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1. Introduction

A real valued function on the space Kn of convex bodies (nonempty, compact, convex subsets)
in n-dimensional Euclidean space Rn is called a valuation if it satisfies

ϕ(K ∪M) + ϕ(K ∩M) = ϕ(K) + ϕ(M)

whenever K,M,K ∪M ∈ Kn. One extends the definition of ϕ by ϕ(∅) := 0. For continuous
valuations (where continuity refers to the Hausdorff metric on Kn), Hadwiger has proved an
integral geometric mean value formula for intersections of a fixed and a moving convex body.
To formulate it, we recall that the intrinsic volumes V0, . . . , Vn are defined by the Steiner
formula

Vn(K + εB
n) =

n∑

k=0

εn−kκn−kVk(K), K ∈ Kn, ε ≥ 0,

where Vn denotes the volume, B
n is the Euclidean unit ball, and κk is the volume of the

k-dimensional unit ball. Each function Vk is a motion invariant continuous valuation. Had-
wiger’s characterization theorem says that every function ϕ : Kn → R with these properties
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is a linear combination of V0, . . . , Vn with constant coefficients. (A survey on valuations is
given by McMullen [5].)
We denote by Gn the group of rigid motions of Rn and by µ its Haar measure, normalized

so that µ({g ∈ Gn : gx ∈ Bn}) = κn (for arbitrary x ∈ Rn). The space Enq of q-dimensional
planes in Rn is endowed with its motion invariant measure µq, normalized so that µq({E ∈
Enq : E ∩B

n 6= ∅}) = κn−q.

Theorem 1. (Hadwiger) Let ϕ : Kn → R be a continuous valuation. Then
∫

Gn

ϕ(K ∩ gM) dµ(g) =
n∑

k=0

ϕk(K)Vn−k(M)

for K,M ∈ Kn, where the coefficients ϕk(K) are given by

ϕk(K) =

∫

Enn−k

ϕ(K ∩ E) dµn−k(E).

Hadwiger’s proof is found in his book [2], p. 241, though with different notation and normal-
ization. It is based on the characterization theorem quoted above. The latter is a convenient
tool for proving classical integral geometric formulae for convex bodies, like the principal
kinematic formula and the Crofton formula (see also Klain and Rota [4] for this approach).
Whereas these results can be proved in several different ways, the only known proof for their
abstract generalization in Theorem 1 is via Hadwiger’s characterization theorem. It is in-
teresting to note that recently Alesker [1] has proved new integral geometric formulae for
real submanifolds in Hermitian spaces, generalizing classical formulae in Euclidean spaces,
and that the proof is based on a characterization of unitarily invariant translation invariant
continuous valuations.

Our aim in the present paper is in a similar spirit, but much more modest. Motivated by the
increased interest that the integral geometry of the translation group has seen in recent years,
we want to obtain a translative analogue of Hadwiger’s general integral geometric theorem.
We can do this for simple valuations, since a corresponding characterization theorem is known
(a valuation on Kn is called simple if it vanishes on bodies of dimension less than n). The
result is given by Theorem 2 below. It was already mentioned without proof in the survey
article [3].

2. The result

For a convex body K ∈ Kn, we denote by h(K, ·) its support function and by Sn−1(K, ·) its
area measure (see [6] for notions from the theory of convex bodies that are not explained
here). The area measure is a finite measure on the unit sphere Sn−1 := {u ∈ Rn : 〈u, u〉 = 1}.
Here 〈·, ·〉 is the scalar product of Rn. The set H−(u, t) := {x ∈ Rn : 〈x, u〉 ≤ t}, where
u ∈ Sn−1 and t ∈ R, is a closed halfspace. By λ we denote Lebesgue measure on Rn.
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Theorem 2. Let ϕ : Kn → R be a continuous simple valuation. Then
∫

Rn
ϕ(K ∩ (M + x)) dλ(x) = ϕ(K)Vn(M) +

∫

Sn−1
fK,ϕ(u)Sn−1(M,du)

for K,M ∈ Kn, where the odd function fK,ϕ : Sn−1 → R is given by

fK,ϕ(u) =

∫ h(K,u)

−h(K,−u)

ϕ(K ∩H−(u, t)) dt− ϕ(K)h(K, u).

Proof. We fix a convex body K ∈ Kn. For M ∈ Kn, we define

ψ(M) :=

∫

Rn
ϕ(K ∩ (M + x)) dλ(x)

and
ϕ(M) := ϕ(K)Vn(M)− Vn(K)ϕ(M), (1)

so that ϕ(K) = 0, further

ψ(M) :=

∫

Rn
ϕ(K ∩ (M + x)) dλ(x).

Then
ψ(M) = Vn(K)[ϕ(K)Vn(M)− ψ(M)], (2)

since ∫

Rn
Vn(K ∩ (M + x)) dλ(x) = Vn(K)Vn(M),

as follows from Fubini’s theorem. The function ψ : Kn → R is a continuous simple valuation
and is, moreover, translation invariant. Hence, by the characterization theorem of [7], it is
of the form

ψ(M) = cVn(M) +

∫

Sn−1
f(u)Sn−1(M,du) (3)

forM ∈ Kn, with a constant c and an odd continuous function f : Sn−1 → R, both depending
on K.
Let P ∈ Kn be a polytope, and let r > 0. By Tn(r) we denote the set of all translation

vectors x ∈ Rn for which K ⊂ rP + x, and by Tn−1(r) the set of all x ∈ Rn for which K
meets an (n− 1)-face of rP + x, but no (n− 2)-face. Finally, Tn−2(r) is the set of all x ∈ Rn
for which K meets an (n− 2)-face of rP + x. Then

ψ(rP ) =
2∑

k=0

∫

Tn−k(r)

ϕ(K ∩ (rP + x)) dλ(x) (4)

= ϕ(K)rnVn(P ) +O(r
n−1)

as r →∞. From (3) we get

ψ(rP ) = crnVn(P ) + r
n−1

∫

Sn−1
f(u)Sn−1(P, du).
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Letting r →∞, we conclude that c = ϕ(K) = 0. Thus

ψ(rP ) =

∫

Tn−1(r)

ϕ(K ∩ (rP + x)) dλ(x) +O(rn−2)

by (4) and

ψ(rP ) = rn−1
∫

Sn−1
f(u)Sn−1(P, du) (5)

by (3).
Let F1, . . . , Fm be the facets of P , and let ui be the outer unit normal vector of P at Fi.

For i ∈ {1, . . . ,m}, let T(i)(r) be the set of all x ∈ Rn for which K meets rFi + x, but no
other face of rP + x. Then

∫

T(i)(r)

ϕ(K ∩ (rP + x)) dλ(x)

= rn−1Vn−1(Fi)

∫ h(K,ui)

−h(K,−ui)

ϕ(K ∩H−(ui, t)) dt+O(r
n−2).

Putting

g(u) :=

∫ h(k,u)

−h(K,−u)

ϕ(K ∩H−(u, t)) dt, (6)

we get

ψ(rP ) = rn−1
m∑

i=1

g(ui)Vn−1(Fi) +O(r
n−2)

= rn−1
∫

Sn−1
g(u)Sn−1(P, du) +O(r

n−2).

Together with (5), this shows that

∫

Sn−1
f(u)Sn−1(P, du) =

∫

Sn−1
g(u)Sn−1(P, du)

for all convex polytopes P . By approximation, this extends to arbitrary convex bodies, due
to the weak continuity of the area measures and the fact that the functions f and g are
continuous. Thus,

ψ(M) =

∫

Sn−1
g(u)Sn−1(M,du)

for M ∈ Kn. By (6) and (1),

g(u) =

∫ h(K,u)

−h(K,−u)

[
ϕ(K)Vn(K ∩H

−(u, t))− Vn(K)ϕ(K ∩H
−(u, t))

]
dt,
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and here the first term can be simplified by

∫ h(K,u)

−h(K,−u)

Vn(K ∩H
−(u, t)) dt

=

∫ h(K,u)

−h(K,−u)

∫

K

1{〈x, u〉 ≤ t} dλ(x) dt

=

∫

K

∫ h(K,u)

−h(K,u)

1{t ≥ 〈x, u〉} dt dλ(x)

=

∫

K

[h(K, u)− 〈x, u〉] dλ(x)

= h(K, u)Vn(K)− 〈zn+1(K), u〉,

where zn+1(K) denotes the moment vector of K. This yields

ψ(M) = ϕ(K)

∫

Sn−1
[h(K,u)Vn(K)− 〈zn+1(K), u〉]Sn−1(M,du)

−Vn(K)

∫

Sn−1
gK,ϕ(u)Sn−1(M,du)

with

gK,ϕ(u) :=

∫ h(K,u)

−h(K,−u)

ϕ(K ∩H−(u, t)) dt.

Observing that ∫

Sn−1
uSn−1(M,du) = 0,

we now get from (2) the asserted representation.
That fK,ϕ is an odd function, follows from the fact that ϕ is a simple valuation: this

gives
ϕ(K ∩H−(−u, t)) = −ϕ(K ∩H−(u,−t)) + ϕ(K)

and hence, for u ∈ Sn−1,

fK,ϕ(u) + fK,ϕ(−u)

=

∫ h(K,u)

−h(K,−u)

ϕ(K ∩H−(u, t)) dt− ϕ(K)h(K, u)

+

∫ h(K,−u)

−h(K,u)

[−ϕ(K ∩H−(u,−t)) + ϕ(K)] dt− ϕ(K)h(K,−u)

= 0.
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