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Abstract. We study a class of maps, called Pseudo Horizontally Weakly Confor-
mal (PHWC), which includes horizontally weakly conformal mappings. We give
geometrical conditions ensuring the harmonicity of a (PHWC) map, making it a
pseudo harmonic morphism, a generalisation of harmonic morphism, for which we
broaden the Baird-Eells Theorem.
Finally, considering pseudo horizontally homothetic maps, we extend a theorem of
Aprodu, Aprodu and Brinzanescu to pseudo harmonic morphisms, and show that
the dual stress-energy of such maps is horizontally covariant constant.

MSC2000: 58E20, 53C15

1. Introduction

Pseudo horizontally weakly conformal (PHWC) maps from compact Riemannian manifolds
into Kähler manifolds (cf. Definition 5) were first considered in [4], though the name itself only
appeared later on, in a study of stable harmonic maps into irreducible Hermitian symmetric
space of compact type. The denomination is due to their property of generalising horizontally
weakly conformal maps, which in turn embrace Riemannian submersions. This theme was
picked up again in [11] where to a (PHWC) map is associated an f -structure (see Definition 1),
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and conditions on this f -structure that force the harmonicity of the map are given. This
particular line of investigation is completed here in Section 4.
Independently, Aprodu, Aprodu and Brinzanescu define in [1] a special class of (PHWC) map,
called pseudo horizontally homothetic, with which they construct minimal submanifolds. We
extend their result in Proposition 7.
Finally, the dual stress-energy tensor (compare with the stress-energy tensor of Baird-Eells
in [2]), which vanishes for horizontally weakly conformal maps, is defined and shown to be
horizontally covariant constant for pseudo horizontally homothetic maps.
The authors would like to thank the referee for his remarks which greatly improved this
article.

2. Definitions and essential properties of f-structures

Definition 1. An f -structure on a Riemannian manifold (Mm, g) is a (smooth) skew-sym-
metric section F of End(TM) such that:

F 3 + F = 0. (1)

This concept was introduced by Yano in [16] (see [9] as well).

Condition (1) implies that on TCM , the complexification of TM , F admits three distinct
eigenvalues: +i, −i and 0, whose eigenspaces T+M , T−M and T 0M provide an orthogonal
decomposition

TCM = T+M ⊕ T−M ⊕ T 0M, (2)

with respect to the Hermitian metric h(X,Y ) = g(X, Ȳ ).

In 1977, Stong showed in [14] that the rank k of an f -structure is even and constant.
The notion of f -structure includes almost complex structures (k = m) and almost contact

structures (k = m− 1).
As is pointed out in [16], the existence of an f -structure is equivalent to a reduction of

the structure group of the tangent bundle from O(m) to U(k
2
)×O(m− k).

The eigenspaces T+M and T−M are g-isotropic, and in fact, there exists a bijection
between g-isotropic subbundles of TCM and f -structures (cf. [13]).

As for almost complex structures, the integrability of f -structures, i.e. the existence
of local coordinates respecting the decomposition (2), boils down to the vanishing of the
Nijenhuis tensor (cf. [7]):

N(X,Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + F 2[X, Y ], ∀X, Y ∈ TM. (3)

Definition 2. A map φ : (M, g, F ) → (N, h, F̃ ) satisfying

dφ ◦ F = ± F̃ ◦ dφ

is called ±f -holomorphic.
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3. (1,2)-symplectic and cosymplectic f-structures

Note that, when restricted to HC = T+M ⊕ T−M = ker [F 2 + I]
C
, an f -structure is an

almost complex structure. This justifies the introduction of the following definitions:

Definition 3. An f -structure F is called (1, 2)-symplectic if F
∣∣
HC

is a (1, 2)-symplectic al-
most complex structure, that is if:

F [(∇XF ) (Y ) + (∇FXF ) (FY )] = 0, (4)

where X and Y ∈ ker [F 2 + I].

This generalises condition (A) of Rawnsley [13]. Similarly,

Definition 4. An f -structure F is called cosymplectic if F
∣∣
HC

is a cosymplectic almost com-
plex structure, that is, if:

k/2∑
j=1

F
[(
∇ej

F
)
(ej) +

(
∇Fej

F
)
(Fej)

]
= 0, (5)

where {ej, Fej}j=1,..., k
2

an orthonormal basis of ker [F 2 + I].

From these definitions, it readily follows that a (1,2)-symplectic f -structure is always cosym-
plectic.

Let ω be the fundamental 2-form associated to the almost complex structure F
∣∣
HC

. From
our knowledge of almost complex structures, we infer that F is a (1,2)-symplectic f -structure
if and only if (dω)(1,2) = 0 and a cosymplectic f -structure if and only if d∗ω = 0.

Let Ω(X, Y ) = g(X,FY ) be the fundamental 2-form associated to F , then it is clear that
(dΩ)(1,2) = 0 implies (dω)(1,2) = 0 but d∗Ω = 0 implies d∗ω = 0 only when the distribution
kerF is minimal, since, for X ∈ H, (d∗Ω − d∗ω)(X) = (m − k)g(Fη,X) (η being the mean
curvature of the distribution kerF ), or F is an almost complex structure.

4. The construction of F φ

Definition 5. Let (M, g) be a Riemannian manifold and (N, h, J) an almost Hermitian man-
ifold. A map φ : (M, g) → (N, h, J) is called pseudo horizontally weakly conformal (PHWC)
if the map

dφ ◦ (dφ)∗ : TCN → TCN,

with the identifications TCM ' TC
∗
M and TCN ' TC

∗
N , commutes with J , i.e.:

[dφ ◦ (dφ)∗, J ] = 0. (PHWC)

This condition was first studied in [4].
It is easy to see that condition (PHWC) is equivalent to (dφ)∗

(
T (1,0)N

)
being isotropic,

and therefore to a (PHWC) map there exists an associated f -structure F φ on M (cf. [11]).
Note that kerF φ = ker dφ.
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Considering the complex structure J on N as an f -structure, one can verify that a
(PHWC) map φ : (M, g, F φ) → (N, h, J) is f -holomorphic, but an f -holomorphic map is not
necessarily (PHWC).

Our first aim will be to find a link between F φ and the tension field of φ.

Theorem 1. Let φ : (M, g) → (N, h, J) be a (PHWC) map from a Riemannian to a Kähler
manifold, then the tension field of φ is given by:

τ(φ) = −dφ(F φδF φ), (6)

where F φ is the f -structure associated to φ and δF φ = trace∇F φ is the divergence of F φ.

Remark 1. As will be clear in the proof, equation (6) is, in fact, valid for any ±f -holomor-
phic map from (M, g, F ) to (N, h, J).
Besides, we could easily drop the integrability hypothesis on the target, and replace the
“Kähler” condition by “(1,2)-symplectic”.
Such an extended version could be seen as a generalisation of [6, Lemma 4.1].

Proof. Based on [6].
We work at a regular point, i.e. a point at which dφ does not vanish.
Consider an adapted frame {ei, F

φei, eα} (i.e. an orthonormal frame such that eα ∈ kerF φ)
and let Zj = 1√

2

(
ej − iF φej

)
. One can easily verify that:

k/2∑
j=1

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
=

k/2∑
j=1

−F φ(i− F φ)∇Z̄j
Zj − F φ(i+ F φ)∇Zj

Z̄j =

k/2∑
j=1

2
(
∇Z̄j

Zj

)−
+ 2

(
∇Zj

Z̄j

)+
,

where X± = −1
2
F φ

(
F φ ± i

)
X ∈ T±M for any vector X ∈ TCM .

We require the following result, the proof of which is delayed:

Lemma 1.

F φδHF
φ =

k/2∑
j=1

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
= F φδF φ − (m− k)η,

where η is the mean curvature of the fibres and δH denotes the horizontal divergence (see [15]):

δHF
φ = Σ(∇eA

F φ)(eA)

where {eA} is an orthonormal basis of ker [(F φ)2 + I].
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On the other hand

τ(φ) = traceg ∇dφ

=

k/2∑
j=1

[
(∇dφ)(ej, ej) + (∇dφ)(F φej, F

φej)
]
+

m∑
α=k+1

(∇dφ)(eα, eα)

= 2

k/2∑
j=1

(
∇φ−1TN

Z̄j
dφ(Zj)

)
− (m− k)dφ(η)− 2

k/2∑
j=1

dφ
(
∇Z̄j

Zj

)
.

Now, since (N, h, J) is Kähler,
[
∇φ−1TN

Z̄j
dφ(Zj)

](0,1)

= 0.

Therefore

τ(φ)(0,1) = dφ
[
(m− k)η − 2

(
∇Z̄j

Zj

)(0,1)
]

= −
[
dφ

(
F φδF φ

)](0,1)
. (7)

Since all the ingredients of equation (7) are real, we obtain:

τ(φ) = −dφ
(
F φδF φ

)
. (8)

In the case of a critical point p, either dφ vanishes in a neighbourhood p, or there exists a
sequence of regular points converging towards p for which equation (8) holds. �

Proof of Lemma 1.

F φδF φ =

k/2∑
j=1

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
+

m∑
α=k+1

F φ
[(
∇eαF

φ
)
(eα)

]
=

k/2∑
j=1

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
+

m∑
α=k+1

F φ
[(
∇eαF

φ(eα)
)
− F φ (∇eαeα)

]
=

k/2∑
j=1

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
− (m− k)(F φ)2(η)

=

k/2∑
j=1

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
+ (m− k)η,

since η ∈ ker [(F φ)2 + I]. �

From Lemma 1, we deduce:

Proposition 1. An f -structure F is cosymplectic if and only if FδF = (m−k)η, or equally,
FδHF = 0.
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A fairly direct implication of Theorem 1 is:

Proposition 2. Let φ : (M, g) → (N, h, J) be a (PHWC) map from a Riemannian to a
Kähler manifold. Then φ is harmonic if and only if F φδF φ = 0.

Proof. From Theorem 1, it is clear that F φδF φ = 0 implies the harmonicity of φ.
Conversely, F φδF φ is in ker [(F φ)2 + I], since (F φ)3 + F φ = 0 and, if dφ(F φδF φ) = 0, then
F φδF φ ∈ ker dφ = kerF φ (by construction of F φ).
Therefore F φδF φ ∈ ker [(F φ)2 + I] ∩ kerF φ = {0}. �

Remark 2. Note that the case of ±holomorphic maps between Hermitian manifolds is dis-
similar to the situation at hand, since an almost complex structure has a trivial kernel while
holomorphic maps need not (if the dimensions are different).

Definition 6. A (PHWC) map is called a pseudo harmonic morphism if it is harmonic.

We generalise a theorem of Baird-Eells [2] to pseudo harmonic morphisms (cf. Example 2
and Proposition 6).

Theorem 2. Let φ : (M, g) → (N, h, J) be a non-constant (PHWC) submersion, then:
1. If dimN = 2 then φ is a pseudo harmonic morphism if and only if its fibres are minimal.

2. If dimN > 2 then any two of the following conditions imply the third

(a) φ is a pseudo harmonic morphism.

(b) φ has minimal fibres.

(c) F φ is cosymplectic.

Proof. 1) If dimN = 2, the notions of (PHWC) and horizontally weakly conformal (see
Definition 9) coincide and we are exactly in the situation of [2].

2) If dimN > 2, the statement is a direct consequence of Proposition 1 and Proposition 2. �

5. Homotopy invariant

Definition 7. Let φ : (M, g, F ) → (N, h, F̃ ) be a smooth map between Riemannian manifolds
equipped with f -structures, the domain being compact.
Consider a component of the differential dφ:

(dφ)+ : TCM → T+N

As for holomorphic maps, we can define the partial energy densities:

e+(φ) =
1

2

k/2∑
j=1

h
(
(dφ)+(Zj), (dφ)+(Zj)

)
and

e−(φ) =
1

2

k/2∑
j=1

h
(
(dφ)+(Zj), (dφ)+(Zj)

)
.
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Let

E+(φ) =

∫
M

e+(φ) vg and E−(φ) =

∫
M

e−(φ) vg

and put:
K(φ) = E+(φ)− E−(φ).

The next proposition is a slight extension of results due to Rawnsley [13] and Burstall [3],
the initial ideas are to be found in Lichnerowicz [10]:

Proposition 3. Let (M, g, F ) be a compact Riemannian manifold equipped with an f -struc-
ture F such that d∗ΩM = 0 and (N, h, F̃ ) a Riemannian manifold with an f -structure satis-
fying dΩN = 0. Then K(φ) = E+(φ)− E−(φ) is a homotopy invariant.

We omit the proof as it is only an adaptation of the methods in [13, 3].
Consequently, in the spirit of [3, Lemma 3.3], we have:

Corollary 1. Let φ be a map from (M, g, F ), a compact Riemannian manifold equipped
with an f -structure F such that d∗ΩM = 0, into (N, h, F̃ ), a Riemannian manifold with an
f -structure satisfying dΩN = 0, then:

1. If φ is ±f -holomorphic then φ is harmonic and minimises the energy in its homotopy
class.

2. If φ minimises the energy in its homotopy class and is homotopic to a ±f -holomorphic
map then φ is ±f -holomorphic.

3. Let φ be a ±f -holomorphic map and φt a smooth variation of φ through harmonic maps,
then each φt is ±f -holomorphic.

4. Let K vanish on some homotopy class H. Then any ±f -holomorphic map in H is
constant. In particular, any homotopically trivial ±f -holomorphic map is constant.

5. Let φ1 be f -holomorphic and φ2 be f -antiholomorphic, then if φ1 and φ2 are homotopic,
they are both constant.

Proposition 4. Let (M, g) be a closed homology sphere, of dimension at least three, and
(N, h, J) a Kähler manifold. Let φ : (M, g) → (N, h, J) be a (PHWC) map. If the funda-
mental 2-form Ω of F φ is co-closed then φ is constant.

Proof. For a homology sphere H2(M, R) = 0. For any map φ : (M, g) → (N, h, J) into a
Kähler manifold, let σ be the fundamental form of N . Then σ̄ = σ and

d(φ∗σ) = φ∗dσ = 0

since (N, h, J) is Kähler. It follows that

[φ∗σ] ∈ H2(M, R) = 0
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i.e. φ∗σ is exact. Hence we have

K(φ) =

∫
M

< Ω, φ∗σ > vg

=

∫
M

< Ω, dα > vg

=

∫
M

< d∗Ω, α > vg

= 0. �

Example 1. Consider the Hopf map

H : S3 ⊂ C2 → S2 ⊂ C× R
(z, w) 7→ (2zw, |z|2 − |w|2).

It is well-known to be a harmonic morphism with dilation 2. In particular it is horizontally
conformal and therefore pseudo horizontally weakly conformal.
However by Proposition 4, the fundamental 2-form of the associated f -structure cannot be
co-closed. We can check this fact directly by the following computation: Let e1, e1 be a frame
of T+M ⊕ T−M and e0 a vector spanning the distribution T 0M . They can be chosen to be
orthonormal and so that the associated f -structure F acts on these vectors in the following
manner

Fe1 = ie1 , Fe1 = −ie1 , Fe0 = 0.

Then

d∗Ω(e1) = −(∇e1Ω)(e1, e1)− (∇e1
Ω)(e1, e1)− (∇e0Ω)(e0, e1)

= g(∇e1e1, Fe1) + g(e1, F∇e1e1) + g(∇e1
e1, Fe1) + g(e1, F∇e1

e1)

+ g(∇e0e0, Fe1) + g(e0, F∇e0e1)

= i
(
g(e1,∇e1e1) + g(e1,∇e1e1) + g(∇e1

e1, e1)− g(e1,∇e1
e1) + g(∇e0e0, e1)

)
= ig(∇e0e0, e1)

= 0,

since the fibres are totally geodesic. We obtain a similar expression for d∗Ω(e1). The last
term to compute is:

d∗Ω(e0) = −(∇e1Ω)(e1, e0)− (∇e1
Ω)(e1, e0)− (∇e0Ω)(e0, e0)

= −
(
g(∇e1e0, Fe1) + g(Fe1,∇e1

e0)
)

= −i
(
g(e0,∇e1e1)− g(e0,∇e1

e1)
)

= −ig(e0, [e1, e1])
= −2iAe1e1,
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where A is the O’Neill tensor (cf. [12]), which vanishes if and only if the horizontal distribution
is integrable, which is not the case for the Hopf map. Therefore d∗Ω(e0) 6= 0 and the f -
structure associated to the Hopf map is not co-closed.
On the other hand, it can be verified that the associated f -structure satisfies dΩ = 0. There
is in fact only one term to compute:

dΩ(e1, e1, e0) = ∇e1(Ω(e1, e0))−∇e1
(Ω(e1, e0)) +∇e0(Ω(e1, e1))

− Ω([e1, e1], e0) + Ω([e1, e0], e1)− Ω([e1, e0], e1)

= g(∇e1e0 −∇e0e1,−ie1)− g(∇e1
e0 −∇e0e1, ie1)

= ig(e0,∇e1e1 +∇e1
e1)

= ig(e0, Ae1e1 + Ae1
e1)

= 0,

since the O’Neill tensor A is anti-symmetric.
It is rather surprising that the associated f -structure is closed but not co-closed, especially
for such a low dimension 3. This situation is very different from the case of almost complex
structures on almost Hermitian manifolds, for which “closed” always implies “co-closed”
(cf. [5]). As to the target, the almost Hermitian structure being Kähler, we have d∗ω=dω= 0.

6. Pseudo horizontally homothetic map

Definition 8. [1] A (PHWC) map φ : (M, g) → (N, h, J) is called pseudo horizontally
homothetic (PHH) if

dφ (∇X(dφ)∗(JY )) = Jdφ (∇X(dφ)∗(Y )) , (9)

for X ∈ H = ker [(F φ)2 + I] ⊂ TM and Y ∈ TN .

Remark 3. Maps which satisfy equation (9) for all X ∈ TM are called strongly pseudo
horizontally homothetic.

When (M, g) is Kähler, ±holomorphic maps are strongly (PHH).

A (PHH) map, as a (PHWC) map, admits an associated f -structure F φ. (PHH) maps are
used in [1], in particular, to construct minimal submanifolds as the inverse image of complex
submanifolds of Kähler manifolds by (PHH) harmonic submersions. We will extend this
result to (PHWC) maps later on.

Proposition 5. Let φ : (M, g) → (N, h, J) be a pseudo horizontally homothetic map, then
its associated f -structure F φ is (1, 2)-symplectic.

Proof. Let X ∈ H and Y ∈ TN , then:

∇F φ(X, (dφ)∗(Y )) = ∇XF
φ((dφ)∗(Y ))− F φ(∇X(dφ)∗(Y ))

= ∇X((dφ)∗(JY ))− F φ(∇X(dφ)∗(Y )).
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Therefore

dφ
(
∇F φ(X, (dφ)∗(Y ))

)
= dφ (∇X((dφ)∗(JY )))− dφ

(
F φ(∇X(dφ)∗(Y ))

)
= Jdφ (∇X((dφ)∗(Y )))− dφ

(
F φ(∇X(dφ)∗(Y ))

)
= 0,

as φ is f -holomorphic. �

Remark 4. A by-product of Proposition 5 is that (∇XF
φ)H = 0 for all X ∈ H, which, as

was noted in [1], is a partial Kähler condition on the horizontal bundle.

Definition 9. A map φ : (M, g) → (N, h) between Riemannian manifolds is called horizon-
tally weakly conformal if, at a regular point x, i.e. at which dφx 6= 0,

dφx : (ker dφx)
⊥ → Tφ(x)N

is surjective and conformal with some conformal factor λ(x). When φ is also submersive,
we drop the adverb “weakly”. If the function ∇λ2 is vertical, i.e. dφ(∇λ2) = 0, we call φ
horizontally homothetic.

Proposition 6. Let φ : (Mm, g) → (Nn, h, J) (n ≥ 3) be a horizontally conformal map.
Then φ is horizontally homothetic if and only if its associated f -structure F φ is cosymplectic.

Proof. Recall that for a (PHWC) map:

τ(φ) = −dφ(F φδF φ).

On the other hand [8]:

τ(φ) = dφ
(
(1− n

2
)∇ lnλ2 − (m− n)η

)
.

Hence, at a regular point:

F φδF φ + (1− n

2
)(∇ lnλ2)H = (m− n)η,

or equivalently

F φδHF
φ = −(1− n

2
)(∇ lnλ2)H ,

where (∇ lnλ2)H denotes the horizontal part of ∇ lnλ2, remarking that F φδF φ ∈ H =
ker [(F φ)2 + I] and η ∈ H (by definition).
Thus, if n > 2,

∇ lnλ2 ∈ V
if and only if

F φδF φ − (m− n)η = 0,

i.e. F φ is cosymplectic. �

We can now generalise [1, Theorem 4.1] and construct minimal submanifolds via pseudo
harmonic morphisms.
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Proposition 7. Let φ : (M, g) → (N, h, J) be a non-constant submersive pseudo harmonic
morphism from a Riemannian to a Kähler manifold with a (1, 2)-symplectic associated f -
structure. Then, if P is a complex submanifold of N , φ−1(P ) is a minimal submanifold of
M .

Proof. We follow [1]. Let K = φ−1(P ) and H1, H2 such that:

TK = H1 ⊕ V, H = H1 ⊕H2,

this orthogonal decomposition is possible, as K is made up of fibres. Remark that, at a point
x ∈ K:

H1,x =
{
v ∈ Hx | dφx(v) ∈ Tφ(x)P

}
.

One can easily verify that H1 is an F φ-invariant subbundle, due to the f -holomorphicity of
φ and the complexity of P . Thus we can choose an orthogonal frame field{

e1, . . . , ep, F
φe1, . . . , F

φep, en+1, . . . , em

}
for TK, adapted to the decomposition TK = H1 + V . In this frame, the submanifold K is
minimal if

m∑
α=n+1

∇eαeα +

p∑
i=1

(
∇ei

ei +∇F φei
F φei

)
∈ TK.

From Theorem 2, we know the fibres of φ to be minimal, i.e.,

m∑
α=n+1

∇eαeα ∈ V.

On the other hand(
∇ei

F φ
)
(ei) +

(
∇F φei

F φ
)
(F φei) = [ei, F

φei]− F φ
(
∇ei

ei +∇F φei
F φei

)
and, as F φ is (1,2)-symplectic,

F φ
[(
∇ej

F φ
)
(ej) +

(
∇F φej

F φ
)
(F φej)

]
= 0.

Finally [
∇ei

ei +∇F φei
F φei

]H

=
−1

2
F φ(F φ + i)

[
∇ei

ei +∇F φei
F φei

]
− 1

2
F φ(F φ − i)

[
∇ei

ei +∇F φei
F φei

]
= −(F φ)2

[
∇ei

ei +∇F φei
F φei

]
= F φ

[
F φei, ei

]
,

since H1 is F φ-invariant and, as P is a complex submanifold,
[
F φei, ei

]H ∈ H1, so that:[
∇ei

ei +∇F φei
F φei

]H
= F φ

[
F φei, ei

]
=

(
F φ

[
F φei, ei

])H ⊂ H1,
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and [
∇ei

ei +∇F φei
F φei

]H
=

[
∇ei

ei +∇F φei
F φei

]H1
,

and the submanifold K is minimal. �

As is clear in the proof, the “(1,2)-symplectic” condition could be replaced by the weaker
condition:

F φ[(∇XF
φ)(X) + (∇F φXF

φ)(F φX)] = 0, (10)

for ∀X ∈ ker [(F φ)2 + I] and ‖X‖ = 1. In fact it is easy to see that F φ is (1,2)-symplectic
implies equation (10), which in turn implies that F φ is cosymplectic. For a horizontally
weakly conformal (PHWC) map, all these conditions are equivalent to horizontal homothety.

We close this section with a method of constructing (PHWC) maps (or pseudo-harmonic
morphisms) which satisfy equation (10) but are not horizontally homothetic.

Proposition 8. Let φ : (M, g) → (C, can) be a non-constant horizontally weakly conformal
map. Then Φ = (φ, · · · , φ) : (M, g) → Cr (r > 1) is a (PHWC) map satisfying (10) which
is not horizontally homothetic.

Proof. It is easy to verify that

m∑
i,j=1

gij ∂Φα

∂xi

∂Φβ

∂xj
=

m∑
i,j=1

gij ∂φ

∂xi

∂φ

∂xj
= 0

i.e. Φ is a (PHWC) map. By Lemma 1 and the proof of Proposition 6, at a regular point,

F φδHF
φ = F φδF φ − (m− 2)η = (1− 2

2
)(∇ lnλ2)H = 0.

On the other hand, it is easy to show that

HΦ = Hφ; FΦ = F φ.

Hence
FΦδHF

Φ = F φδHF
φ = 0.

Notice that dimHΦ = 2. We see that Φ satisfies equation (10), since for X ∈ ker [(FΦ)2 + I]
with ‖X‖ = 1,

{
X, FΦX

}
form an orthonormal basis and:

FΦ[(∇XF
Φ)(X) + (∇FΦXF

Φ)(FΦX)] = FΦδHF
Φ = 0.

However when dΦx 6= 0
dΦx : HΦ = (KerdΦx)

⊥ → TΦ(x)Cr

is not surjective. Hence Φ is not a horizontally weakly conformal map, in particular, it is not
horizontally homothetic. �



E. Loubeau, X. Mo: The Geometry of Pseudo Harmonic Morphisms 99

Example 2. Let ψ : Rm → C be defined by

ψ(x1, . . . , xm) =

{∑r
j=1 xj + i

∑2r
j=r+1 xj if m = 2r∑r

j=1 xj + i
√

r
r−1

∑2r−1
j=r+1 xj if m = 2r − 1.

It is easy to verify that

m∑
i=1

∂2ψ

∂x2
i

= 0,

and
m∑

i=1

(
∂ψ

∂xi

)2

= 0.

So ψ is a harmonic morphism.
Let Hm+1 = (Rm ×R⊥, (1/x2

m+1) <,>Rm+1) and π : Hm+1 → Rm be the projection onto Rm

followed by a homothety, given by π(p, x) → α·p, where α ∈ R−{0}. Then π is a horizontally
homothetic harmonic morphism with totally geodesic fibres. Hence ψ ◦ π : Hm+1 → C is a
harmonic morphism. Using Proposition 8, we have that, for arbitrary m ≥ 1 and n > 1,
there exist pseudo-harmonic morphisms φ1 : Rm → Cn and φ2 : Hm+1 → Cn satisfying (10)
which are not horizontally homothetic.

7. Dual stress-energy tensor

7.1. Description of the problem

Let (M, g) be a Riemannian manifold, (N, J, h) a Kähler manifold and φ : (M, g) → (N, J, h)
a pseudo horizontally weakly conformal map.
Consider the section of the pull-back bundle (by the dual of dφ) of T ∗N ⊗ T ∗N

S∗ =
2eφ

n
h∗ − (dφ∗)g∗,

called the dual stress-energy tensor, where g∗ and h∗ are the metrics dual to g and h, and
(dφ∗)g∗ is the pull-back of g∗ by the dual of dφ.
In local coordinates (xi)i=1,...,m on M and (zα)α=1,...,n on N , S∗ takes the form:

SAB
∗ =

2eφ

n
hAB − ∂φA

∂xi

∂φB

∂xj
gij ∀A,B = 1, 1, . . . , n, n.

As the metric h is Hermitian, i.e. hαβ = 0 ∀α, β = 1, . . . , n, and φ is pseudo horizontally
weakly conformal, the (2,0)-part of S∗,

Sαβ
∗ =

2eφ

n
hαβ − ∂φα

∂xi

∂φβ

∂xj
gij,
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vanishes for all α, β = 1, . . . , n.
On the other hand, it is easy to see that φ is horizontally weakly conformal if and only if the
(1,1)-part of S∗ is zero, that is:

Sαβ
∗ =

2eφ

n
hαβ − ∂φα

∂xi

∂φβ

∂xj
gij = 0 ∀α, β = 1, . . . , n.

Observe that

eφ =
1

2
gij ∂φ

A

∂xi

∂φB

∂xj
hAB = gij ∂φ

α

∂xi

∂φβ

∂xj
hαβ,

therefore traceh S∗ = 0.
If φ is a pseudo horizontally weakly conformal map, then the (1,1)-part of S∗ measures

how far φ is from being horizontally weakly conformal.
Our aim is to find conditions such that this “obstruction” is a covariant constant 2-tensor.

This is equivalent to:

Sαβ
∗ = Cαβ,

with the Cαβ’s covariant constant, and the condition we will study is:

∇ek
(Sαβ
∗ ) = 0.

We choose a frame (ek) adapted to the f -structure F φ on TM and normal complex coordi-
nates (zα)α=1,...,n on N (which we can use as (N, J, h) is Kähler).

7.2. Computation of ∇ek(S
αβ
∗ )

All computations are taken at a chosen point p ∈M and, in particular, all Christoffel symbols
of the target manifold N vanish at the point φ(p).

∇ek
(Sαβ
∗ ) = ∇ek

(S∗)(dz
α, dzβ) + S∗(∇ek

dzα, dzβ) + S∗(dz
α,∇ek

dzβ)

= ∇ek
(S∗)(dz

α, dzβ)

=
2

n
∇ek

(eφ)h
αβ +

eφ

n
∇ek

(hαβ)− (∇ek
(dφ∗)g) (dzα, dzβ)

=
2

n
∇ek

(eφ)h
αβ − (∇ek

(dφ∗)g) (dzα, dzβ)

The energy density eφ can be seen as the trace, with respect to the metric g of φ∗h, or, by
duality, as the trace, w.r.t. the metric h, of (dφ∗)g, i.e. eφ = 1

2
traceh (dφ∗)g. Therefore

∇ek
(eφ) = traceh∇ek

(dφ∗)g

= hδγ (∇ek
(dφ∗)g) (dzδ, dzγ).

Since it appears twice, we compute (∇ek
(dφ∗)g) (dzα, dzβ) separately:
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(∇ek
(dφ∗)g) (dzα, dzβ) =

(∇ek
g)

(
dφ∗(dzα), dφ∗(dzβ)

)
+ g

(
(∇ek

dφ∗)(dzα), dφ∗(dzβ)
)

+ g
(
dφ∗(dzα), (∇ek

dφ∗)(dzβ)
)

= g
(
(∇ek

dφ∗)(dzα), dφ∗(dzβ)
)

+ g
(
dφ∗(dzα), (∇ek

dφ∗)(dzβ)
)

= g
(
∇ek

(dφ∗(dzα))− dφ∗
(
∇dφ(ek)dz

α
)
, dφ∗(dzβ)

)
+ g

(
dφ∗(dzα),∇ek

(dφ∗(dzβ))− dφ∗
(
∇dφ(ek)dz

β
))

= g
(
∇ek

(dφ∗(dzα)), dφ∗(dzβ)
)

+ g
(
dφ∗(dzα),∇ek

(dφ∗(dzβ))
)
,

since∇dφ(ek)dz
α = −φB

k Γα
BCdz

C = 0 at the point φ(p). Similarly∇dφ(ek)dz
β = 0. We conclude

that:

∇ek
(Sαβ
∗ ) =

1

n
hδγ

[
g

(
∇ek

(dφ∗(dzδ)), dφ∗(dzγ)
)

+ g
(
dφ∗(dzδ),∇ek

(dφ∗(dzγ))
)]
hαβ

− g
(
∇ek

(dφ∗(dzα)), dφ∗(dzβ)
)
− g

(
dφ∗(dzα),∇ek

(dφ∗(dzβ))
)
.

7.3. Conditions such that ∇ek(S
αβ
∗ ) = 0

The (PHH) condition implies that:

dφ(∇XF
φZ) = dφ(F φ∇XZ) = Jdφ(∇XZ), ∀X ∈ H,Z ∈ T+M,

therefore, if X ∈ H, ∇X maps sections of T+M onto sections of T+M ⊕ T 0M so:

g(∇ek
(dφ∗(dzα)), dφ∗(dzβ̄)) = 0.

Similarly, one can deduce that ∇ek
Sαβ
∗ = 0. This shows that the dual stress-energy tensor

of a pseudo horizontally homothetic map is horizontally covariant constant, i.e. it is close to
being a horizontally weakly conformal map.

Proposition 9. Let (M, g) be a Riemannian manifold and (N, J, h) a Kähler manifold. If
φ : (M, g) → (N, J, h) a pseudo horizontally homothetic map then

∇ek
S∗ = 0 ∀ek ∈ H = ker [(F φ)2 + I],

i.e. the dual stress-energy tensor is horizontally covariant constant. If φ is strongly pseudo
horizontally homothetic then S∗ is covariant constant.
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