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Abstract. Various facts about triangulations of simplicial polytopes, particularly
those pertaining to the equality case in the generalized lower bound conjecture,
are collected together here. They include an apparently weaker restriction on the
kind of triangulation which needs to be found, and an inductive argument which
reduces the number of cases to be established.

1. Introduction

The lower bound conjecture for simplicial polytopes was proved in four and five dimensions
by Walkup [22], and generally by Barnette [1, 2] just a few days before the upper bound
conjecture was proved by the present author [14]. Since then, several different proofs of the
lower bound conjecture have appeared; see [6, 8], and, for a general survey, [11].

At around the same time, the author and Walkup [18] formulated the generalized lower
bound conjecture for simplicial polytopes (which we shall abbreviate to GLBC). This states
that, if P is a simplicial d-polytope, then gr(P ) > 0 for each r = 1, . . . , b1

2
dc, where the gr are

certain linear combinations of the face numbers of P (we shall repeat the familiar definition in
Section 2); moreover, if gr(P ) = 0, then P admits a triangulation with no interior (d−r)-faces
(see Conjecture 3.1—the original lower bound conjecture is the case r = 2).

The proof of the g-theorem (Theorem 2.1) showed that, indeed, gr(P ) > 0 for each r;
for the necessity of the conditions, see [20] or, for a proof using more elementary techniques,
[16, 17]. (The sufficiency of the conditions of the g-theorem was established by Billera and Lee
[4, 5]; this is less relevant to our present discussion, but see also [10] for an interesting stronger
result about triangulations.) However, what is still lacking is a proof of the remaining part
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of the GLBC, namely, that characterizing the case of equality for 3 6 r 6 b1
2
dc, though some

ideas have been proposed in [12].
The idea behind this note is to collect together various facts about triangulations of

simplicial polytopes, particularly insofar as they are relevant to the GLBC. One main result
shown here is Theorem 3.5, which shows that Conjecture 3.1 holds if P has a triangula-
tion with no interior (r − 1)-faces. Another is Theorem 5.3, which says that, to prove the
characterization of Conjecture 3.1, it is enough to establish the case d = 2r.

For the general background in polytope theory, the reader should consult [7, 23].

2. Triangulations

Let P be a simplicial d-polytope in d-dimensional euclidean space Ed. We write F 6 G to
mean that F is a face of the polytope G; then F < G means, in addition, that F 6= G. In
the present context, ∅ will count as a face of every polytope P , whereas P itself generally
will not.

Let T be a triangulation of P ; we always suppose that the boundary complex of T
coincides with that of P , and usually that the vertices of T are exactly those of P itself. We
refer to the d-faces of T as cells. Those faces of T which are not faces of P itself, and so
meet the interior int P of P , are called interior faces of T ; the set of these interior faces is
denoted Tint.

To some extent, we are interested in regular triangulations, which means that T will arise
from the projection of the lower (or upper) surface of some simplicial (d + 1)-polytope.

For j = −1, . . . , d − 1, let fj = fj(P ) be the number of j-faces of P , with the usual
convention f−1 = 1 (corresponding to ∅). Although this builds in some redundancy, we find
it convenient to define the f -polynomial of P to be

f(P, σ, τ) :=
d∑

j=0

fj−1σ
d−jτ j, (2.1)

a function of two indeterminates σ and τ . Observe that f(P, ·, ·) encapsulates the purely
numerical information about the boundary complex of P . The h-polynomial of P is then
defined by

h(P, σ, τ) =
d∑

r=0

hr(P )σd−rτ r := f(P, σ − τ, τ). (2.2)

An alternative form of (2.2) which we find useful is

h(P, σ, τ) =
∑
F<P

(σ − τ)d−1−dim F τdim F+1, (2.3)

recalling the conventions introduced earlier. It is well known that the h-numbers hr = hr(P )
satisfy the Dehn-Sommerville equations

hr = hd−r (2.4)
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for r = 0, . . . , d. Indeed, these relations hold more generally for triangulated (d− 1)-spheres.
We can write them in the convenient form

h(P, σ, τ) = h(P, τ, σ), (2.5)

which already illustrates the utility of our convention. (Compare Theorem 2.3; in this case,
all faces will be “interior”.)

Of even more fundamental importance is the g-polynomial of P , which is given by

g(P, σ, τ) =
d+1∑
r=0

gr(P )σd+1−rτ r := (σ − τ)h(P, σ, τ). (2.6)

In other words, with gr = gr(P ), we have

gr = hr − hr−1

for each r, and, inversely,

hr =
∑
s6r

gs.

It follows from (2.5) that the g-polynomial satisfies

g(P, τ, σ) = −g(P, σ, τ),

so that
gr = −gd+1−r (2.7)

for r = 0, . . . , d + 1.
At this point, we can introduce the g-theorem. For our purposes, we define (g0, . . .) to

be an M-sequence if there exists some polynomial ring R generated by its elements of degree
1 (say a quotient of R[X1, . . . , Xk], for some k, by a homogeneous ideal—such a ring is often
called a standard graded algebra), such that gr = dim Rr, the dimension of the rth graded
subspace of R. Then we have

Theorem 2.1. There exists a simplicial d-polytope P such that gr(P )=gr for r=0, . . . , b1
2
dc

if and only if (g0, . . . , gbd/2c) is an M-sequence.

That part of the g-theorem which concerns us in these notes states that

gr > 0 for r = 0, . . . , b1
2
dc; (2.8)

since these gr determine the hr, and hence the fj, we often think of just them as the g-numbers
of P .

There are important relations between the numbers of faces of P and those of the faces
of a triangulation T of P , or those of its interior faces; in the different notation adopted
there, these comes from [18]. In leading up to them, we state some initial results in a more
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general context, that of triangulations of d-balls. Since T is a d-dimensional complex, the
appropriate analogue for the f -polynomial of T is

f(T , σ, τ) :=
d∑

j=0

fj−1(T )σd+1−jτ j; (2.9)

that for the interior complex Tint is

f(Tint, σ, τ) :=
d∑

j=1

fj−1(Tint)σ
d+1−jτ j, (2.10)

where, exceptionally, we do not count the empty face (a justification for this convention is
Lemma 2.2). The h-polynomials of T and Tint are then defined exactly as in (2.2).

There is an important relationship between h(T , ·, ·) and h(Tint, ·, ·). We begin with a
subsidiary result.

Lemma 2.2. Let T be a triangulation of a d-ball, and let F ∈ T . Then∑
G>F

(−1)d−dim G =

{
1, if F ∈ Tint,
0, otherwise.

Proof. This is a concealed form of the Euler relation. If F ∈ Tint, then the link of F in T
is a sphere (of the appropriate dimension); otherwise, the link is a ball (in particular, this
holds for F = ∅). 2

Theorem 2.3. Let T be a triangulation of a d-ball. Then

h(Tint, σ, τ) = h(T , τ, σ).

Proof. We perform the calculation directly. In analogy with (2.3), and using Lemma 2.2 and
the fact that each face G of T is a simplex, we have

h(Tint, σ, τ) =
∑

F∈Tint

(σ − τ)d−dim F τdim F+1

=
∑
F∈T

(∑
G>F

(−1)d−dim G
)
(σ − τ)d−dim F τdim F+1

=
∑
G∈T

(τ − σ)d−dim G
(∑

F6G

(σ − τ)dim G−dim F τdim F+1
)

=
∑
G∈T

(τ − σ)d−dim Gσdim G+1

= h(T , τ, σ),

as claimed. 2

For future reference, we collect together some important facts about the h-vector (h0,. . . ,hd+1)
(with hr := hr(T )) of a triangulation T .
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Proposition 2.4. Let T be a triangulation of a simplicial d-polytope P . Then
(a) h0 = 1, and hr > 0 for r > 1;
(b) if hr = 0 for some r, then hs = 0 for s > r;
(c) hr = 0 if and only if T has no interior (d− r)-faces.

Proof. Part (a) follows from the fact that (h0, . . . , hd+1) is an M-sequence; see [19, 21]. In
particular, if hr = 0 for some r, then hs = 0 for all s > r, which is part (b). For part (c), we
reverse the relationship between the f - and h-polynomials, to get

f(Tint, σ, τ) = h(Tint, σ + τ, τ) = h(T , τ, σ + τ),

by Lemma 2.3. Hence fd−r(Tint) is the coefficient of σrτ d+1−r in h(T , τ, σ + τ), so that

fd−r(Tint) =
∑
s>r

(
s

r

)
hs > 0,

with equality if and only if hs = 0 for each s > r, and thus, in view of part (b), if and only
if hr = 0. 2

We also need the relationship between the g-polynomial of P and the h-polynomials of T
and Tint.

Theorem 2.5. Let P be a simplicial d-polytope, and let T be a triangulation of P . Then

g(P, σ, τ) = h(T , σ, τ)− h(T , τ, σ)

= h(Tint, τ, σ)− h(Tint, σ, τ).

Proof. Of course, in view of Theorem 2.3, these two equations are equivalent to each other,
and also to

g(P, σ, τ) = h(T , σ, τ)− h(Tint, σ, τ).

If we observe that
f(T , σ, τ)− f(Tint, σ, τ) = σf(P, σ, τ),

we deduce at once that

h(T , σ, τ)− h(Tint, σ, τ) = (σ − τ)h(P, σ, τ) = g(P, σ, τ),

exactly as was wanted. 2

We wish to employ Theorem 2.5 in its numerical form.

Corollary 2.6. Let P be a simplicial d-polytope, and let T be a triangulation of P . Then,
for each r = 0, . . . , d + 1,

gr(P ) = hr(T )− hd+1−r(T ).
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3. Small faces

As before, let T be a triangulation of a simplicial d-polytope P . A face F of Tint is called
small if dim F 6 b1

2
dc. We call T small-face-free, abbreviated sff, if T has no small interior

faces. (Compare here the slightly different concept of shallow triangulations in [3], which
were, however, employed for another purpose.)

Before we discuss sff triangulations in general, let us restate the open part of the GLBC.

Conjecture 3.1. Let P be a simplicial d-polytope, and let 1 6 r 6 b1
2
dc. If gr(P ) = 0, then

P admits a triangulation with no interior (d− r)-faces.

In [18], such a polytope was called (r− 1)-stacked (the indices there differed from those here
by 1—there is a mismatch of these indices in [9]). Of course, the conjecture is known to hold
if r = 1, 2.

Remark 3.2. In fact, we believe that Conjecture 3.1 holds in a stronger form, in that the
triangulation is actually regular. Our feeling is that it will probably be necessary to establish
the strong form anyway, if we are to be able to prove the conjecture at all.

Our first result helps to narrow the range we have to consider. Throughout the next part
of the section, P will be a fixed simplicial d-polytope.

Theorem 3.3. A simplicial polytope P has at most one sff triangulation.

Proof. We consider two different triangulations T and T ′ of P , and show that at most
one is sff. Our blanket assumption is that their boundary sub-complexes coincide with the
boundary complex of P . If we work in from bd P , it is clear that there exist two cells
F ∈ T and F ′ ∈ T ′ which lie on the same side of a common (d − 1)-face G, say, such that
F 6= F ′. If vert G = {b1, . . . , bd}, and the two remaining vertices involved are b ∈ F and
b′ ∈ F ′, then Radon’s Theorem yields a partition of {b1, . . . , bd} into two disjoint subsets B
and B′, say, such that conv(B ∪ {b}) ∩ conv(B′ ∪ {b′}) 6= ∅. Indeed, there is a unique point
in this intersection, and it must lie in int P . But one at least of conv(B ∪ {b}) ⊆ F and
conv(B′ ∪ {b′}) ⊆ F ′ is a face of dimension at most b1

2
dc, which proves our claim. 2

Remark 3.4. Note that the triangulation which is supposed to exist in Conjecture 3.1 would
be sff, and hence unique. We were told of this latter fact by Carl Lee (without proof, however);
the foregoing proof of the more general result is our own.

Proposition 2.4 has an extremely useful implication for Conjecture 3.1.

Theorem 3.5. In order to prove Conjecture 3.1, it suffices to show that gr(P ) = 0 implies
that P has a triangulation with no interior (r − 1)-faces.

Proof. If we could find such a triangulation T , then hd+1−r(T ) = 0 by Proposition 2.4(c).
Corollary 2.6 and the fact that gr(P ) = 0 now yield hr(T ) = 0, and Proposition 2.4(c) again
then implies that T has no interior (d− r)-faces, as required. 2

Remark 3.6. Obviously, the condition of Theorem 3.5 extends to T having no interior k-
faces for some r − 1 6 k 6 d− r, and so, in particular, to T being sff.
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4. Combinatorial triangulations

A (pure) simplicial d-complex whose boundary complex is isomorphic to that of a given
simplicial d-polytope P is called a combinatorial triangulation of P . In contrast, we refer
to an actual triangulation of P as geometric. We extend the concept of sff to combinatorial
triangulations in the natural way.

Theorem 4.1. A sff combinatorial triangulation T of a simplicial d-polytope P is geometric.

Proof. The proof is very similar to that of Theorem 3.3. When we try to realize a combina-
torial triangulation geometrically, a cell of the geometric triangulation of P must, of course,
just be the convex hull of the vertices of P corresponding to those of the combinatorial
triangulation. We may thus run into two kinds of problem. What could go wrong is that
either such a cell collapses into a hyperplane, or two adjacent cells fold over at their common
(d − 1)-face. In each case, Radon’s Theorem leads to the existence of an interior face of
dimension at most b1

2
dc (or b1

2
(d− 1)c in the former case), contrary to T being sff. 2

The implication of Theorem 4.1 for the equality case Conjecture 3.1 of the GLBC is obvious—
all we need is an appropriate combinatorial triangulation of our polytope P . However, there
are no corresponding pointers to finding such a triangulation.

5. Inductive arguments

In this section, we work with the weaker form of the equality case in the GLBC, namely,
Conjecture 3.1; that is, if P is a simplicial d-polytope, then gr(P ) = 0 implies that P has
some triangulation, not necessarily regular, with no interior (d − r)-faces. We refer to this
property as F (d, r).

If v ∈ vert P , then we write P/v for the vertex-figure of P at v. We first generalize a
result from [14].

Proposition 5.1. For each r = 0, . . . , d− 1,∑
v∈vert P

gr(P/v) = (d + 1− r)gr(P ) + (r + 1)gr+1(P ).

Proof. This result holds more generally for links of vertices of triangulated spheres, but there
is a nice proof for a simplicial polytope P , which we give here. We first establish the actual
result of [14]. We recall that the boundary complex of P is shellable (indeed, our proof thus
extends to shellable spheres), and (following [14]) we obtain a contribution 1 to hr(P ) each
time when, in adjoining the new facet F in the shelling, we add a new (r − 1)-face G 6 F
and, for each s > r, all the (s− 1)-faces of F which contain G. In terms of the h-polynomial,
the change ∆h(P, σ, τ) in h(P, σ, τ) is given by

∆h(P, σ, τ) = ∆f(P, σ − τ, τ) =
∑
s>r

(
d− r

d− s

)
(σ − τ)d−sτ s = σd−rτ r.
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At this stage, we repeat the observation of [14], that reversing the shelling order (which
interchanges the rôles of r and d− r) leads directly to the Dehn-Sommerville equations (2.4).

When we look at the corresponding contributions to

ϕ(P, σ, τ) :=
∑

v∈vert P

h(P/v, σ, τ),

these come from the d vertices of F . For the r vertices v ∈ G, we are adding a new (r−2)-face
(namely, the facet of G opposite v), while for the other d− r vertices v /∈ G we are adding a
new (r − 1)-face (namely, G itself). The analysis analogous to that for P yields

∆ϕ(P, σ, τ) = rσd−rτ r−1 + (d− r)σd−r−1τ r =
( ∂

∂σ
+

∂

∂τ

)
σd−rτ r.

Summing over v ∈ vert P , we obtain the attractive formula∑
v∈vert P

h(P/v, σ, τ) =
( ∂

∂σ
+

∂

∂τ

)
h(P, σ, τ). (5.1)

Since g(P, σ, τ) = (σ − τ)h(P, σ, τ), an easy calculation yields exactly the same formula for
the g-polynomials, namely,∑

v∈vert P

g(P/v, σ, τ) =
( ∂

∂σ
+

∂

∂τ

)
g(P, σ, τ). (5.2)

Comparing the coefficients of σd+1−rτ r in the two sides of (5.2) gives the result. 2

Remark 5.2. The simple expressions for the relations of (5.1) and (5.2) provide another
justification for using two indeterminates to write the h- and g-polynomials.

Our inductive argument is the following.

Theorem 5.3. If r 6 b1
2
(d− 1)c, then F (d− 1, r) implies F (d, r).

Proof. First, recall that (g0(P ), . . . , gbd/2c) is an M-sequence (this is Theorem 2.1). Hence
gr(P ) = 0 implies that gr+1(P ) = 0 also, because r + 1 6 b1

2
(d + 1)c. Since gr(P/v) > 0 for

each v ∈ vert P , we have

0 6
∑

v∈vert P

gr(P/v) = (d + 1− r)gr(P ) + (r + 1)gr+1(P ) = 0 (5.3)

from Proposition 5.1, and so it follows that gr(P/v) = 0 for each v. By the inductive
assumption F (d − 1, r), we deduce that each vertex-figure P/v has a triangulation Uv, say,
with no interior (d−r−1)-faces. This induces a “local” triangulation Tv at v, with no interior
(d − r)-faces containing v; initially, at least, we make no assumption that Tv extends to a
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triangulation of P itself. However, if E = conv{v, w} is an edge of P , then Uv induces a
triangulation Vv of the quotient P/E of P at E which has no interior (d− r− 2)-faces. Now

r 6 b1
2
(d− 1)c =⇒ d− r − 2 > b1

2
dc − 1 = b1

2
(d− 2)c,

so that Vv is sff. Similarly, the triangulation Vw of P/E induced by Uw is sff, and from
Theorem 3.3 we conclude that Vv = Vw. It follows at once that the local triangulations
Tv are indeed compatible, and so they fit together to form a triangulation T of P with no
interior (d− r)-faces, as claimed. 2

A particular case of this is the lower bound theorem for a simplicial d-polytope P , namely,
g2(P ) > 0, with equality implying that P has a triangulation with no interior (d− 2)-faces.
Putting the original proof by Walkup [22] for d = 4 together with the g-theorem, we see that
we have the proof (with equality) for all d > 4. Moreover, in this case, it is easy to see that
the resulting triangulation is actually regular.

Remark 5.4. The cases r 6 b1
2
(d− 3)c of Theorem 5.3 were (in effect) shown in [9], again

using (5.3); the extension to r 6 b1
2
(d− 1)c uses Theorems 3.3 and 4.1.
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