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Abstract. Motivated by typical questions from computational geometry (visibility
and art gallery problems) and combinatorial geometry (illumination problems) we
present an analogue of the Krein-Milman theorem for the class of star-shaped sets.
If S ⊆ Rn is compact and star-shaped, we consider a fixed, nonempty, compact,
and convex subset K of the convex kernel K0 = ck(S) of S, for instance K = K0
itself. A point q0 ∈ S \K will be called an extreme point of S modulo K, if for all
p ∈ S \ (K ∪ {q0}) the convex closure of K ∪ {p} does not contain q0. We study
a closure operator σ : P(Rn \ K) −→ P(Rn \ K) induced by visibility problems
and prove that σ(S0) = S \ K, where S0 denotes the set of extreme points of S
modulo K.
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1. Introduction

The motivation for this paper is twofold. On the one hand, a compact, star-shaped set S
might be interpreted as an art gallery in the spirit of [13], where one can ask for minimally
sufficient subsets of the boundary of S to control the whole set S in the sense of suitable
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visibility notions, see also [9]. From this point of view, our results are strongly related
to the watchman route problem from computational geometry, see Section 7 of [20]. On
the other hand, the problem of illuminating a convex body K from outside is well known
in combinatorial geometry, cf. Chapters VI and VII of [1], and [9]. Identifying K with the
convex kernel ck(S) of S, one can ask for optimal configurations of light sources (restricted to
the boundary of S) to illuminate the whole boundary of ck(S). Having these two viewpoints
in mind, we were able to find an analogue of the Krein-Milman theorem for star-shaped sets.
Convex sets play an important role in many branches of mathematics and its applications,

in particular in geometry, integration theory, and mathematical optimization. Star-shaped
sets are more general; e.g., they are also important in integration theory. A special field of
research, in which convex and star-shaped sets are studied in common, is that of visibility
problems. As introduced in [3], for a nonempty set S ⊂ Rn the convex kernel ck(S) consists,
by definition, of all those points x ∈ S such that for every z ∈ S the line segment zx is
contained in S. By definition, S is star-shaped if ck(S) 6= ∅ and, by the way, S is convex
if and only if ck(S) = S. Star-shaped sets have been examined in connection with visibility
problems, in particular in several papers by F. A. Toranzos. Consider for example a compact
set S ⊂ Rn such that the interior int S of S is connected and S equals the closure of int S.
An element z ∈ S sees x via S if the line segment zx is contained in S. In the literature,
the set st(x, S) is, by definition, the set of all z ∈ S which see x via S. An element x ∈ S
is called a peak of S if there exists some neighbourhood U of x such that for all x′ ∈ S ∩ U
one has st(x′, S) ⊆ st(x, S). Then it is proved in [19] that ck(S) equals the set of peaks of
S. For other characterizations of ck(S) see also [6], [2], [17], and [4]; related characterization
theorems were given by [15], [16], [2], [5], [8], [11], and [18].
In the present paper we start from some slightly modified visibility problem. We are

interested to analyse the points z ∈ S \ ck(S) which “see many points in front of ck(S)”.
For a compact and star-shaped set S and a nonempty compact and convex subset K of
K0 := ck(S), we study the operator σ = σK : P(Rn \ K) −→ P(Rn \ K) such that for
A ⊆ Rn \K the set σ(A) consists of A as well as all those points x ∈ Rn \ (A∪K) such that
there exists some z ∈ A with zx ∩K = ∅, but the ray with initial point z passing through x
meets K. Thus, if A ⊆ S \K, then σ (A) \A consists of those points of S \ (A∪K) which lie
on some line segment zx with z ∈ A, x ∈ K. This means in particular that z sees x via S.
A point q0 ∈ S \K will be called an extreme point of S modulo K, if q0 /∈ conv (K∪{p})

holds for all p ∈ S \ (K ∪ {q0}) or, equivalently (cf. Lemma 2.4), if q0 /∈ σ({p}) holds for all
such p.
The main result of our paper (see Theorem 2.7 below) states that the set S0 of extreme

points of S modulo K satisfies
K ∪ σ(S0) = S .

This just constitutes an analogue of the so-called Krein-Milman Theorem (cf. [7], but for
Minkowski’s earlier formulation [12, § 12]; a wider discussion is given in [14, § 1.4]) which
states that every compact, convex subset of Rn is the convex hull of its extreme points.
It is easily seen that for convex K ⊆ Rn and A ⊆ Rn \K the set K ∪ σK(A) is always

star-shaped, cf. Proposition 2.3. Thus it turns out that a compact set S ⊆ Rn is star-shaped
if and only if there exists some nonempty compact and convex subset K of Rn as well as
some A ⊆ S \K with S = K ∪ σK(A), see Theorem 2.8. It should be noticed that in [10] we
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have already proved the following similar characterization of convex sets: If K is compact
and Rn \K is connected, then K is convex if and only if σK = σ is a closure operator.
The fact that σK is a closure operator for convex K is used repeatedly in the present

paper; therefore we recall the short proof of this part of our previous characterization to
make the paper self-contained, see Theorem 2.1.

2. Results and proofs

In what follows, assume n ≥ 1. For two points a, b ∈ Rn with a 6= b let

ab := {a+ λ · (b− a) | 0 ≤ λ ≤ 1} (2.1)

denote the closed line segment between a and b, while

s(a, b) := {a+ λ · (b− a) | λ ≥ 0} (2.2)

means the ray with initial point a passing through b.
For K ⊆ Rn and E := Rn \K, define the operator σK : P(E) −→ P(E) by

σK(A) := A ∪
{
b ∈ E \ A

∣∣∣
there exists some a ∈ A with
ab ∩K = ∅, buts(a, b) ∩K 6= ∅

}
. (2.3)

Thus σK(A) \ A consists of those points of E \ A which “may be seen from A against K”.
We have the following basic result, cf. also [10].

Theorem 2.1. Assume that K ⊆ Rn is convex, and put E = Rn \K. Then σK : P(E) −→
P(E) is a closure operator; that means :

(H0) For all A ⊆ E one has A ⊆ σK(A).

(H1) For A ⊆ B ⊆ E one has σK(A) ⊆ σK(B).

(H2) For all A ⊆ E one has σK(σK(A)) = σK(A).

Proof. (H0) is trivial. Regarding (H1) we see that if A ⊆ B ⊆ E and b ∈ σK(A) \ B, then
there exists some a ∈ A with ab ∩K = ∅ but s(a, b) ∩K 6= ∅. Since also a ∈ B, we conclude
that b ∈ σK(B), and (H1) follows.
To verify (H2), assume A ⊆ E and e1 ∈ σK(σK(A)). We have to show that e1 ∈ σK(A).
If e1 /∈ σK(A), there exists some e2 ∈ σK(A) with e2e1 ∩ K = ∅ but s(e2, e1) ∩ K 6= ∅.
e1 /∈ σK(A) implies e2 /∈ A, see Fig. 1. Therefore we have some e3 ∈ A with e3e2∩K = ∅ but
s(e3, e2) ∩K 6= ∅. Choose x1 ∈ s(e2, e1) ∩K and x2 ∈ s(e3, e2) ∩K. Then we get e1 ∈ e2x1
and e2 ∈ e3x2 and thus also

e1 ∈ conv {e2, x1} ⊆ conv {e3, x1, x2} .

Hence there exists some x3 ∈ x1x2 with e1 ∈ e3x3. In particular, we have x3 ∈ s(e3, e1).
Since K is convex, we have x3 ∈ K and thus also s(e3, e1) ∩ K 6= ∅. Moreover, one has
e3e1 ∩K = ∅, because otherwise there would exist some x ∈ K with e1 ∈ xx3. However, this
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is not possible, because K is convex and e1 /∈ K. Altogether, we get e1 ∈ σK({e3}) ⊆ σK(A),
in contradiction to our hypothesis e1 /∈ σK(A). �

Remark. In [10, Theorem 2.9] we proved also the following converse of Theorem 2.1: Assume
that K ⊆ Rn is compact and that E = Rn \ K is connected. If, in addition, the operator
σK : P(E) −→ P(E) is a closure operator, then K is convex.

x2

x1
e2

x3

e1

e3 KE

Figure 1

For a subset K ⊆ Rn and A ⊆ E = Rn \K we put

τK(A) := K ∪ σK(A) . (2.4)

We have the following simple

Lemma 2.2. Assume K is a convex subset of Rn with K 6= ∅. Then for all a ∈ E = Rn \K
we have

conv (K ∪ {a}) = K ∪ σK({a}) = τK({a}) . (2.5)

Proof. Since K is convex, we obtain

conv (K ∪ {a}) = K ∪ {a} ∪ {λ · a+ (1− λ) · x|x ∈ K, 0 < λ < 1}
= K ∪ {a} ∪ {f ∈ E\{a}|f ∈ ax for some x ∈ K}
= K ∪ {a} ∪ {f ∈ E\{a}|s(a, f) ∩K 6= ∅ and af ∩K = ∅}
= K ∪ σK({a}) . �

Now we turn over to star-shaped sets. We have the following

Proposition 2.3. Assume K is a convex subset of Rn and K 6= ∅. Then for every subset
A ⊆ E = Rn\K, the set τK(A) = K ∪ σK(A) is star-shaped; more precisely, every point
x ∈ K is a star-centre of τK(A).
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Proof. Without loss of generality, assume that A 6= ∅. Suppose x ∈ K and y ∈ K ∪ σK(A).
Then we have y ∈ K ∪ σK({a}) for some a ∈ A; thus Lemma 2.2 implies

xy ⊆ K ∪ σK({a}) ⊆ K ∪ σK(A)

as claimed. �

In the rest of this paper, we want to prove also some converse of Proposition 2.3.

In what follows, assume that S ⊆ Rn is compact and star-shaped. Moreover, let

K0 := ck(S) := {x ∈ S|xy ⊆ S for all y ∈ S} (2.6)

denote the convex kernel of S. Assume that K ⊆ K0 is compact and convex with K 6= ∅,
and put

E := Rn\K , d := dim(aff (K)) , (2.7)

where aff means the affine closure. Furthermore, volm will denote the m-dimensional volume
for m ∈ N. Finally, for p ∈ S\K put

d(p) := dim(aff (K ∪ {p})) , (2.8 a)

v(p) := vold(p)(conv (K ∪ {p})) , (2.8 b)

w(p) := sup{v(q)|q ∈ S\K, p ∈ σK({q})} , (2.8 c)

D(p) := w(p)− v(p) . (2.8 d)

Clearly, one has d(p) ∈ {d, d + 1} and v(p) ≤ w(p) for all p ∈ S\K. Note that p ∈ σK({q})
implies d(p) = d(q) whenever p, q ∈ S \K. D(p) will be called the defect of p. We have

Lemma 2.4. For q0 ∈ S\K, the following statements are equivalent :

(i) For all x ∈ K and all p ∈ S\(K ∪ {q0}) one has q0 /∈ xp.

(ii) For all p ∈ S\(K ∪ {q0}) one has q0 /∈ conv (K ∪ {p}).

(iii) For all p ∈ S\(K ∪ {q0}) one has q0 /∈ σK({p}).

(iv) D(q0) = 0.

Proof. The equivalence of (i) and (ii) is clear, because K is convex. Moreover, (ii) and (iii)
are equivalent by Lemma 2.2.
(iii) ⇒ (iv) follows directly from (2.8 c) and (2.8 d).
(iv) ⇒ (iii): Assume there exists some p ∈ S\(K ∪ {q0}) with q0 ∈ σK({p}). Then we have
σK({q0}) ⊆ σK({p}), because σK is a closure operator by Theorem 2.1. Moreover, one has
p /∈ σK({q0}), because otherwise there would exist x1, x2 ∈ K with {p, q0} ⊆ x1x2 ⊆ K.
Thus, by Lemma 2.2 the compact sets conv (K ∪ {q0}) and conv (K ∪ {p}) satisfy
conv (K ∪ {q0})  conv (K ∪ {p}). However, this means v(q0) < v(p) ≤ w(q0) and thus
D(q0) > 0, in contradiction to (iv). �

Definition 2.5. A point q0 ∈ S\K is called an extreme point of S modulo K, if the four
equivalent conditions of Lemma 2.4 are satisfied.
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Let S0 denote the set of extreme points of S modulo K. We want to show that S0 is the
uniquely determined minimal subset of S with τK(S0) = S. First we prove the following
statement (see also [21, Theorem 6.2.17]).

Lemma 2.6. The maps v1: aff (K) ∩ S −→ R and v2 : S −→ R defined by

v1(p) := vold(conv (K ∪ {p})) , (2.9 a)

v2(p) := vold+1(conv (K ∪ {p})) (2.9 b)

are continuous.

Proof. For p ∈ S one has

v2(p) =
1

d+ 1
· vold(conv (K)) · d(p, aff (K)) , (2.10)

where d(p, aff (K)) means the distance from p to the affine subspace aff (K) of Rn.
(The equality (2.10) holds also in case aff (K) = Rn; then one has v2 ≡ 0.) Thus v2 is
continuous. In case of v1, it suffices to prove:

For every ε > 0 there exists some δ > 0 such that for all p1, p2 ∈ aff (K)∩S with
||p1 − p2|| < δ one has |v1(p1)− v1(p2)| < ε.

Here and in the sequel, || · || means the Euclidean norm. Moreover, for x0 ∈ Rn and r > 0,
we put

B(x0, r) := {x ∈ Rn| ||x− x0|| < r} .
Without loss of generality, we may assume that 0 lies in the relative interior of K; that means
aff (K) is a linear subspace of Rn, and for some r0 > 0 one has

B(0, r0) ∩ aff (K) ⊆ K . (2.11)

Choose some ξ > 0 such that for the compact set S ′ := aff (K) ∩ S we have

vold ((1 + ξ) · S
′)− vold(S

′) =
(
(1 + ξ)d − 1

)
· vold(S

′) < ε . (2.12)

Finally, put δ := ξ · r0. Then for p1, p2 ∈ S ′ with ||p1 − p2|| < δ we have

1

1 + ξ
· p2 =

1

1 + ξ
· p1 +

ξ

1 + ξ
·

(
1

ξ
· (p2 − p1)

)

as well as

||
1

ξ
· (p2 − p1)|| <

δ

ξ
= r0 ,

and thus 1
1+ξ
· p2 ∈ conv (K ∪ {p1}) by (2.11). (See also Figure 2 in case d = 2.) Therefore,

we get p2 ∈ (1 + ξ) · conv (K ∪ {p1}) and thus

v1(p2)− v1(p1) ≤ vold(conv (K ∪ {p1, p2}))− vold(conv (K ∪ {p1}))
≤ vold ((1 + ξ) · conv (K ∪ {p1}))− vold(conv (K ∪ {p1}))
≤
(
(1 + ξ)d − 1

)
· vold(S ′)

< ε
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by (2.12). By exchanging the roles of p1 and p2, we get also v1(p1)− v1(p2) < ε as claimed.
�

0

r0

ξ · r0

p1

δ

(1 + ξ) · p1

Figure 2

Now we are able to prove the announced analogue of the well-known Krein-Milman Theorem.

Theorem 2.7. The set S0 of extreme points of S modulo K satisfies

τK(S0) = K ∪ σK(S0) = S . (2.13)

If, moreover, S ′ ⊆ S\K satisfies τK(S ′) = S, then one has S0 ⊆ S ′. In other words, S ′ = S0
is the uniquely determined minimal subset of S\K satisfying τK(S ′) = S.

Proof. Since K ⊆ ck (S), we have xp ⊆ S for all x ∈ K and all p ∈ S and thus τK(S0) ⊆ S.
If, moreover, S ′ ⊆ S\K satisfies S0\S ′ 6= ∅, then, by the definitions of S0 and σK , one has
q0 /∈ σK(S ′) for all q0 ∈ S0\S ′ and thus τK(S ′) 6= S. It remains to prove that S\(K ∪ S0) ⊆
σK(S0). Assume p ∈ S\(K ∪S0) and, according to (2.8 c), choose some sequence (qm)m∈N in
S\K with p ∈ σK({qm}) for all m ∈ N and lim

m→∞
v(qm) = w(p). Then there exists also some

sequence (xm)m∈N in K as well as some sequence (λm)m∈N in [0, 1] with

p = λm · qm + (1− λm) · xm for all m ∈ N . (2.14)

Since S and K are compact, we may assume that (qm)m∈N and (xm)m∈N converge to some
q ∈ S and some x ∈ K, respectively. Since d(p) = d(qm) holds for all m ∈ N, Lemma 2.6
implies

vold(p) (conv (K ∪ {q})) = lim
m→∞

v(qm) = w(p) > v(p)

and thus q ∈ S\(K ∪ {p}) and v(q) = w(p). Since also p 6= x, it follows that (λm)m∈N
converges, too. So one has λ := lim

m→∞
λm ∈ (0, 1). Moreover, (2.14) implies

p = λ · q + (1− λ) · x (2.15)

and thus p ∈ σK({q}). Since σK is a closure operator, any q′ ∈ S\K satisfying q ∈ σK({q′})
also fulfils p ∈ σK({q′}). Therefore, (2.8 c) yields

w(q) ≤ w(p) = v(q) ≤ w(q) .

This means D(q) = 0. Thus we get q ∈ S0 and p ∈ σK(S0) as claimed. �

By summarizing Proposition 2.3 and Theorem 2.7, we get

Theorem 2.8. Assume K is a compact and convex subset of Rn with K 6= 0. Then for a
compact set S ⊆ Rn with K ⊆ S, the following statements are equivalent :
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(i) S is a star-shaped set with K ⊆ ck(S).

(ii) Some subset A ⊆ S\K satisfies S = K ∪ σK(A) = τK(A).

q2

q3

q4

q1

Figure 3

The final figures present two star-shaped sets. In Figure 3, the convex kernel K0 is marked,
and q1, q2, q3, q4 are the extreme points modulo K0. In Figure 4, the convex kernel consists
only of {x}, and the union of the line segments a1a2 and a3a4 is the set of extreme points
modulo {x}.

a3 a4

a1 a2

x

Figure 4
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