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Abstract. If {(Ri, Ti)}ni=1 is a finite family of zero-dimensional pairs, then
(
∏n
i=1Ri,

∏n
i=1 Ti) is zero-dimensional pair but this result fails for an infinite family

of zero-dimensional pairs. We give necessary and sufficient conditions in order that
an infinite product (

∏
α∈ARα,

∏
α∈A Tα) of zero-dimensional pairs {(Rα, Tα)}α∈A is

zero-dimensional pair.

1. Introduction

All rings considered in this paper are assumed to be commutative and unitary. If R is a
subring of a ring S, we assume that the unity element of S belongs to R, and hence is the
unity of R. We use the term dimension of R, denoted dimR, to refer to the Krull dimension
of R. Thus dimR is the non negative integer n if there exists a chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of
proper prime ideals of R, but no longer such chain; if there is no upper bound on the lengths
of such chains, we write dimR = ∞. This paper is concerned with zero-dimensional rings
in which each proper prime ideal is maximal, and zero-dimensional pairs. We frequently use
the fact that dimension is preserved under integral extensions (cf. [1, (11.8)]). In particular,
an integral extension ring of a zero-dimensional ring is zero-dimensional. Let R be a ring, R
is said to be hereditarily zero-dimensional if each subring of R is zero-dimensional. We also
consider this zero-dimensionality condition in a relative context: if R is a subring of T , we
say that (R, T ) is a zero-dimensional pair if each intermediate ring between R and T is zero-
dimensional. R. Gilmer and W. Heinzer have given in [4, Theorem 4.9], the necessary and
sufficient conditions under what an arbitrary product of infinite hereditarily zero-dimensional
rings is hereditary zero-dimensional. Since the notion of zero-dimensional pair is more general
than the hereditarily zero-dimensionality, then one may ask:
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(Q) Let {(Rα, Tα)}α∈A be a family of zero-dimensional pairs. Under what conditions is
(
∏
α∈ARα,

∏
α∈A Tα) a zero-dimensional pair?

In Section 2, we give necessary and sufficient conditions to question (Q).

2. Zero-dimensional pairs

The main purpose of this section is to give an answer to question (Q). But first, we show
that the homomorphic image of a zero-dimensional pair is a zero-dimensional pair and a
finite product (

∏n
i=1Ri,

∏n
i=1 Ti) is a zero-dimensional pair if and only if each (Ri, Ti) is a

zero-dimensional pair. Moreover, R. Gilmer and W. Heinzer have established that if dimR =
0, then (R, T ) is a zero-dimensional pair if and only if R ↪→ T is an integral extension
[4, Corollary 4.2]. Before starting, we recall the polynomial over infinite product of rings.
Let {Rα}α∈A be a family of rings and X be an indeterminate over

∏
α∈ARα. Given F ∈

(
∏
α∈ARα)[X], then F = fnX

n + · · ·+ f1X + f0, such that fi ∈
∏
α∈ARα, as a function, for

i = 1, . . . , n; fi ∈
∏
α∈ARα means that fi(α) ∈ Rα for each α ∈ A, for any i ∈ {1, . . . , n}.

We denote Fα = fn(α)X
n + · · · + f1(α)X + f0(α) ∈ Rα[X], for this reason we can regard

each polynomial over an infinite product as F = {Fα}α∈A ∈
∏
α∈ARα[X].

Proposition 2.1. Let {Ri}ni=1 and {Ti}
n
i=1 be two finite families of rings. Then (

∏n
i=1Ri,∏n

i=1 Ti) is a zero-dimensional pair if and only if each (Ri, Ti) is a zero-dimensional pair.

Proof. It is well-known that Spec(
∏n
i=1 Ti)={

∏n
i=1 Si : Sj0=Mj0 ∈Spec(Tj0) and Si=Ti for

each i ∈ {1, . . . , n}�{j0}}. Since each (Ri, Ti) is a zero-dimensional pair, according to [2,
Result 1.6],

∏n
i=1 Ti is an integral extension of

∏n
i=1Ri. Moreover, dim

∏n
i=1 Ti =dim

∏n
i=1Ri=

0; on account of [4, Corollary 4.2], (
∏n
i=1Ri,

∏n
i=1 Ti) is a zero-dimensional pair. Conversely,

Ti is integral over Ri for each i = 1, . . . , n; because
∏n
i=1 Ti is integral over

∏n
i=1Ri (cf. [2,

Result 1.6]) and dim
∏n
i=1Ri = 0 imply dimRi = 0. According to [4, Corollary 4.2], each

(Ri, Ti) is a zero-dimensional pair.

On the other hand, Proposition 2.1 fails for an infinite family of zero-dimensional rings as
shows the next example.

Example 2.2. Let Q be the field of rational numbers and p be a prime integer. Let ξi be
a primitive pi-th root of 1 for each i ∈ Z+. We have (Q,Q(ξi)) is zero-dimensional pair
for each i ∈ Z+. Nevertheless, (

∏
i∈N∗ Q,

∏
i∈N∗ Q(ξi)) is not zero-dimensional pair. In fact,

let ξ = {ξi}i∈N∗ be an element of
∏
i∈N∗ Q(ξi). Since there exists no monic polynomial of∏

i∈N∗ Q[X] that vanishes ξ, we have ξ is transcendental over
∏
i∈N∗ Q.

Let T be an integral extension of a ring R, and x be an element of T . We denote Ix =
{f ∈ R[X] : f is a monic polynomial which vanishes on x}. We use also degIx to denote
Min{deg.f : f ∈ Ix}, where deg.f is the degree of f . Next, we give our main result in
this section which answers question (Q). Initially we note that if R =

∏
α∈ARα is the direct

product of zero-dimensional rings Rα, by [5, Proposition 2.5], R need not be zero-dimensional.

Theorem 2.3. Let {(Rα, Tα)}α∈A be a family of zero-dimensional pairs. If dim
∏
α∈A Tα = 0,

then the following statements are equivalent.
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(i) (
∏
α∈ARα,

∏
α∈A Tα) is a zero-dimensional pair;

(ii) For each x = {xα}α∈A ∈
∏
α∈A Tα, there exists kx ∈ N∗ such that {α ∈ A : degIxα > kx}

is finite.

Before proving this theorem, we establish the following lemma.

Lemma 2.4. Let R be a subring of a ring T and ϕ : T −→ T be a ring-homomorphism. If
(R, T ) is a zero-dimensional pair, then so is (ϕ(R), ϕ(T )).

Proof. Let S be a ring such that ϕ(R) ⊆ S ⊆ ϕ(T ). Let A be the inverse image of S by ϕ,
so R ⊆ A ⊆ T . Since dim(S) ≤ dim(A) = 0, then dim(S) = 0.

Proof of Theorem 2.3. (i) =⇒ (ii). Let x = {xα}α∈A ∈
∏
α∈A Tα, then x is integral over∏

α∈ARα, i.e., there exists a monic polynomial G = {fα}α∈A ∈ (
∏
α∈ARα)[X] such that

G(x) = 0; and deg.G = k ∈ N∗, then degIxα ≤ k for each α ∈ A.
(ii)=⇒ (i). Let x={xα}α∈A ∈

∏
α∈A Tα, since every Tα is integral overRα there exists fα ∈ Ixα

such that fα(xα) = 0, for each α ∈ A. We denote B = {α ∈ A : degIxα > kx}={α1, . . . , αn};
we put deg.fα = nα for each α ∈ A. Let F = {fα}α∈A ∈ (

∏
α∈ARα[X]) and s = Sup{deg.fα :

α ∈ A}. Since B is finite, s is a finite integer. Let gα = Xs−nαfα, G = {gα}α∈A ∈∏
α∈A(Rα[X]) be a monic polynomial of degree equal to s with G(x) = 0. Therefore, x is
integral over

∏
α∈ARα. On the other hand, dim

∏
α∈ARα = 0 [3, Theorem 3]. By [4, Corollary

4.2], (
∏
α∈ARα,

∏
α∈A Tα) is a zero-dimensional pair, and the proof is complete.

Example 2.5. Let {pi}i∈N∗ be a family of prime positive integers, X be an indetermi-
nate and m be a positive integer. We consider Ri = (Z/piZ)i ⊗Z/piZ GF (p2i )(X), the ten-
sor product, where GF (p2i ) is the finite field with p

2
i elements, for each i ∈ Z+; and

Ti = (Z/piZ)i ⊗Z/piZ GF (p2mi )(X), where GF (p2mi ) is the finite field with p2mi elements. Ac-
cording to [8, Theorem 3.7], dimRi = dimTi = 0. Since GF (p

2
i )(X) ↪→ GF (p2mi )(X)

is an algebraic extension, the ring Ti is integral over Ri for each i ∈ Z+. We remark
that GF (p2mi ) = GF (p

2
i )(ξi), where ξi is a generator of the cyclic group GF (p

2m
i )�(0)

[7, Théorème 2.2, page 75], for each i ∈ Z+; and we have degIx ≤ m for each x ∈ Ti. We
see via Theorem 2.3, that (

∏
i∈N∗ Ri,

∏
i∈N∗ Ti) is a zero-dimensional pair.

If x ∈ N(R), we denote by η(x) the index of nilpotency of x – that is, η(x) = k if xk = 0
but xk−1 6= 0. We define η(R) to be Sup{η(x) : x ∈ N(R)}; if the set {η(x) : x ∈ N(R)}
is unbounded, then we write η(R) = ∞. From [4, Theorem 3.4], we have dim

∏
α∈A Tα = 0

if and only if {α ∈ A : η(Tα) > k} is finite for some k ∈ Z+, where {Tα}α∈A is a family of
zero-dimensional rings.

Proposition 2.6. Let {Rα}α∈A and {Tα}α∈A be two infinite families of rings such that Rα ↪→
Tα is a ring extension and for each α and each maximal ideal Mα of Tα, Tα/Mα is a finite
separable algebraic field extension of Rα/mα, where mα =Mα∩Rα. If (

∏
α∈ARα,

∏
α∈A Tα) is

a zero-dimensional pair, then each (Rα, Tα) is a zero-dimensional pair and there exists k ∈ Z+
such that {α ∈ A : there exists Mα ∈ Spec(Tα) with [Tα/Mα : Rα/mα] > k} is a finite set.



470 D. Karim: Zero-dimensional Pairs

Proof. Since (Rα, Tα) = (pα(
∏
α∈ARα), pα(

∏
α∈A Tα)), where pα :

∏
α∈ARα → Rα is the

canonical projection homomorphism, by Lemma 2.4, (Rα, Tα) is a zero-dimensional pair,
for each α ∈ A. Assume that for each k ∈ Z+ the set {α ∈ A : there exists Mα ∈ Spec(Tα)
with [Tα/Mα : Rα/mα] > k} is infinite. Let {αi}i∈Z+ be a countably infinite subset of A
such that there exists Mαi ∈ Spec(Tαi) with [Tαi/Mαi : Rαi/mαi ] > i for each i ∈ Z+. Set
Li = Tαi/Mαi and Ki = Rαi/mαi , then Li is an algebraic extension of Ki. Since each Li
is separable of finite degree over Ki, by the Primitive Element Theorem [6, Theorem 5.6,
page 55], there exists xi ∈ Li such that Li = Ki(xi) and hence [Ki(xi) : Ki] > i for each
i ∈ Z+. It follows that

∏∞
i=1Ki(xi) is transcendental over

∏∞
i=1Ki, since there is no monic

polynomial f ∈ (
∏∞
i=1Ki)[X] such that f(x) = 0, where x is the element given by {xi}

∞
i=1, a

contradiction with (
∏∞
i=1Ri,

∏∞
i=1 Ti) being a zero-dimensional pair.

Since the proof of the following corollary is the same as of Proposition 2.6, we omit it.

Corollary 2.7. Let {(Rα, Tα)}α∈A be a family of zero-dimensional pairs. If (
∏
α∈ARα,∏

α∈A Tα) is a zero-dimensional pair, then there exists k ∈ Z+ such that {α ∈ A : there exists
xα ∈ Tα and there exists Mα ∈ Spec(Tα) with [Rα/Mα ∩ Rα(xα) : Rα/Mα ∩ Rα] > k} is a
finite set.
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