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Abstract. Let G be a finite group and k be a field. Given two representations
A and B of G, we investigate when all homomorphisms Ĥ∗(G,A) → Ĥ∗(G,B)

over the Tate cohomology ring Ĥ∗(G, k) are of the form Ĥ∗(G,α) for some mor-
phism α : A→ B. We construct an extended Milnor sequence which computes the
obstruction for homomorphisms Ĥ∗(G,A)→ Ĥ∗(G,B) to be realizable.

Introduction

Let k be a field andG be a finite group. Given a graded module over the Tate cohomology ring
Ĥ∗(G, k), it is natural to ask when this module is of the form Ĥ∗(G,A) for some module A
over the group algebra kG. Recently, this question has been answered, at least for modules
which are direct summands of modules of the form Ĥ∗(G,A); see [5]. In this paper we

continue this program and ask when a map Ĥ∗(G,A) → Ĥ∗(G,B) of Ĥ∗(G, k)-modules is

of the form Ĥ∗(G,α) for some map α : A → B of kG-modules. We do not give a complete

answer to this question. However, we give a global answer for all maps Ĥ∗(G,A)→ Ĥ∗(G,B)
for a fixed kG-module A.

Theorem 1. Let A be a kG-module. Then the following are equivalent:
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(i) For every kG-module B, every map Ĥ∗(G,A)→ Ĥ∗(G,B) of graded Ĥ∗(G, k)-modules

is of the form Ĥ∗(G,α) for some map α : A→ B of kG-modules.

(ii) The projective dimension of Ĥ∗(G,A) over Ĥ∗(G, k) is at most 1 and there exists a
decomposition A = A′ ⊕ A′′ such that A′ belongs to the localizing subcategory of the
stable module category Mod(kG) which is generated by k, and Ĥ∗(G,A′′) = 0.

For a p-group G this result is quite satisfactory because every kG-module belongs to the
localizing subcategory generated by k. However, in general one cannot expect a simple
homological condition on Ĥ∗(G,A) which ensures that every map out of Ĥ∗(G,A) is realizable
by a map of kG-modules.
Theorem 1 is really a lot more general. We can replace the stable category of kG-modules

by any triangulated category with arbitrary coproducts, and Ĥ∗(G,−) can be replaced by
any homology theory which is represented by a compact object. In this context we prove our
result; see Theorem 3.3.
There is also a dual result which characterizes the fact that for a fixed kG-module B every

map Ĥ∗(G,A)→ Ĥ∗(G,B) is realizable by a map A→ B. This is stated in Theorem 4.2.
The proof of Theorem 1 and its generalization is based on a five-term exact sequence

which is closely related to some generalized and extended variants of Milnor’s sequence,
appearing for example in [6, 4]. Our sequence describes the obstruction for the realizability

of maps of the form Ĥ∗(G,A)→ Ĥ∗(G,B). The obstruction is by definition the cokernel of
the natural map

HomkG(A,B) −→ HomĤ∗(G,k)
(
Ĥ∗(G,A), Ĥ∗(G,B)

)

and we use for its description the ideal of maps α : A→ B satisfying Ĥ∗(G,α) = 0. Such maps
are known as phantom maps in algebraic topology and their analogue in group representation
theory has been studied before by Benson and Gnacadja [3].
Next we discuss in this paper the realizability of extensions. It turns out that the long

exact sequence which describes the realizability obstruction for maps Ĥ∗(G,A)→ Ĥ∗(G,B),
has a higher dimensional analogue which computes

Extn
Ĥ∗(G,k)

(
Ĥ∗(G,A), Ĥ∗(G,B)

)

for n ≥ 1. We use this to describe the exact sequences 0→ Ĥ∗(G,B)→ E → Ĥ∗(G,A)→ 0
which are of the form Ĥ∗(G, ε) for some exact sequence ε : 0 → B → C → A → 0 of
kG-modules.
The final part of this paper is devoted to various applications of our general theory. Most

of these applications take place in the stable category of kG-modules.
Our motivating problem of realizing modules and maps over the Tate cohomology ring

is closely related to the problem when Brown representability holds for homology theories.
Recently, some progress has been made in [1, 8, 7], and we use some of the ideas which have
been developed in these papers.
In contrast to [5], we do not exploit the A∞-structure of Tate cohomology.
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1. Exact triangles and phantom maps

We begin this paper with a brief introduction into relative homological algebra for trian-
gulated categories. Throughout we fix a triangulated category T containing all small co-
products. Given two objects A and B in T, we denote by T(A,B)∗ the graded Hom-group
T(A,B)∗ =

⊕
i∈Z T(Σ

iA,B). In particular, the graded Hom-group T(A,A)∗ is a Z-graded
ring.
We fix a homology theory H : T → Ab, that is, H is a functor which sends triangles to

exact sequences and preserves all coproducts. We make the additional assumption that H is
represented by an object T ∈ T, that is, H = T(T,−)∗. Therefore the endomorphism ring
Γ = T(T, T )∗ acts in a natural way on H(A) for each object A ∈ T. Thus we have a functor

H : T −→ Mod(Γ), A 7→ T(T,A)∗

into the category Mod(Γ) of Z-graded Γ-modules.
There is an obvious way to generalize our setting. Instead of representing the homology

theory H by a single object T , one could take a set of compact objects in T which is closed
under the shift Σ. Recall that an object A ∈ T is compact if the functor T(A,−) preserves
all coproducts. Viewing the full subcategory Γ of objects in such a set of compact objects
as a Z-graded ring with several objects, we obtain a homology theory H : T → Mod(Γ) by
sending an object A to T(−, A)|Γ.
The examples we have in mind include the following.

Example 1.1. 1. Fix a finite group G and a field k. Let H be the homotopy category of
projective modules over the group algebra kG. Setting T to be a Tate resolution of the
trivial representation k, we have that T is compact in H and Γ = H(T, T )∗ is the Tate

cohomology ring Ĥ∗(G, k). We can use instead of H the full subcategory of H consisting
of acyclic complexes of projective kG-modules, which is equivalent to the stable module
category Mod(kG) of the group algebra kG. The equivalence identifies T with k.

2. Let D(Mod(Λ)) be the derived category of unbounded complexes over a ring Λ. We fix a
finitely presented Λ-module T of finite projective dimension and view T as a stalk complex
concentrated in degree zero. Then T is a compact object in D(Mod(Λ)) and the graded
endomorphism ring Γ of T equals the Yoneda algebra Ext∗Λ(T, T ). For instance, we can take
T to be a tilting module, or simply T = Λ.

3. Let Ho(S) be the stable homotopy category of spectra, and let T be the sphere spectrum
S0. Then Mod(Γ) is the module category of the stable homotopy ring of spheres.

4. Let T be a compactly generated triangulated category and let P be the set of isoclasses of
compact objects in T. Viewing the full subcategory of objects in P as a ring Γ with several
objects, we obtain a homology theory H : T → Mod(Γ) which is the basis for the well-studied
theory of purity in compactly generated triangulated categories.

We call a triangle A −→ B −→ C −→ ΣA in T H-exact if the induced sequence 0 −→ H(A) −→
H(B) −→ H(C) −→ 0 is exact in Ab. An object P in T is called H-projective if for any H-exact
triangle as above, any morphism P −→ C factors through the map B −→ C. An H-projective
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presentation of the object A is an H-exact triangle K −→ P −→ A −→ ΣA where P is H-
projective. The concept of an H-injective object and an H-injective presentation are defined
dually.
Closely related to the notion of H-exactness is the following concept. We call a map

f : A −→ B H-phantom if the induced map H(f) is zero. Plainly the collection PhH(A,B) of
all H-phantom maps between A and B is a subgroup of T(A,B) and it is easy to see that in
this way we obtain an ideal PhH(−,−) of T, i.e. an additive subfunctor of T(−,−), which is
Σ-stable in the sense that Σnf is H-phantom for all n ∈ Z, provided that f is H-phantom.
Obviously, a triangle A −→ B −→ C −→ ΣA in T is H-exact if and only if the third map
C → ΣA is H-phantom.
Any object A of T admits an H-projective presentation

ΩHA
g
−→ P (A)

f
−→ A

h
−→ ΣΩHA .

Indeed let P (A) =
∐
i∈Z
∐
ΣiT−→AΣ

iT and let f : P (A) −→ A be the induced canonical
morphism. Then the triangle in T with base f is plainly H-exact, hence it is an H-projective
presentation of A since by construction P (A) is H-projective. Observe that h : A −→ ΣΩHA
is a weakly universal H-phantom map out of A in the sense that any other H-phantom map
out of A factors through h. It follows from the above construction that the full subcategory
of H-projective objects of T is identified with Add(Σ∗T ), the full subcategory of T consisting
of all direct summands of arbitrary coproducts of objects in {ΣiT | i ∈ Z}.
An H-projective resolution of an object A in T is a complex

· · ·
δ3−→ P2

δ2−→ P1
δ1−→ P0 −→ A −→ 0 (1.1)

in T, where each Pn is H-projective and the induced complex

· · · −→ T(P, P2) −→ T(P, P1) −→ T(P, P0) −→ T(P,A) −→ 0

is exact for any H-projective P . Any object A admits an H-projective resolution. It is
obtained by splicing together H-exact triangles

Ωn+1H A
gn−→ Pn

fn−→ Ωn(A)
hn−→ ΣΩn+1H A

where each Pn is H-projective and Ω
0
H(A) = A. Defining δn = gn−1 ◦ fn for all n ≥ 1 gives a

resolution of the form (1.1). Actually any H-projective resolution is of this form. H-injective
resolutions are defined dually.
Finally we define the H-projective dimension H-pdA of an object A in T to be the smallest

integer n ≥ 0 such that there exists an H-projective resolution (1.1) with Pi = 0 for all i > n.
We put H-pdA =∞ if H-pdA 6= n for all n ≥ 0.

2. A long exact sequence

Given two objects A andB in T, we have a natural map HA,B : T(A,B)→ HomΓ(H(A),H(B)).
In this section we construct a five-term exact sequence which describes the obstruction for
this map to be surjective. We start with the following well-known result.
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Lemma 2.1. The functor H : T −→ Mod(Γ) induces an equivalence between Add(Σ∗T ) and
the category of projective Γ-modules. Moreover, for any X ∈ Add(Σ∗T ) and any A ∈ T the
canonical map HX,A : T(X,A) −→ HomΓ(H(T ),H(A)) is invertible.

The lemma implies that H sends H-projective presentations in T to projective presentations
in Mod(Γ). More precisely, if ΩHA −→ P −→ A −→ ΣΩHA is an H-projective presentation of A
in T, then the sequence 0→ H(ΩHA)→ H(P )→ H(A)→ 0 is a projective presentation of the
Γ-module H(A). In particular we have an isomorphism H(ΩHA) ∼= ΩH(A) up to projective
summands.
The construction of the loop object ΩHA is not in general functorial; it depends on the

choice of the map P −→ A. But it is easy to see that if Ω′HA −→ P ′ −→ A −→ ΣΩ′HA is another
projective presentation of A in T, then the loop objects ΩHA and Ω

′
HA are isomorphic up to

H-projective summands: we have an isomorphism ΩHA ∼= Ω′HA in the stable category T/P of
T modulo the ideal of maps in T factorizing through an H-projective object. Moreover the
assignment A 7→ ΩHA defines a functor ΩH : T/P −→ T/P.

Lemma 2.2. The left ideal PhH(ΩHA,−) of T(ΩHA,−) is independent of the choice of the
loop object ΩHA.

Proof. If ΩHA −→ P −→ A −→ ΣΩHA and Ω′HA −→ P ′ −→ A −→ ΣΩ′HA are H-projective
presentations, then we have the following diagram of morphisms of triangles:

Σ−1A
−Σ−1h
−−−−→ ΩHA

g
−−−→ P

f
−−−→ A

∥∥∥ β

y α

y
∥∥∥

Σ−1A
−Σ−1h′
−−−−→ Ω′HA

g′

−−−→ P ′
f ′

−−−→ A
∥∥∥ β′

y α′

y
∥∥∥

Σ−1A
−Σ−1h
−−−−→ ΩHA

g
−−−→ P

f
−−−→ A

Observe that (1ΩHA − β
′ ◦ β) ◦Σ−1h = 0. Thus there exists a map ρ : P −→ ΩHA such that

1ΩHA−β
′ ◦ β = ρ ◦ g. Similarly there exists a map σ : P ′ −→ Ω′HA such that 1Ω′HA−β

◦ β′ = σ ◦ g′.
Next we define, for any object B ∈ T, a map β′∗ : PhH(ΩHA,B) −→ PhH(Ω

′
HA,B) by β

′
∗(φ) =

φ ◦ β′. Similarly we define a map β∗ : PhH(Ω
′
HA,B) −→ PhH(ΩHA,B) by β∗(ψ) = ψ ◦ β.

We claim that β′∗ is invertible with inverse the map β∗. Indeed for any H-phantom map
φ : ΩHA −→ B we have (β∗ ◦ β

′
∗)(φ) = φ ◦ β′ ◦ β. Since 1ΩHA − β′ ◦ β = ρ ◦ g, it follows that

(β∗ ◦ β
′
∗)(φ) = φ− φ ◦ ρ ◦ g. But φ, hence φ ◦ ρ, is an H-phantom map. Since φ ◦ ρ starts from

the H-projective object P , it follows that φ ◦ ρ = 0. Hence (β∗ ◦ β
′
∗)(φ) = φ and we infer that

β∗ ◦ β
′
∗ = 1PhH(ΩHA,B). In a dual way we have β

′
∗
◦ β∗ = 1PhH(Ω′HA,B) which shows that β

′
∗ is

invertible with inverse the map β∗.

Remark 2.3. If α : A′ −→ A is a morphism in T, then we have a morphism of H-projective
presentations

ΩHA
′ g′

−−−→ P ′
f ′

−−−→ A′
h′
−−−→ ΣΩHA′

ΩHα

y β

y α

y ΣΩHα

y

ΩHA
g

−−−→ P
f

−−−→ A
h

−−−→ ΣΩHA
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We claim that for any object B in T the induced map PhH(ΩHα,B) : PhH(ΩHA,B) −→
PhH(ΩHA

′, B) given by φ 7→ φ ◦ΩHα, does not depend on the choices we made for the
compatible maps P ′ −→ P and ΩHA

′ −→ ΩHA. Indeed if

ΩA′
g′

−−−→ P ′
f ′

−−−→ A′
h′
−−−→ ΣΩHA′

Ω′Hα

y β′

y α

y ΣΩ′Hα

y

ΩHA
g

−−−→ P
f

−−−→ A
h

−−−→ ΣΩHA

is another morphism of H-projective presentations induced by α, then there exists a morphism
σ : P ′ −→ ΩHA such that ΩHα−Ω′Hα = σ ◦ g

′. Then for any H-phantom map φ : ΩHA −→ B we
have φ ◦(ΩHα−Ω′Hα) = φ ◦σ ◦ g

′. But φ ◦σ = 0 as an H-phantom map out of the H-projective
object P ′. Hence φ ◦ΩHα = φ ◦Ω

′
Hα.

Let A be an object in T and choose an H-projective presentation ΩHA
g
−→ P

f
−→ A

h
−→ ΣΩHA

of A in T. Then for any object B in T, we define a map

ζA,B : PhH(ΩHA,B) −→ Ph
2
H(Σ

−1A,B)

by sending an H-phantom φ : ΩHA −→ B to ζA,B(φ) = φ ◦Σ−1h. Note that ζA,B(φ) lies in
Ph2H(Σ

−1A,B) since Σ−1h is an H-phantom map.

Lemma 2.4. The natural map ζA,B : PhH(ΩHA,B) −→ Ph
2
H(Σ

−1A,B) is independent of the
choice of loops.

Proof. Let ζ ′A,B : PhH(Ω
′
HA,B) −→ Ph2H(Σ

−1A,B) be the map resulting from another H-

projective presentation Ω′HA −→ P ′ −→ A
h′
−→ ΣΩ′HA of A in T, that is ζ

′
A,B(ψ) = ψ ◦Σ−1h′.

We claim that the following diagram commutes:

PhH(ΩHA,B)
ζA,B
−−−→ Ph2H(Σ

−1A,B)

β′∗

y∼=
∥∥∥

PhH(Ω
′
HA,B)

ζ′A,B
−−−→ Ph2H(Σ

−1A,B)

where β′∗ is the isomorphism constructed in Lemma 2.2. Indeed for any H-phantom map
φ : ΩHA −→ B, we have (ζ ′A,B ◦ β

′
∗)(φ) = ζ ′A,B(φ ◦ β

′) = φ ◦ β′ ◦Σ−1h′ = φ ◦Σ−1h = ζA,B(φ).
Hence the above diagram commutes and this shows that the map ζA,B does not depend on
the choices of the loop objects.

Remark 2.5. As in Remark 2.3 one can prove that any morphism α : A′ −→ A in T induces
a commutative square

PhH(ΩHA,B)
ζA,B
−−−→ Ph2H(Σ

−1A,B)

PhH(ΩHα,B)

y Ph2H(Σ
−1α,B)

y

PhH(ΩHA
′, B)

ζA′,B
−−−→ Ph2H(Σ

−1A′, B)
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The main result of this section is the following.

Proposition 2.6. For any objects A,B in T, there exists a natural map

ϑA,B : HomΓ
(
H(A),H(B)

)
−→ PhH(ΩHA,B)

which induces a functorial exact sequence

0 −→ PhH(A,B) −→ T(A,B)
HA,B
−−−→HomΓ

(
H(A),H(B)

) ϑA,B
−−→ (2.1)

PhH(ΩHA,B)
ζA,B
−−→ Ph2H(Σ

−1A,B) −→ 0 .

Proof. First we need to define the map ϑA,B. To this end choose an H-projective presen-

tation ΩHA
g
−→ P

f
−→ A

h
−→ ΣΩHA of A. Then we have a short exact sequence 0 −→

H(ΩHA)
H(g)
−−→ H(P )

H(f)
−−→ H(A) −→ 0 in Mod(Γ). For any morphism α̃ : H(A) −→ H(B)

in Mod(Γ), there exists a unique morphism α′ : P −→ B such that H(α′) = α̃ ◦H(f). Then
the morphism α′ ◦ g : ΩHA −→ B is H-phantom, since H(α′ ◦ g) = α̃ ◦H(f) ◦H(g) = 0. We
define ϑA,B(α̃) = α′ ◦ g, and it is easy to see that this gives a well-defined homomorphism
ϑA,B : HomΓ

(
H(A),H(B)

)
−→ PhH(ΩHA,B).

Let α̃ : H(A) −→ H(B) be in KerϑA,B, i.e. α′ ◦ g = 0. Then there exists a morphism
ρ : A −→ B such that α′ = ρ ◦ f . Then H(α′) = H(ρ) ◦H(f) = α̃ ◦H(f), hence α̃ = H(ρ). The
morphism ρ is uniquely determined up to H-phantom maps. Indeed if α′ = σ ◦ f , then the
morphism ρ − σ factors through the H-phantom map h, hence it is H-phantom. It follows
that the map T(A,B)/PhH(A,B) −→ HomΓ

(
H(A),H(B)

)
induced by HA,B is the kernel of

ϑA,B, and this proves the exactness of the first part of the sequence (2.1).
We now show that ζA,B is surjective. So let β be in Ph

2
H(Σ

−1A,B). Then there exists

a factorization β = β2 ◦ β1 : Σ
−1A

β1−→ X
β2−→ B where the βi are H-phantoms. Since β1 is

H-phantom, the composition β1 ◦Σ
−1f is zero. Hence there exists a morphism γ : ΩHA −→ X

such that β1 = γ ◦Σ−1h. Consider the H-phantom map δ = β2 ◦ γ : ΩHA −→ B. Then by
construction we have ζA,B(δ) = δ ◦Σ

−1h = β. We infer that ζA,B is surjective.
It remains to prove that Ker ζA,B = ImϑA,B. First let α : ΩHA −→ B be an H-phantom

map such that ζA,B(α) = α ◦Σ−1h = 0. Then there exists a morphism β : P −→ B such
that α = β ◦ g. Since α is H-phantom we have 0 = H(α) = H(β) ◦H(g). Hence there exists
a unique morphism γ : H(A) −→ H(B) such that γ ◦H(f) = H(β). Then by construction
ϑA,B(γ) = β ◦ g = α. Hence α lies in ImϑA,B. Finally let α : ΩHA −→ B be in the image of
ϑA,B, that is α = α

′ ◦ g where α′ : P −→ B is the unique morphism such that H(α′) = α̃ ◦H(f)
for some morphism α̃ : H(A) −→ H(B). Then ζA,B(α) = α ◦Σ−1h = α′ ◦ g ◦Σ−1h = 0. Hence
ϑA,B(α) ∈ Ker ζA,B. We infer that Ker ζA,B = ImϑA,B, hence the sequence (2.1) is exact.
The naturality of (2.1) follows from the preceding discussion in this section.

The above result suggests the following definition.

Definition 2.7. Let A,B be objects of T. The obstruction group OA,B of A and B is the

cokernel of the map T(A,B)
HA,B
−−−→ HomΓ

(
H(A),H(B)

)
.
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Thus we have an isomorphism OA,B ∼= Ker ζA,B = ImϑA,B. Next we construct a sequence
which computes Extn+1Γ

(
H(A),H(B)

)
.

Proposition 2.8. For any objects A,B in T and n ≥ 0, there exist a natural map

ϕΩnHA,B : PhH(Σ
−1ΩnHA,B) −→ Ext

n+1
Γ

(
H(A),H(B)

)

which induces a functorial exact sequence

0 −→ Ph2H(Σ
−1ΩnHA,B) −→PhH(Σ

−1ΩnHA,B)
ϕΩn
H
A,B

−−−−→ (2.2)

Extn+1Γ (H(A),H(B)) −→ OΩn+1H A,B −→ 0 .

Proof. The H-exact triangle ΩHA
g
−→ P

f
−→ A

h
−→ ΣΩHA induces the following exact commu-

tative diagram

· · · −−−−→ T(A,B)
T(f,B)
−−−−→ T(P,B)

T(g,B)
−−−−→

HA,B

y HP,B

y∼=

0 −−−−→ HomΓ
(
H(A),H(B)

)
(
H(f),H(B)

)
−−−−−−−−→ HomΓ

(
H(P ),H(B)

)
(
H(g),H(B)

)
−−−−−−−−→

T(ΩHA,B)
ε

−−−−→ ImT(Σ−1h,B) −−−−→ 0

HΩHA,B

y ϕ

y

HomΓ
(
H(ΩHA),H(B)

) δ
−−−−→ Ext1Γ

(
H(A),H(B)

)
−−−−→ 0

in which the morphism HP,B is invertible. Therefore we have an exact sequence 0 −→ OA,B −→
Ker ε −→ Ker δ −→ 0. Next observe that ImT(Σ−1h,B) = PhH(Σ−1A,B). Using the property
of ζA,B from Proposition 2.6, the right hand square induces the following exact commutative
diagram

0 0 0
y

y
y

0 −−−→ OA,B −−−→ PhH(ΩHA,B)
ζA,B
−−−→ Ph2H(Σ

−1A,B) −−−→ 0
y

y
y

0 −−−→ Ker ε −−−→ T(ΩHA,B) −−−→ PhH(Σ
−1A,B) −−−→ 0

y
y ϕA,B

y

0 −−−→ Ker δ −−−→ HomΓ
(
H(ΩHA),H(B)

)
−−−→ Ext1Γ(H(A),H(B)) −−−→ 0y

y
y

0 OΩHA,B
=
−−−→ OΩHA,By

y

0 0
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The right hand vertical exact sequence is the desired sequence for n = 0. The general case is
obtained by replacing A with ΩnHA for n ≥ 1.

Remark 2.9. The map ϕA,B : PhH(Σ
−1A,B)→ Ext1Γ

(
H(A),H(B)

)
has an explicit descrip-

tion which we include for later reference. Let α : Σ−1A → B be an H-phantom map. We
complete this to a triangle Σ−1A → B → C → A and apply H to obtain an exact sequence
ε : 0→ H(B)→ H(C)→ H(A)→ 0. We have ϕA,B(α) = ε.

Combining the exact sequences (2.1) and (2.2) we have the following.

Corollary 2.10. For any objects A,B in T and any n ≥ 1, there exists an exact sequence

0 −→ Ph2H(Σ
−1Ωn−1H A,B) −→PhH(Σ

−1Ωn−1H A,B)
ϕ
Ωn−1
H

A,B

−−−−−→

ExtnΓ(H(A),H(B)) −→PhH(Ω
n+1
H A,B)

ζΩn
H
A,B

−−−−→ Ph2H(Σ
−1ΩnHA,B) −→ 0 .

We end this section with a remark which is useful for the computation of the ideal PhH(−,−).

Remark 2.11. Let A
α
−→ B

β
−→ C

γ
−→ ΣA be an H-exact triangle. Then for any X ∈ T, the

following sequences of H-phantom ideals are exact

PhH(C,X)
β∗−→ PhH(B,X)

α∗−→ PhH(A,X)

PhH(X,A)
α∗
−→ PhH(X,B)

β∗

−→ PhH(X,C) .

Indeed, let ρ : B −→ X be an H-phantom map such that α∗(ρ) = ρ ◦α = 0. Then there exists
a morphism σ : C −→ X such that σ ◦ β = ρ. Hence β∗(σ) = ρ and it suffices to show that σ
is H-phantom. But H(σ) ◦H(β) = H(ρ) = 0. Hence H(σ) = 0 since H(β) is an epimorphism.
It follows that σ is H-phantom. The exactness of the second sequence is proved similarly.

3. Realizability of morphisms

We say that a morphism α̃ : H(A) −→ H(B) in Mod(Γ) is realizable if there exists a morphism
α : A −→ B in T such that α̃ = H(α). The exact sequence

T(A,B)
HA,B
−−−→ HomΓ

(
H(A),H(B)

)
−→ OA,B −→ 0

shows that the map α̃ : H(A) −→ H(B) in Mod(Γ) is realizable if and only if its image in the
obstruction group OA,B vanishes. Hence all maps between H(A) and H(B) are realizable if
and only if OA,B = 0. We denote by OA,− : T −→ Ab the functor defined by OA,−(B) = OA,B.
The functor O−,B is defined dually. Note that OA,− preserves all products, whereas O−,B
preserves all coproducts.
Our aim in this section is a characterization of the objects A satisfying OA,− = 0. We

start with some preparations. The Jacobson radical of a ring Λ is denoted by RadΛ.

Lemma 3.1. Let A be an object in T. Then the following are equivalent.
(i) Ph2H(A,A) = 0 and OA,− = 0.
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(ii) PhH(A,A) ⊆ RadT(A,A) and OA,− = 0.

(iii) H-pdA ≤ 1.

Proof. (i) ⇒ (ii): Clear, since RadT(A,A) contains any nilpotent ideal of T(A,A).

(ii) ⇒ (iii): Let ΩHA
g0−→ P0

f0−→ A
h0−→ ΣΩHA and Ω2HA

g1−→ P1
f1−→ ΩHA

h1−→ ΣΩ2HA be
H-projective presentations of A and ΩHA respectively. Then the composition δ1 := g0 ◦ f1 :
P1 −→ P0 induces the following octahedral diagram:

P1
f1−−−→ ΩHA

h1−−−→ ΣΩ2HA
−Σg1−−−→ ΣP1∥∥∥ g0

y γ

y
∥∥∥

P1
δ1−−−→ P0

κ
−−−→ B

λ
−−−→ ΣP1

f1

y
∥∥∥ β

y Σf1

y

ΩHA
g0−−−→ P0

f0−−−→ A
h0−−−→ ΣΩHA

Σh1 ◦h0

y

Σ2Ω2HA

where the third vertical triangle is H-exact. Since h0 is H-phantom the same is true for h0 ◦ β =
Σf1 ◦λ. Hence H(Σf1 ◦λ) = 0 and consequently there exists a unique map ε : H(B) −→
H(ΣΩ2HA) such that H(Σg1) ◦ ε = H(λ). Then H(Σg1) ◦ ε ◦H(γ) = H(λ) ◦H(γ) = −H(Σg1).
Since H(Σg1) is monic we have (−ε) ◦H(γ) = 1H(ΣΩ2HA), hence H(γ) is split monic. Then from

the short exact sequence 0 −→ H(ΣΩ2HA)
H(γ)
−−→ H(B)

H(β)
−−→ H(A) −→ 0 we infer that H(β) is

split epic. Hence there exists a map α̃ : H(A) −→ H(B) such that H(β) ◦ α̃ = 1H(A). Since
OA,− = 0 the map α̃ is realizable, hence there exists a map α : A −→ B such that H(α) = α̃.
Then 1A − β ◦α belongs to PhH(A,A). Using the hypothesis PhH(A,A) ⊆ RadT(A,A) we
infer that β ◦α is invertible. Hence β is split epic and consequently Σh1 ◦h0 = 0. Since
OA,− = 0, by Proposition 2.6 the map ζA,− : PhH(ΩHA,−) −→ Ph

2
H(Σ

−1A,−) is invertible.
Since ζA,ΣΩ2HA(h1) = h1 ◦Σ

−1h0 = 0, we infer that h1 = 0 and consequently f1 is split epic.
Hence ΩHA is H-projective and therefore H-pdA ≤ 1.

(iii) ⇒ (i): Since ΩHA is H-projective, the exact sequence (2.1) shows that OA,− = 0 and
Ph2H(A,−) = Ph

2
H(Σ

−1A,−) = 0.

We denote by T′ the localizing subcategory of T which is generated by the compact object
T representing H. That is, T′ is the smallest full triangulated subcategory containing T
which is closed under taking arbitrary coproducts. This category is compactly generated,
and therefore the inclusion functor T′ → T has a right adjoint R : T → T′; see [9]. For each
object A ∈ T, we denote by εA : R(A)→ A the corresponding counit.

Lemma 3.2. Let A be an object in T′.
(i) PhH(A,A) ⊆ RadT(A,A).

(ii) H-pdA = pdΓ H(A).
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Proof. (i) This follows from the fact that H reflects isomorphisms between objects in T′.

(ii) We have always H-pdA ≥ pdΓ H(A). Now suppose A belongs to T
′. It is not difficult to

see that A is H-projective if and only H(A) is projective. The equality H-pdA = pdΓ H(A)
then follows by induction.

The following result characterizes the realizability of morphisms, using homological conditions
in the module category Mod(Γ).

Theorem 3.3. Let A be an object of T. Then the following are equivalent.
(i) For any object B in T, all maps H(A) −→ H(B) are realizable.

(ii) OA,− = 0.

(iii) pdΓ H(A) ≤ 1 and the counit εA : R(A)→ A is a section.

(iv) pdΓ H(A) ≤ 1 and there is a decomposition A = A′ ⊕ A′′ such that A′ belongs to the
localizing subcategory which is generated by the object representing H, and H(A′′) = 0.

Proof. (i) ⇔ (ii): This follows from the definitions.

(ii)⇒ (iii): The counit εA : R(A)→ A induces an isomorphism H(R(A))
∼=−→ H(A). Therefore

OR(A),− = 0. Combining Lemma 3.1 and 3.2 we obtain

pdΓ H(A) = pdΓ H(R(A)) = H-pdR(A) ≤ 1.

The inverse for the counit εA : R(A) → A is obtained by realizing the inverse of the isomor-
phism H(εR(A)).

(iii) ⇒ (iv): Take A′ = R(A) and let A′′ be the cofibre of the counit εA. This gives a
decomposition A = A′ ⊕ A′′.

(iv) ⇒ (ii): We apply again Lemma 3.1 and 3.2. We have pdΓ H(A
′) = pdΓ H(A) ≤ 1 and

therefore OA′,− = 0. Using the canonical map A→ A′, we see that OA,− = 0.

The following example shows that we cannot expect any homological criterion on H(A) which
decides the realizability of maps H(A)→ H(B).

Example 3.4. Let Λ be the ring of upper triangular 2 × 2 matrices over a field k, and let
T = D(Mod(Λ)) be the derived category of unbounded complexes over Λ. We number the
indecomposable projective Λ-modules P1 and P2 such that HomΛ(P1, P2) ∼= k and view them
as complexes concentrated in degree 0. Let H = T(P1,−)∗. Then Γ = T(P1, P1)∗ ∼= k and

the non-zero map α : P1 → P2 induces an isomorphism H(P1)
∼=−→ H(P2). Clearly, H(P2) ∼= k

is a projective Γ-module. However, the map H(α)−1 is not realizable since T(P2, P1) = 0.

4. A dual result

In this section we discuss the dual statement of Theorem 3.3. Thus we characterize the
fact that for a fixed object B in T all maps H(A) → H(B) are realizable. This requires an
extra assumption on the triangulated category T. Throughout this section we assume that T
satisfies Brown representability for cohomology theories, that is, for every exact contravariant
functor F : T → Ab which sends coproducts in T to products, there exists an object X in T
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such that F ∼= T(−, X). For example, a compactly generated triangulated category satisfies
Brown representability for cohomology theories [9]. In particular, all examples from Section 1
have this property.
An immediate consequence of our assumption on T is the fact that every object in T has

an H-injective presentation. In addition, we have the following lemma.

Lemma 4.1. There exists a localization functor L : T → T such that L(A) = 0 if and only if
H(A) = 0 for every object A in T.

Proof. Recall from Section 3 that the inclusion T′ → T for the localizing subcategory T′

generated by T has a right adjoint R : T → T′. This right adjoint preserves coproducts.
Thus R has a right adjoint R′ : T′ → T since T satisfies Brown representability. Now put
L = R′ ◦R.

We are now in a position to state the analogue of Theorem 3.3. To this end we say that an
object A in T is H-local if the natural map A→ L(A) is an isomorphism.

Theorem 4.2. Let B be an object of T. Then the following are equivalent.
(i) For any object A in T, all maps H(A) −→ H(B) are realizable.

(i) O−,B = 0.

(ii) idΓ H(B) ≤ 1 and the natural map B → L(B) is a retraction.

(iii) idΓ H(B) ≤ 1 and there is a decomposition B = B′ ⊕ B′′ such that B′ is H-local and
H(B′′) = 0.

The proof of this result is similar to that of Theorem 3.3. It is therefore omitted.

5. Realizing extensions

Now we turn our attention to the problem of realizing short exact sequences. We call an

exact sequence 0 −→ H(B)
β̃
−→ E

α̃
−→ H(A) −→ 0 in Mod(Γ) realizable if there exists a triangle

B
β
−→ C

α
−→ A −→ ΣB in T and a commutative diagram

0 −−−→ H(B)
H(β)
−−−→ H(C)

H(α)
−−−→ H(A) −−−→ 0

∥∥∥ ∼=

y
∥∥∥

0 −−−→ H(B)
β̃

−−−→ E
α̃

−−−→ H(A) −−−→ 0

Our analysis of realizable sequences is based on the long exact sequence

0 −→ Ph2H(Σ
−1A,B) −→ PhH(Σ

−1A,B)
ϕA,B
−−−→ (5.1)

Ext1Γ(H(A),H(B)) −→ OΩHA,B −→ 0

which is obtained from the sequence (2.2). Using the description of the map ϕA,B, we get
the following lemma.
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Lemma 5.1. A short exact sequence ε : 0 → H(B) → E → H(A) → 0 is realizable if and
only if ε belongs to the image of the map ϕA,B. Moreover, the map A → ΣB in a triangle
B → C → A→ ΣB realizing ε is unique up to a map in Ph2H(A,ΣB).

Proof. Combine the description of ϕA,B from Remark 2.9 and the long exact sequence (5.1).

We apply again the exactness of the sequence (5.1) and obtain the following criterion for
realizability.

Corollary 5.2. Let A,B be objects in T. Then every exact sequence 0 → H(B) → E →
H(A)→ 0 in Mod(Γ) is realizable if and only if OΩHA,B = 0.

6. Applications

6.1. Tate cohomology

We fix a finite group G and a field k. Let T = Mod(kG) be the stable module category over

the group algebra kG and let H = Ĥ∗(G,−) be the functor which assigns to each kG-module
its Tate cohomology. Note that H = HomkG(k,−)∗ and consequently the H-projective objects
of Mod(kG) are the direct summands of arbitrary coproducts of objects in {Σnk | n ∈ Z},
where Σ is the suspension functor of the triangulated category Mod(kG).

Theorem 1 tells us when all maps starting in a fixed module Ĥ∗(G,A) over the Tate
cohomology ring are realizable. It is clear that Theorem 1 is the reformulation of our general
Theorem 3.3 in this setting. Moreover, Theorem 1 has an analogue for maps ending in a
fixed module Ĥ∗(G,B) which is a consequence of Theorem 4.2.
Next we apply Corollary 5.2 and consider extensions over the Tate cohomology ring. We

assume for simplicity that G is a p-group where p denotes the characteristic of the field k.

Corollary 6.1. For a kG-module A the following are equivalent:

(i) Each exact sequence 0→ Ĥ∗(G,B)→ E → Ĥ∗(G,A)→ 0 of graded Ĥ∗(G, k)-modules
is realizable (for every kG-module B).

(ii) Each exact sequence 0→ Ĥ∗(G,B)→ E → Ĥ∗(G,A)→ 0 of graded Ĥ∗(G, k)-modules
is of the form Ĥ∗(G, ε) for some exact sequence ε : 0 → B → C → A → 0 of kG-
modules (for every kG-module B).

(iii) pdĤ∗(G,k) Ĥ
∗(G,A) ≤ 2.

Proof. We combine Theorem 3.3 and Corollary 5.2. The condition OΩHA,− = 0 is equivalent

to Ĥ∗(G,ΩHA) ∼= ΩĤ∗(G,A) being of projective dimension at most 1, since k generates the
stable module category Mod(kG) by our assumption on G. In addition one observes that
triangles B → C → A → ΣB in Mod(kG) correspond to exact sequences 0 → B → C ′ →
A→ 0 in Mod(kG) via the isomorphism HomkG(A,ΣB) ∼= Ext

1
kG(A,B).
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Remark 6.2. In Theorem 1 and all its applications, the question arises when a kG-module
belongs to the subcategory which is generated by the trivial representation k. It is known
that k generates the stable category of the principal block B0(kG) if and only if the centralizer
of each element of order p in G is p-nilpotent [2]. In particular, k generates all kG-modules
if G is a p-group. If k generates the principal block, we have for any module A in the stable
category of the principal block that all maps out of Ĥ∗(G,A) are realizible if and only if the

projective dimension of Ĥ∗(G,A) over the Tate cohomology ring is at most 1.

6.2. Derived categories

We consider the derived category D(Mod(Λ)) of unbounded complexes of modules over some
ring Λ. Le H : D(Mod(Λ)) → Mod(Λ) be the functor which takes the cohomology H0A in
degree 0 of a complex A. The following result is another application of Theorem 3.3.

Corollary 6.3. For any complex A in D(Mod(Λ)) the following are equivalent:
(i) For any complex B in D(Mod(Λ)), all maps H0A→ H0B are realizable.

(ii) OA,− = 0.

(iii) pdΛH
0A ≤ 1.

In particular, Λ is right hereditary if and only if O−,− vanishes.

6.3. An extended Milnor sequence

We consider again the five-term exact sequence (2.1)

0 −→ PhH(A,B) −→ T(A,B)
HA,B
−−−→HomΓ

(
H(A),H(B)

) ϑA,B
−−→

PhH(ΩHA,B)
ζA,B
−−→ Ph2H(Σ

−1A,B) −→ 0 .

This sequence generalizes and extends some sequences which appear in the literature. When-
ever there is an appropriate model for the triangulated category T, the sequence (2.1) is
induced from the Roos spectral sequence

Ep,q2 = lim←−
pExtq(Aα, B) =⇒ Extn(lim−→Aα, B)

where {Aα} is a filtered system of compact objects having A as its colimit. This spectral
sequence has been studied by Christensen (see [6]) in relation to purity and phantom maps
in the derived category of a ring. Here, we follow Benson and Gnacadja (see [4]) and work in
the stable category T = Mod(kG) over a group algebra kG. We choose for H : Mod(kG) →
Mod(Γ) the functor sending a module A to HomkG(−, A)|mod(kG). It turns out that our map

ϑA,B : HomΓ
(
H(A),H(B)

)
−→ PhH(ΩHA,B)

can be identified with the transgression

d0,12 : lim←−HomkG(Aα, B) −→ PExt
2
kG(A,Σ

−1B)

appearing in [4].
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Let us be more precise. We denote for kG-modules A and B by PExt1kG(A,B) the space
of pure exact sequences 0 → B → E → A → 0 in the category of kG-modules. The

isomorphism Ext1kG(A,B)
∼=−→ HomkG(A,ΣB) induces an isomorphism

PExt1kG(A,B)
∼=−→ PhkG(A,ΣB) = PhH(A,ΣB)

onto the space of phantom maps A → ΣB in Mod(kG). Let PΩA be the kernel of a pure
epimorphism P → A where P is pure-projective, hence PΩA ∼= ΩHA in Mod(kG). Then we
obtain an isomorphism

PExt2kG(A,B)
∼=−→ PExt1kG(PΩA,B)

∼=−→ PhkG(ΩHA,ΣB).

Now write A = lim−→Aα as a filtered colimit of finitely presented kG-modules. Then we have

an isomorphism lim−→H(Aα)
∼=−→ H(A) which induces an isomorphism

HomΓ
(
H(A),H(B)

) ∼=−→ lim←−HomkG(Aα, B).

Having made these identifications, we obtain from the five-term exact sequence (2.1) the
extended Milnor sequence which appears in Theorem 1.2 of [4].

Corollary 6.4. For kG-modules A = lim−→Aα and B, there is an exact sequence

0 −→ PhkG(A,B) −→ HomkG(A,B) −→ lim←−HomkG(Aα, B)

d
0,1
2−−→ PExt2kG(A,Σ

−1B) −→ Ph2kG(Σ
−1A,B) −→ 0 .
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