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Abstract. We discuss the concept of the bisector of a segment in a Minkowski
normed n-space. We prove that all bisectors are topological images of a plane
of the embedding Euclidean 3-space iff the shadow boundaries of the unit ball
K are topological circles. To a conjectured proving strategy for dimensions n, we
introduce the concept of general parameter sphere of the unit ball K, corresponding
to a direction vector of the n-space and to a positive parameter. We prove that
the Haussdorff limit of these “spheres” is the shadow boundary of K of the same
direction.

1. Introduction, historical remarks

If K is a 0-symmetric, bounded, convex body in the Euclidean n-space En (with a fixed
origin O) then it defines a norm whose unit ball is K itself (see [6] or [8]). Such a space is
called Minkowski normed space. In fact, the norm is a continuous function on the vectors
of En which is considered (in the geometric terminology as in [6]) as a gauge function. The
metric (the so-called Minkowski metric), i.e. the distance of any two points, induced by this
norm, is invariant with respect to the translations of the space.

The unit ball is said to be strictly convex if its boundary bdK contains no line segment.
In a previous paper [5] of this topic we examined the boundary of the unit ball of the

norm and proved two theorems (Theorem 2 and 3 in [5]) similar to the characterization
of the Euclidean norm investigated by H. Mann, A. C. Woods and P. M. Gruber in [7],
[12], [1], [2] and [3], respectively. We proved that if the unit ball of a Minkowski normed
space is strictly convex then every bisector (which is the collection of those points of the
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embedding Euclidean space which have the same distance with respect to the Minkowskian
norm to two given points of the space) is a topological hyperplane (meaning that there is
a homeomorphism of En onto itself sending the bisector to a usual hyperplane) (Theorem
2). Example 3 in [5] has shown that strict convexity does not follow from the fact that all
bisectors are topological hyperplanes.

In [5] we recalled the concept of normal subdivision: the Dirichlet-Voronoi cell system
of a lattice L yields a normal subdivision of the embedding Euclidean space if the boundary
of any cell does not contain Euclidean n-ball and we showed that the Dirichlet-Voronoi cell
system of an arbitrary lattice L gives a normal subdivision of the embedding Euclidean space
if and only if the bisectors are topological hyperplanes. Especially the strict convexity of the
unit ball ensures the normality of Dirichlet-Voronoi type K-subdivision of any point lattice
(Theorem 4).

The purpose of the present paper is to examine the connections between the shadow
boundaries of the unit ball K and the bisectors of the Minkowski space. We strongly believe
that the following statement is true: The bisectors are topological hyperplanes if and only if
the corresponding shadow boundaries are (n − 2)-dimensional topological spheres, however,
we shall prove this conjecture only in the three-dimensional case. (Theorem 2 and Theorem
4) We examine the topological properties of the shadow boundary (Section 2), and define
the so-called general parameter spheres for n ≥ 3, as a tool for a prospective proof of our
conjecture.

2. Shadow boundary

Shadow boundaries have been considered frequently in convexity theory. I mention only two
interesting results in context of Baire categories, see [4] and [11]. In [4] the authors proved
that a typical shadow boundary under parallel illumination from a direction vector has infinite
(n − 2)-dimensional Hausdorff measure, while having Hausdorff dimension (n − 2). In [11]
it is shown that, in the sense of Baire categories, most n-dimensional convex bodies have
infinitely long shadow boundaries if the light vector comes along one of (n− 2)-dimensional
subspaces.

Definition 1. Let K be a compact convex body in n-dimensional euclidean space En and let
Sn−1 denote the (n− 1)-dimensional unit sphere in En. For x ∈ Sn−1 the shadow boundary
S(K,x) of K in direction x consists of all points P in bdK such that the line {P + λx :
λ ∈ R (real numbers)} supports K, i.e. it meets K but not the interior of K. The shadow
boundary S(K,x) is sharp if any above supporting line of K intersects K exactly in the point
P . If S(K,x) is not sharp, in general, it may have sharp point for that the above uniqueness
holds.

It is clear that the shadow boundary decomposes the boundary of K into three disjoint sets.
These are S(K,x) itself, moreover

K+ := {y ∈ bdK| there is τ > 0 such that y − τ · x ∈ int(K)}, (1)

K− := {y ∈ bdK| there is τ > 0 such that y + τ · x ∈ int(K)},
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respectively. We call the congruent (thus homeomorphic) sets K+ and K− the positive and
negative part of bdK, respectively.

Example 1. In general, the shadow boundary of a central symmetric convex body is not a
nice set from topological point of view . There exists a central symmetric convex body K
and a direction x of the space E3 such that every supporting line of K parallel to x contains
a point of K having no relative neighborhood in S(K,x) homeomorphic to an open segment.
This means that S(K,x) is not a 1-dimensional manifold. In fact, consider a unit circle C
in E2 and the diadic rational points of it with respect to the usual parametrization (Fig. 1).
More precisely, take the parameter values ti,j = j

2i 2π, where 0 ≤ i is integer and 1 ≤ j ≤ 2i is
odd number. The diadic rational points of the circle are the points Si,j = (cos(ti,j), sin(ti,j))
of the subspace E2 with respect to an orthonormed basis. (Note that we define the points
S0,1 and S1,1 in the 0th and 1th steps, respectively, and – in the ith step – we consider further
2i−1 points of form Si,j of the circle.) Let now si,j be a segment orthogonal to the subspace
E2 whose midpoint is Si,j and its length is equal to 1

2i−2 if i ≥ 2 and is equal to 2 if i = 0, 1.
The point sets

C∗ := C ∪ (∪i,j{si,j}) and K := convC∗

are central symmetric, here conv abbreviates convex hull. This body is also closed, see it in
Fig. 1. If l is a supporting line of K orthogonal to the plane E2 then it does not intersect

Figure 1. Shadow boundary which is not a topological manifold

the relative interior of the disc in E2 bounded by the circle C, so it intersects the circle C.
If l ∩C is a point of form Si,j then l ∩K = l ∩C∗ = si,j, while if l ∩C is another point of C
then l ∩K = l ∩ C. We conclude to S(K,x) = C∗ being not a 1-manifold, as we claimed.

Example 2. It is easy to show that the shadow boundary is connected as a topological
space but it is not necessarily arcwise connected. Take a two dimensional cylinder and draw
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up a “sin( 1
x
)-type” curve on it, as in Fig. 2, whose set of accumulation points contains a

segment s lying on a generator of the cylinder. (See Fig. 2 as a local picture.) If we consider
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Figure 2. Shadow boundary with more than one arcwise connected components

the union of this curve and this segment then the shadow boundary of the convex hull K of
this union (from the direction of the generators) contains two arcwise connected components
(the segment s and the remaining curve). (In Fig. 2 K is not central symmetric. Of course,
similar central symmetric examples can be constructed, too.)

In order to describe the connection between the bisectors and the shadow boundaries of
the unit ball we introduce some parametrized sets on the boundary of K, corresponding to a
given direction of the space. These tend to the shadow boundary of K of the same direction
if the parameter tends to infinity. As we shall see in the case of a nice unit ball these sets
give a parametrization of the closed “positive part” of bdK. In this way we can define the
general parameter spheres according to this direction.

Definition 2. Let K be the Minkowski unit ball above and x a fixed direction of the space
En. Let

λ0 := inf{0 < t ∈ R | tK ∩ (tK + x) 6= ∅} (2)

be the smallest value t for which tK and tK + x intersect. Then a general parameter sphere
of bdK corresponding to the direction x and to any fixed parameter λ ≥ λ0 is the following
set:

γλ(K,x) :=
1

λ
[bd(λK) ∩ bd(λK + x)] ⊂ bdK. (3)

In general, the above set is not a topological sphere of dimension n − 2, and they are not
homeomorphic to each other for different λ’s. For example the dimension of γλ0(K,x) may
be 0, 1, . . . , n − 1 while the dimension of γλ(K,x) for λ > λ0 is at least n − 2 because it
dissects the boundary of K (Fig. 3, 4). We remark that the two parts of bdK \ γλ(K,X) for
λ > λ0 are also homeomorphic to each other by the projection from 1

2λ
x (since λK ∩ λK +x

is central symmetric in 1
2
x for any λ ≥ λ0).

Lemma 1. Let Π(x,y) be a 2-plane parallel to the vectors x and y ∈ S(K,x), through the
origin. Then we have two possibilities for Π(x,y) ∩ γλ(K,x):
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Figure 3. General parameter spheres to a sharp point y ∈ S(K,x)

1. If the shadow boundary S(K,x) is sharp for the point y ∈ S(K,x) then Π(x,y) ∩
γλ(K,x) contains two opposite points with respect to 1

2λ
x (Fig. 3)

2. There is a uniquely defined parameter value λ(y) that for every λ > λ(y) the intersec-
tion Π(x,y) ∩ γλ(K,x) is the union of a pair of segments parallel to x, opposite with
respect to 1

2λ
x. (Fig. 4)

In the second case the segments of the parameter spheres γλ(K,x) belong to the shadow
boundary S(K,x).

Proof. Let λ > λ0 be an arbitrary real number and consider the generalized parameter
sphere γλ(K,x). Then γλ(K,x) = 1

λ
S(λK ∩ (λK + x),x). In fact, y ∈ γλ(K,x) iff λy ∈

bd(λK) ∩ bd(λK + x) ⊂ bd(λK ∩ (λK + x)). Let the line l(τ) be of the form λy + τx where
τ runs through real numbers.

There is no τ0 6= 0 for which e.g. τ0 < 0 holds and λy + τ0x ∈ int(λK ∩ (λK + x)).
Indirectly, λy+τ0x ∈ int(λK) and λy+τ0x ∈ int(λK+x)) = int(λK)+x hold. The second
relation implies λy + (τ0 − 1)x ∈ int(λK), while λy ∈ bd(λK) and λy ∈ bd(λK + x) involve



230 Á. G. Horváth: Bisectors in Minkowski 3-Space

Figure 4. General parameter spheres to points y ∈ [y−,y+] ⊂ S(K,x) which are not sharp

λy − x ∈ bd(λK). This means that the points λy, λy − x, λy + τ0x, λy + (τ0 − 1)x are on
the line l, ordered as

λy − x, λy + (τ0 − 1)x, λy + τ0x, λy

by the convexity of K. This would imply τ0 = 0, a contradiction.
Since the shadow boundary of the convex bodies Kλ = 1

λ
(λK ∩ (λK+x)) to x are on the

boundary of K, it can contain a segment parallel to x if and only if this segment belongs to
the shadow boundary of K, too. An interesting phenomenon that – though Π(x,y)∩S(K,x)
is a pair of opposite segments (by central symmetry in 0) – for a starting λ (which gives the
positive end of Π(x,y) ∩ S(K,x)), Π(x,y) ∩ γλ(K,x) is a pair of points. So we are done. 2

Fig. 3, 4 show that the set {λ(y)|y ∈ S(K,x)} is not bounded from up, in general. An
important consequence of Lemma 1 is the following

Corollary. The general parameter spheres for λ > λ0 provide a natural parametrization of
the surface K+ \γλ0(K,x). In this parametrization any point of K+ \γλ0(K,x) is determined
by a point of a Euclidean unit sphere of dimension n − 2, orthogonal to x in 0, and by a
parameter λ > λ0.
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(Of course, it is possible that the above surface K+ \ γλ0(K,x) is empty, as in the case of a
cube (=K) when four of its edges are parallel to x. However, in significant cases it is a useful
parametrization. For example, if K is strictly convex, then it has only one singular point
γλ0(K,x) on the positive half.)

To prove this corollary, we observe the fact (see Fig. 3, 4) that the common points of two
distinct parameter spheres belong to the shadow boundary of K, hence the generalized pa-
rameter spheres give a one-fold covering of K+ \ γλ0(K,x), see formula (1).

We recall the concept of Hausdorff distance ρH of two point sets S1 and S2, expressed by the
Euclidean distance ρE:

ρH(S1, S2) = max{ sup
s1∈S1

{ρE(s1, S2)}, sup
s2∈S2

{ρE(s2, S1)}}. (4)

(Here e.g. ρE(s1, S2) = infs2∈S2{ρE(s1, s2)}.)

The main result of this section is the following:

Theorem 1. The shadow boundary S(K,x) is the limit of the general parameter spheres
γλ(K,x), with respect to the Hausdorff metric, when λ tends to infinity.

Proof. According to the previous lemma we have two cases (Fig.3,4). In the first one the
2-plane Π(x,y), with y ∈ S(K,x), intersects both S(K,x) and γλ(K,x) in two point pairs,
respectively (Fig.3); while in the second case the intersection Π(x,y)∩S(K,x) is a 0-opposite
pair of segments, and the intersection Π(x,y) ∩ γλ(K,x), if λ > λ(y) ≥ λ0, is an opposite
pair of segments with respect to 1

2λ
x (Fig.4). We will mention the necessary intersections as

a point or a segment, shortly. Introduce now the following notations. Let S ′ be the set of
sharp points of S(K,x) and S ′′ be the set of the remaining points of S(K,x), decomposed
to (disjoint) segments parallel to x. We say that the points y ∈ S(K,x) and z ∈ γλ(K,x)
correspond to each other, if y, z ∈ Π(x,y) and the line of direction x through the origin
does not separate them in Π(x,y). If y ∈ S ′ then there exists one corresponding point
z ∈ γλ(K,x) (see Lemma 1). Denote this simply by z.

If y ∈ S ′′ then either it has only one corresponding point in γλ(K,x) (see Lemma 1,
λ0 < λ ≤ λ(y)) or the corresponding points form a segment belonging to S ′′ (Lemma 1,
λ > λ(y)). We focus on the negative end of the segment of S ′′, containing y denoted by
y−, and the negative end of the corresponding segment of γλ(K,x) denoted by z−. Let S ′′′

be the set of those points z of γλ(K,x) which correspond to a point of S ′, and S ′′′′ be the
collection of the remaining points of γλ(K,x). Now the claimed convergence follows from the
inequalities below:

ρH(S(K,x), γλ(K,x)) = max{ sup
y∈S(K,x)

{ρE(y, γλ(K,x))}, sup
z∈γλ(K,x)

{ρE(S(K,x), z)}} =

= max{sup
y∈S′

{ρE(y, γλ(K,x))}, sup
y∈S′′

{ρE(y, γλ(K,x))}},

sup
z∈S′′′

{ρE(S(K,x), z)}, sup
z∈S′′′′

{ρE(S(K,x), z)}} ≤
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≤max{sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, γλ(K,x))}, sup
z−∈S′′′

{ρE(y−, z−)}, sup
z∈S′′′′

{ρE(S(K,x), z)}} ≤

≤ max{sup
y∈S′

{ρE(y, z)}}, sup
y−∈S′′

{ρE(y−, z−}, sup
z∈S′′′′\S(K,x)

{ρE(S(K,x), z)}} ≤

≤ max{sup
y∈S′

{ρE(y, z)}, sup
y−∈S′′

{ρE(y−, z−)}, sup
z∈S′′′′\S(K,x)

{ρE(y−, z)}}

since each of these three Euclidean distances tend to zero, if λ tends to infinity, since K and
its two dimensional intersections are convex and compact, respectively. 2

3. Bisectors, general parameter spheres and shadow boundaries in three-space

In this paragraph we prove strong connections among the bisector Hx of the points 0 and x,
the general parameter spheres γλ(K,x) and the shadow boundary S(K,x).

According to Definition 2 we define the bisector Hx as

Hx = ∪λ{bd(λK) ∩ bd(λK + x) | λ0 ≤ λ}, i.e. (5)

Hx = ∪λ{λγλ(K,x) | λ0 ≤ λ}.

The closed negative halfspace H−
x , containing O, is

H−
x = ∪λ,λ′{λ′γλ(K,x)|λ0 ≤ λ , λ′ ≤ λ}. (6)

Its complementary open positive halfspace

H+
x = E3 \H−

x (7)

contains x, of course.

Definition 3. A point set H ⊂ E3 is said to be a topological plane iff there is a homeomor-
phism of E3 onto itself, sending H onto a usual 2-plane.

Theorem 2. Assume that the bisector Hx is a topological plane of E3. Then the general
parameter spheres γλ(K,x) for λ > λ0 and the shadow boundary S(K,x) are topological 1-
manifolds (topological circles). For λ = λ0 the parameter sphere can form a point, a segment
or a convex disk of dimension 2, respectively.

Before the proof we recall a nice theorem of two-dimensional topology, characterizing the
topological circles on a two-sphere. (See for example [13].)

Definition 4. A point a is called arcwise accessible from a point set B if b ∈ B implies the
existence of an arc T with end points a and b such that T \ a ⊂ B. If A is a point set whose
every point is arcwise accessible from some point set B, then we call A arcwise accessible
from B.

The following theorem was discovered by A. Schoenflies [9] and refined to this form by
P. M. Swingle [10].
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Theorem 3. (Schoenflies, Swingle) A necessary and sufficient condition that a subset M of
S2 should be an S1 is that it be a common boundary of two disjoint domains D1 and D2, from
which M is arcwise accessible.

Remarks. 1. We shall take bdK in the role of the sphere S2 and take either the shadow
boundary S(K,x) or a general parameter sphere γλ(K,x), λ > λ0, in the role M , respectively,
in Theorem 3. The two domains D1 resp. D2 will be either the positive resp. negative parts
of bdK \ S(K,x), homeomorphic to each other under the projection from the origin O; or
the positive and negative part of bdK \ γλ(K,x), respectively, that are also homeomorphic
to each other under the projection from the point 1

2λ
x, leaving γλ(K,x) invariant (see before

Lemma 1). Thus, arcwise accessibility is enough to guarantee from one domain, only, in the
above cases.

2. On the other hand, a point in the common boundary of two complementary domains on
bdK is not necessarily accessible by arc from any of both domains. Namely, take Example 2
(Fig. 2). Any point P in the relative interior of a segment s of S(K,x) lies also in a γλ(K,x)
for a λ large enough (Theorem 1). All of the arcs on bdK with end P intersect S(K,x) (or
γλ(K,x)) in a point set such that P is its accumulation point, meaning that this arc lies
neither in the two considered (open) domains.

Now we prove a technical lemma.

Lemma 2. Assume that the shadow boundary S(K,x) contains a segment s parallel to x
having the property that it is a subset of accumulation points of S(K,x)\s. Then the bisector
Hx can not be a topological plane.

Proof. Let y be a relative inner point of the segment s of accumulation points of S(K,x).
There exists such a λ (large enough) and also an ε (small enough) for which the segment with
negative end y and positive end y+ of s lies in γλ′(K,x) where λ − ε < λ′ < λ + ε and the
accumulation points of the sets γλ′(K,x) \ s contain also the segment [y,y+] (by Theorem
1). This means, there is a domain – namely the union of segments

∪λ′{λ′[y,y+]|λ− ε < λ′ < λ+ ε}

– in the bisector Hx which lies in the set of accumulation points of the complementary set
with respect to Hx. Drawing in this domain a little circle we get a closed curve which
relative interior points are also boundary points of its complementary sets. Thus the Jordan
Curve Theorem (as a special case of the Schoenflies-Swingle theorem) does not hold on Hx,
consequently Hx could not be a topological plane. 2

Proof of Theorem 2. Firstly, we deal with general parameter spheres.
The statement on γλ0(K,x) follows from the convexity and central symmetry of the

compact body K ( and K + x as well).
For λ > λ0 we prove that λ(γλ(K,x)) ⊂ Hx is arcwise accessible from the negative sets

H ′
1 = ∪λ′{λ′(γλ′(K,x))|λ0 ≤ λ′ < λ} ⊂ Hx ⊂ H−

x , (8)
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If v is a point of λ(γλ(K,x)) then there is an arc, parametrized by λ′ in the intersection
Hx∩Π(x,v) which connects the point v with the point 1

2
x, with the property that its points,

different from v, lie in H ′
1. Since also λγλ(K,x) is the common boundary of H ′

1 and its
complementary set in Hx, by the Schoenflies-Swingle theorem, we get that λγλ(K,x)) is a
topological circle, i.e. by the projection from 0, γλ(K,x)) is a topological circle, too, which
is arcwise accessible also from the open disk component of Int(K+ \ γλ(K,x) by Theorem 3
(see Fig. 3, 4 for illustration). 2

Now let’s turn to the case of the shadow boundary: We assume that Hx by (5) is a topological
plane. We check that the conditions of Schoenflies-Swingle theorem hold for S(K,x), too. It
is enough to prove that S(K,x) is arcwise accessible from K+. Let y an arbitrary point of
S(K,x).

If S(K,x) is sharp at this point (Fig. 3) then, by Lemma 1, the set

∪λ{Π(x,y) ∩ γλ(K,x)|λ ≥ λ0} ∪ y

is a good arc which connects the interior of K+ and y. (Since K+ is arcwise connected y is
accessible from points K+ by arcs.)

If y is not a sharp point of S(K,x) (Fig. 4) then (by Lemma 1) we have the segment s
of S(K,x) through y as a union of the monotone increasing sequence of segments Π(x,y) ∩
γλ(K,x), parallel to x where λ > λ(y), and the negative end y− of s (Fig. 4).

Observe that all of this segments are arcwise accessible from K+, so is their union, too.
To prove this, let s′ denote one of the segments Π(x,y)∩γλ(K,x) for fixed λ > λ(y). Observe
that the points of K+ by (1) belong to one of the following three sets:

H1 = ∪λ′{γλ′(K,x) | λ > λ′ ≥ λ0} ∩K+, γλ(K,x) ∩K+ and K+ \ (γλ(K,x) ∪H1). (9)

From the points of the first set (by the first part of this proof) there are arcs connecting a
point y′ of the considered segment with the required property. We can connect the points of
the second set with a point of H1 by such an arc whose points belong to K+, and this latter
point can be connected again with a required arc, showing that from these points there also
exist arcs to y′. Finally, a point v of the third set (by Lemma 1) lies in a plane Π(x,v)
intersecting S(K,x) in a sharp point. The arc from v to a point of H1 in the intersection
Π(x,v) ∩ bdK can be extended to a required arc which ends at y′.

It remains to examine of the negative end point y− of s (see Fig. 5). Since y− is a
boundary point of the segment s whose other points belong to the boundary of K+, then it
is a boundary point of K+. Consider now a sequence (zi) of points of K+ that tends to y−.
First we introduce a parametrization of S(K,x) ∪K+. Let (ϕ, ψ) denote the coordinates of
any point z ∈ bdK. Here ϕ is the angle of the planes Π(x, z) and Π(x,y−), −π < ϕ ≤ π,
with respect to a fixed orientation, and ψ the angle of the vectors x and z, 0 < ψ < π. Then
we have (zi) = ((αi, βi)

T ) and y− = (0, β)T , T means transposed. We can assume, without
loss of generality, that the sequence (αi) is monotone decreasing. Now we connect the points
zi and zi+1 by an arc γi lying in K+. We define ψ∗

i for later arcs, near enough S(K,x), by

ψ∗
i := inf{ψ| there exists αi ≥ ϕ ≥ αi+1 for which (ϕ, ψ)T ∈ S(K,x)} − 1

2i
.
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Figure 5. The negative end is accessible by arc

From now on the notation x ∈ [a, b] (x ∈ (a, b)) means that either a ≤ x ≤ b (a < x < b) or
a ≥ x ≥ b (a > x > b) hold. Then the arc γi connecting zi and zi+1 is the following:

γi := {(αi, ψ)T with parameter ψ ∈ [βi, ψ
∗
i ]}∪

∪{(ϕ, ψ∗
i )

T with ϕ ∈ (αi, αi+1)}∪

∪{(αi+1, ψ)T with ψ ∈ [βi+1, ψ
∗
i ]}.

Of course, the simple union of these arcs is considered only one curve for which one of its
accumulation points is y− = (0, β)T . However, the following set

γ := cl(∪iγi \ ∪i(γi ∩ γi+1))

(in which we do not take multiple points) is an appropriate arc if and only if

γ \ ∪iγi = {y−}.

Since the set of accumulation points of γ is a subset of γ ∪ s, thus the indirect assumption
implies a subsegment s′ of s with non-zero length. This is also a subset of accumulation points
of S(K,x) \ s and applying Lemma 2 we get that the bisector would not be a topological
plane.

Thus the conditions of the Schoenflies-Swingle theorem are fulfilled so S(K,x) is a topo-
logical circle as we claimed. 2

Lemma 3. Assume that the shadow boundary of K in the direction x is a topological circle.
Then the general parameter spheres are also topological circles for λ > λ0.

The proof is an easy consequence of Theorem 1 and of the arguments before it. Now we are
ready to prove the main result of this section:
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Theorem 4. Let K be a central symmetric compact convex body in E3. All of the bisectors
Hx of the corresponding Minkowski normed space are topological planes if and only if all of
the shadow boundaries S(K,x) are topological circles (1-spheres).

Proof. The necessity is a consequence of Theorem 2.
We prove that if the shadow boundary is a topological circle then the corresponding

bisector Hx by (5) is a topological plane. By the assumption and Lemma 3, γλ(K,x) is a
topological circle for any fixed λ > λ0, and γλ0(K,x) is a topological closed ball of dimension
0,1 or 2, respectively. Consider now S(K,x).

First we note that, for a fixed λ, on γλ(K,x) there are only finitely many segments
parallel to x. In the contrary case there would be infinitely many corresponding segments on
S(K,x), too, but S(K,x) is compact and homeomorphic to a circle, this would easily lead
to a contradiction with Theorem 3. Then the set of lengthes of these segments of S(K,x)
has a positive lower bound. Thus there are only finitely many parameter values λi with the
property that γλi

(K,x) (λi > λ0) contains such a positive end of a segment si of the shadow
boundary parallel to x, which is not lying on a γλ′(K,x) for λ′ < λi.

If y+
i is a positive end of si then λiy

+
i is an apex of a corner domain belonging to

the intersection of Hx and a plane through the origin and si. Partition now Hx into non-
overlapping rings by the consecutive topological circles λiγλi

(K,x) i ≥ 1. A ring between
the circles λiγλi

(K,x) and λi+1γλi+1
(K,x) can be partitioned by straight-line boundaries of

the corresponding corners to finitely many non-overlapping domains Di,j where Di,j ∩Di,j+1

(for every j with respect to a cyclic order, is a segment connecting a point of λiγλi
(K,x) to

a point of λi+1γλi+1
(K,x). These closed domains (each homeomorphic to a closed disc for

i ≥ 1) join only finitely many others, thus we can define a sequence of homeomorphisms Φi,j

on Di,j by induction in the following way.

First, we partition the unit disc B (with center O) into non-overlapping pieces having the
same combinatorial structure as the subdivision of Hx = λ0γλ0(K,x)∪i,j Di,j. We have three
cases: λ0γλ0(K,x) is a closed disc, a closed segment or a point.

In the first case we consider the concentric circles Cλi
with respective radii rλi

= 1− λ0

2λi

for i ≥ 1 and define the image of λ0γλ0(K,x) as the disk with origin O and radius 1
2
.

In the second case we consider concentric ellipses which converges to a O-symmetric
segment of length 1, and the third case the ring structure giving by concentric circles, too,
with corresponding radii rλi

= 1− λ0

λi
for i ≥ 1.

We map now the shadow boundary S(K,x) onto the boundary of B. A corner domain
of Hx corresponds to a segment s of S(K,x) thus also to a closed arc σ of the unit circle.
On the other hand the apex aσ of this corner corresponds to a λi. If i > 0 let a′σ a point
of Cλi

∩ conv{O, σ}. For i = 0, in the first case, we may choose a′σ in the same way; in the
second case we have only two possibilities for aσ (the ends of λ0γλ0(K,x)); thus let a′σ be
one of the ends of the corresponding segment Cλ0 . (In this case we choose the corresponding
arc γ0 intersecting the line of Cλ0 .) Finally in the latter case there is no such apex. Now we
subdivide the rings by the sectors conv{a′σ, σ}. Obviously, the domains Qi,j in this process
can be corresponded to the domains Di,j in a unique way. This means that we partition B
to closed domains Qi,j with the property: ∩Di,j is homeomorphic to ∩Qi,j for indices i, j.

Second, by induction (with respect to the lexicographic order of the pairs (i, j)) it is not
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Figure 6. The homeomorphism Φ

too hard to give a family {Φi,j : Di,j −→ Qi,j} of homeomorphisms compatible to each other,
requiring that if Di,j ∩Dk,l 6= ∅ then Φi,j(v) = Φk,l(v) for each point v of Di,j ∩Dk,l. (Denote
by Φ0,0 the first homeomorphism sending λ0γλ0(K,x) onto the corresponding (not-indicated)
subset of B.)

Now the mapping Φ : Hx −→ intB (see Fig.6), sending a point v ∈ Di,j to the point
Φi,j(v), is evidently a homeomorphism of Hx onto the interior of the disc B as we stated. 2
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