
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x33 = 0, b33 = −1, into





x11 1 0 x14 x15
1 0 0 0 0
0 0 0 1 x35
x14 0 1 x44 0
x15 0 x35 0 1




.

This is a contradiction, since we are assuming k = 1, so that this subcase is not possible.

In the second subcase c12), we may assume b55 6= 0, write (b44, b45) = c (b45, b55) and perform
elementary operations so as to transform the Hessian matrix into





x11 1 + x12 x13 a′42 0
1 + x12 x22 x23 a′41 0
x13 x23 1 + x33 a

′
43 0

a′42 a′41 a′43 0 0
0 0 0 0 1




.

Hence, some of the a′4i must be nonvanishing and we can further reduce to two subcases:
c121) a

′
43 6= 0, c122) a

′
42 6= 0.

In the first of these we perform further elementary operations to get the Hessian equal to




b11 + x11 b12 + x12 x13 0 0
b12 + x12 b22 + x22 x23 0 0
x13 x23 x33 1 0
0 0 1 0 0
0 0 0 0 1




,

but since the determinant of the latter equals minus the determinant of the 2×2 submatrix
(bij + xij), we must have |bij + xij| = 1, so that we can further diagonalize the latter to get
the Hessian





1 0 x13 0 0
0 1 x23 0 0
x13 x23 x33 1 0
0 0 1 0 0
0 0 0 0 1




.

This is not possible, since we are assuming r = 3.

In subcase c122) we perform elementary operations so as to get the Hessian transformed into




x11 x12 x13 1 0
x12 b22 + x22 b23 + x23 0 0
x13 b23 + x23 b33 + x33 0 0
1 0 0 0 0
0 0 0 0 1




.
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Here, again, we obtain that |bij + xij| = 1 and arrive, all the same, to a contradiction.

c2) If we assume, second, that the vectors X2, X3 and X4 are linearly independent, we find
that this case is quite similar to the previous one and, therefore, omit its proof.

c2) Finally, let us assume that the vectors X3, X4 and X5 are linearly independent, write
the other ones as Xi = ai3X3 + ai4X4 + ai5X5, i = 1, 2 , and perform into the Hessian
matrix defined by equation (3.1) the elementary operations Ri − ai3R3 − ai4R4 − ai5R5 and
Ci − ai3C3 − ai4C4 − ai5C5, i = 1, 2, to obtain





b11 b12 −a13 −a14 −a15
b12 b22 −a23 −a24 −a25
−a13 −a23 1 + x33 x34 x35
−a14 −a24 x34 1 + x44 x45
−a15 −a25 x35 x45 1 + x55




,

where b11 = a
2
13+ a

2
14+ a

2
15, b12 = 1+ a13a23+ a14a24+ a15a25, b22 = a

2
23+ a

2
24+ a

2
25. Then, we

must have the determinant |bij| = 0, but at the same time the 2×2 submatrix (bij) 6= 0, the
vectors (a13, a14, a15) 6= 0, (a23, a24, a25) 6= 0; and we may assume that (b12, b22) = c (b11, b12),
for some c ∈ R. Thus, by performing the operations R2 − cR1, C2 − cC1, if necessary, we
may further assume that b12 = b22 = 0, b11 6= 0. Next, it is easy to see that we can perform
operations to transform the Hessian matrix into





b11 0 0 0 0
0 0 a′23 a′24 a′25
0 a′23 1 + x33 x34 x35
0 a′24 x34 1 + x44 x45
0 a′25 x35 x45 1 + x55




,

where we must have the vector (a′23, a
′
24, a

′
25) 6= 0. Thus, further elementary operations allow

to write the Hessian




1 0 0 0 0
0 0 1 0 0
0 1 x33 x34 x35
0 0 x34 1 0
0 0 x35 0 1




.

However, here we would have r < 3, so that this subcase is also not possible, as were the
previous ones. As a consequence, the whole case c) cannot happen.

d) The fourth case corresponds to the values k = 1, r = 4; and it is easy to see that this
reduces to two subcases: d1) X2, X3, X4 and X5 are linearly independent; d2) The linearly
independent vectors are X1, X2, X3 and X4.
The proof of both of these follow a pattern similar to the previous case and to case c) in

Theorem C. Thus, we omit it.

e) If we consider now the case k = 2, r = 1, it is easy to see that this also reduces to two
subcases: e1) x11 6= 0, on an open, dense subset of the domain; e2) x55 6= 0.
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Here again, the proof is quite similar to that in Theorem C, case d), and shall also be
omitted.

f) The sixth possible case corresponds to k = 2, r = 2; which can be reduced to three
subcases: f1), f2), f3):

f1) Let us assume, first, that the vectors X1 and X3 are linearly independent, represent the
remaining ones by Xi = ai1X1 + ai3X3, i = 2, 4, 5; and perform into the Hessian matrix for
this case





x11 1 + x12 x13 x14 x15
1 + x12 x22 x23 x24 x25
x13 x23 x33 1 + x34 x35
x14 x24 1 + x34 x44 x45
x15 x25 x35 x45 1 + x55




(3.2)

the elementary operations Ri − ai1R1 − ai3R3 and Ci − ai1C1 − ai3C3, i = 2, 4, 5, to obtain




x11 1 x13 0 0
1 b22 0 b24 b25
x13 0 x33 1 0
0 b24 1 b44 b45
0 b25 0 b45 1




,

where we must have that the 3×3 submatrix formed with rows and columns 2, 4 and 5 is
singular, i.e., with vanishing determinant. Then, there are two subcases that we label f11)
and f12):

f11) Suppose that (b24, b44, b45) = c (b22, b24, b25) + d (b25, b45, 1) , for some c, d ∈ R. Then,
by making suitable elementary operations we can transform the above so as to have the
vector (b24, b44, b45) = 0, with the rest of entries the same as before. Next, by computing
the determinant we obtain ∆ = 1 + (b225 − b22)x11, so that we have two possibilities: f111)
b225 − b22 = 0, or f112) x11 = 0.

f111) We have b
2
25 − b22 = 0, and perform into the Hessian matrix the elementary operations

R2 − b25R5, C2 − b25C5, to obtain




x11 1 x13 0 0
1 0 0 0 0
x13 0 x33 1 0
0 0 1 0 0
0 0 0 0 1




,

with the condition x11x33 − x213 6= 0. Then, straightforward integration allows to write the
solution as

t6 = t1t2 +
1
6
a1t
3
1 +

1
2
a3t
2
1t3 +

1
2
b3t1t

2
3 + t3t4 +

1
6
d3t
3
3 +

1
2
t25.

f112) If we assume now that x11 = 0, we may perform into the Hessian matrix the elementary
operations R2 − b25R5, C2 − b25C5, to obtain
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



0 1 x13 0 0
1 2b2 0 0 0
x13 0 x33 1 0
0 0 1 0 0
0 0 0 0 1




,

with 2b2 = b22 − b225. Finally, it is easy to see that the Hessian matrix can be reduced to




0 1 x13 0 0
1 0 −b2x13 0 0
x13 −b2x13 x33 1 0
0 0 1 0 0
0 0 0 0 1




.

The latter can be integrated straightforwardly to obtain the solution

t6 = t1t2 +
1
2
a3t1t

2
3 −

1
2
b2a3t2t

2
3 + t3t4 +

1
2
t25.

f12) If we assume now that (b22, b24, b25) = c (b24, b44, b45) + d (b25, b45, 1) , for some c, d ∈ R,
it can be shown, by a quite similar procedure, that this subcase produces the same kind of
solutions as before.

f2) We assume, next, that the vectorsX1 andX2 are the linearly independent ones, writeXi =
ai1X1+ai2X2, i = 3, 4, 5, and perform the operations Ri−ai1R1−ai2R2 and Ci−ai1C1−ai2C2,
i = 3, 4, 5, to obtain





x11 1 + x12 −a32 −a42 −a52
1 + x12 x22 −a31 −a41 −a51
−a32 −a31 b33 b34 b35
−a42 −a41 b34 b44 b45
−a52 −a51 b35 b45 b55




,

where we must have, on the indicated submatrices, the conditions: (aij) 6= 0, (bij) 6= 0, |bij| =
0. Then, we may diagonalize the submatrix (bij), and execute further elementary operations
so as to transform the Hessian into three possible forms labeled f21), f22), f23). The careful
analysis of these subcases gives rise to solutions which are the same as the ones quoted before,
with some of the constants vanishing.

f3) Let us assume, finally, that the vectors X4 and X5 are linearly independent. Then again,
this subcase repeats the same solutions as those in f2).

g) The seventh possible case corresponds to the values k = 2, r = 3, and again we can initially
reduce this to three subcases: g1), g2), g3).

g1) We assume, first, that the vectors X1, X2 and X3 are linearly independent, represent
Xi = ai1X1 + ai2X2 + ai3X3, i = 4, 5, and perform into the Hessian matrix, represented by
expression (3.2), the operations Ri − ai1R1 − ai2R2 − ai3R3, and Ci − ai1C1 − ai2C2 − ai3C3,
i = 4, 5, to get
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



x11 1 + x12 x13 −a42 −a52
1 + x12 x22 x23 −a41 −a51
x13 x23 x33 1 0
−a42 −a41 1 b44 b45
−a52 −a51 0 b45 b55




.

Then, it is easy to determine that we must have the 2×2 submatrix (bij) 6= 0, |bij| = 0.
Hence, by means of suitable operations we can transform the latter expression into





a11 + x11 a12 + x12 x13 0 0
a12 + x12 a22 + x22 x23 0 0
x13 x23 x33 1 0
0 0 1 0 0
0 0 0 0 1




.

Next, we proceed to diagonalize the 2×2 submatrix (aij) which, by the conditions of the
problem, can be made in only one possible way, so that the above Hessian takes the form





x11 1 + x12 x13 0 0
1 + x12 x22 x23 0 0
x13 x23 x33 1 0
0 0 1 0 0
0 0 0 0 1




,

but then, by evaluating the determinant, we come to the conclusion that we must have
x12 = 0, x11x22 = 0, and we may assume that x22 = 0. Hence, we integrate to obtain the
solution

t6 = t1t2 +
1
2
at2t

2
3 +

1
6
bt31 +

1
2
ct21t3 +

1
2
dt1t

2
3 + t3t4 +

1
6
et33 +

1
2
t25.

Moreover, by the conditions of the problem we can perform further operations in order to
make e = 0 in the above. Thus, we obtain the solution quoted as g1) in the statement of the
theorem.

g2) We assume, second, that the vectors X1, X3 and X5 are linearly independent, represent
Xi = ai1X1 + ai3X3 + ai5X5, i = 2, 4, and perform into the Hessian the operations Ri −
ai1R1 − ai3R3 − ai5R5, and Ci − ai1C1 − ai3C3 − ai5C5, i = 2, 4, to obtain





x11 1 x13 0 x15
1 b22 0 b24 −a25
x13 0 x33 1 x35
0 b24 1 b44 −a45
x15 −a25 x35 −a45 1 + x55




,

where we must have for the 2×2 submatrix (bij) the condition |bij| = 0, and from this we
obtain two subcases: g21) (bij) = 0, g22) (bij) 6= 0, that we analyze next:

g21) Here, further elementary operations allow to transform the Hessian matrix into
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



x11 1 x13 0 x15
1 0 0 0 0
x13 0 x33 1 x35
0 0 1 0 0
x15 0 x35 0 1 + x55




,

and, since the determinant of the latter equals 4 = 1+x55, it follows that x55 = 0. Thus, by
integrating, we obtain the solution quoted as g2) in the statement of the theorem, i.e.,

t6 = t1t2 +
1
6
a1t
3
1 +

1
2
a3t
2
1t3 +

1
2
a5t
2
1t5 + c5t1t3t5 + t3t4 +

1
6
f3t
3
3 +

1
2
f5t
2
3t5 +

1
2
t25.

g22) We may assume (b22, b24) = c (b24, b44) , c ∈ R, and transform the Hessian matrix into




x11 1 x13 0 x15
1 0 0 0 0
x13 0 x33 1 x35
0 0 1 b44 0
x15 0 x35 0 1 + x55




.

By evaluating the determinant of the latter we obtain4 = 1+x55−b44x33−b44 (x33x55 − x235) ,
from which we get the conditions x55 = b44x33, x33x55 − x235 = 0. Now, if b44 < 0, we arrive
at a contradiction since in such a case we would also have x33 = x35 = x55 = 0, so that
r < 3. Hence, we must have b44 > 0, and it follows that x35 =

√
b44x33. Thus, by a couple of

elementary operations we reduce the Hessian matrix to




x11 1 x13 x14 0
1 0 0 0 0
x13 0 x33 1 0
x14 0 1 0 0
0 0 0 0 1




.

The latter expression can be integrated immediately to give the solution

t6 = t1t2 +
1
6
a1t
3
1 +

1
2
a3t
2
1t3 +

1
2
a4t
2
1t4 +

1
2
c3t1t

2
3 + t3t4 +

1
6
f3t
3
3 +

1
2
t25.

Then, by the conditions of the problem, we can make further operations in order to have
a1 = 0 in the above. Therefore, this gives the solution labeled as g3) in the statement of the
theorem.

g3) If we assume, finally, that the vectors X3, X4 and X5 are linearly independent and repeat
the procedure we arrive at the same kinds of solutions as before. So we omit this part of the
argument.

h) The eighth and last possible case corresponds to the values k = 2, r = 4. We can initially
reduce this to two subcases: h1), h2).

h1) We assume, first, that the vectors X1, X2, X3 and X4 are linearly independent, write
X5 = a51X1+a52X2+a53X3+a54X4, and perform into the Hessian, represented by expression
(3.2), suitable operations to obtain
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



x11 1 + x12 x13 x14 −a52
1 + x12 x22 x23 x24 −a51
x13 x23 x33 1 + x34 −a54
x14 x24 1 + x34 x44 −a53
−a52 −a51 −a54 −a53 b




,

where b = 1 + 2 (a51a52 + a53a54) = 0, so that we must have a51a52 6= 0 or a53a54 6= 0, and
we can assume a52 6= 0. Hence, by performing further operations we can express the Hessian
matrix as





x11 1 + x12 x13 x14 −a52
1 + x12 b22 + x22 b23 + x23 b24 + x24 0
x13 b23 + x23 x33 1 + x34 0
x14 b24 + x24 1 + x34 x44 0
−a52 0 0 0 0




.

Then, by evaluating the determinant, we conclude that we may write a52 = −1, and that the
3×3 submatrix formed by rows and columns 2, 3, 4 has determinant equal to −1. Thus, by
making suitable operations we may bring the above Hessian to





x11 1 x13 x14 x15
1 0 0 0 0
x13 0 x33 1 x35
x14 0 1 0 0
x15 0 x35 0 1




,

which can be integrated to obtain the solution

t6 = t1t2+
1
2
c1t
2
1t4+ e1t1t3t5+ t3t4+

1
2
e4t
2
3t5+

1
2
f1t
2
1t5+

1
2
g1t1t

2
3+

1
6
g4t
3
3+

1
2
h1t
2
1t3+

1
6
k1t
3
1+

1
2
t25.

Finally, from the conditions of the problem we can make a couple of further operations in
order to get f1 = k1 = 0 in the above equation, so to obtain the result quoted as h) in the
statement of the theorem.

h2) We assume, next, that the vectors X2, X3, X4 and X5 are linearly independent, express
X1 = a12X2 + a13X3 + a14X4 + a15X5, and perform into the Hessian appropriate operations
to get





b11 1 −a14 −a13 −a15
1 x22 x23 x24 x25
−a14 x23 x33 1 + x34 x35
−a13 x24 1 + x34 x44 x45
−a15 x25 x35 x45 1 + x55




,

where we must have b11 = 0. Then, by performing further, easily determined elementary
operations we can get the Hessian matrix expressed by
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



x11 1 x13 x14 x15
1 0 0 0 0
x13 0 x33 1 + x34 x35
x14 0 1 + x34 x44 x45
x15 0 x35 x45 1 + x55




.

Here, by evaluating the determinant we obtain the condition that the 3×3 principal submatrix
formed by rows and columns 3, 4, 5 has determinant equal to −1. Thus, by the classifying
procedure for dimension n = 3, we can reduce the above Hessian matrix to





x11 1 x13 x14 x15
1 0 0 0 0
x13 0 x33 1 x35
x14 0 1 0 0
x15 0 x35 0 1




,

which is the same as the previous case h1). The proof is concluded.

We remark finally that, since some of the solutions listed in the main theorem contain constant
parameters, i.e., cases f), g) and h), and taking into consideration the conditions to be fulfilled
in each case, one could perform further reductions in every one of them. However, we have
preferred to leave the solutions expressed as stated, because they represent the most general
form.
Aside from this fact, and the further possibility of performing rescalings, the solutions

obtained are inequivalent for different values of the parameters, i.e., they do belong to different
classes under the action of the unimodular affine group ASL (n+ 1,R) .
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