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Abstract. A nonsingular real algebraic plane projective curve is called a dividing
curve or a curve of type I if its real point set divides its complex point set. Rokhlin’s
formula, which holds for such curves, is an important step in order to classify
nonsingular real algebraic plane projective curves. It gives prohibitions on the
complex orientations of a curve of type I and also on its real scheme. The concept
of type has been defined also for T-curves which are PL-curves constructed using
a combinatorial method called T-construction. From the point of view of real
algebraic geometry, this construction is very interesting because, under a condition
of ”convexity” of the triangulation used in the T-construction, the resulting T-
curve has the isotopy type of a nonsingular real algebraic plane projective curve.
In this work we prove that Rokhlin’s formula holds for dividing primitive T-curves
constructed with arbitrary (not necessary convex) triangulations.

Introduction

A real algebraic plane projective curve of degree m is a real homogeneous polynomial in
three variables C(x0, x1, x2) of degree m considered up to multiplication by a non zero real
number. The equation C(x0, x1, x2) = 0 defines a subset of RP2 (resp. of CP2) which is
called the real (resp. complex) point set of the curve and is denoted by RC (resp. CC).
We suppose the curve to be nonsingular, then RC is a disjoint union of circles embedded in
RP2. The topological type of the pair (RP2, RC) is given by the description of the mutual
disposition of the connected components of RC and is called the real scheme of the curve.
In the following the term “curve” will denote a nonsingular real algebraic plane projective
curve. To study classification problems the work proceeds in two directions. The first point
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is to find topological prohibitions on curves due to their algebraic nature, the second is to
prove if any scheme which satisfies the prohibitions is realizable by a curve of given degree,
i.e. to construct a curve with given scheme and degree.

The classical methods of construction of curves are based on the perturbation of singular
curves having “simple” singularities (see for example [12], [13] and [9]). At the beginning
of 1980’s Viro studied the perturbation of more complicated singularities and this has been
the starting point of a new method of construction introduced by Viro himself ([26], [27] and
[29]). This work deals with a particular case of Viro’s method, called T-construction, which
acts as a link between real algebraic geometry and combinatorial geometry. This construction
works in any dimension and in any degree. In dimension two, starting from the triangle T
in R2 of vertices (0, 0), (0, m), (m, 0) equipped with a triangulation and a sign (+,−) at
each vertex of the triangulation, we construct a T-curve, i.e. a PL-curve which has, under
particular conditions on the triangulation, the isotopy type of a curve of degree m in RP2.

Many important prohibitions for topology of algebraic curves are known (see for example
[9], [31] and [27]). One of the most classical prohibitions is, for example, Bézout Theorem
[30]. From this theorem it follows, for instance, the possibility to relate the existence, in the
real point set of an algebraic curve, of a ”one-sided” connected component with the degree
of the curve. Another important prohibition is Harnack Theorem [12] which gives the sharp
upper bound for the number of connected components of a curve. A powerful result is also
Rokhlin’s formula which is the object of this work. The formula holds for curves whose real
point set divides the complex point set.

Working in real algebraic geometry, we usually try to extend properties and prohibi-
tions known for varieties of a certain dimension to higher dimensions. For example Harnack
Theorem has been generalized (see for example [9], [31] and [27]): if RA is a nonsingu-
lar real algebraic projective variety and CA is its complexification, then dim H∗(RA, Z2) ≤
dim H∗(CA, Z2). It is from this point of view that this work can be seen. In fact here we
prove, in a combinatorial way, that Rokhlin’s formula holds for particular T-curves called
“primitive dividing T-curves” or “primitive T-curves of type I”. Till now there is no conjec-
ture for a generalization of Rokhlin’s formula in higher dimensions. On the other hand, one
can expect that the combinatorial proof given here would suggest possible formulation and
proof of Rokhlin’s formula in higher dimensions at least for T-objects, i.e. for hypersurfaces
constructed with T-construction in higher dimensions.

In the last years many prohibitions for real algebraic curves have been proved also for
T-curves ([15], [5]). Recently Itenberg and Shustin [17] described a complexification of Viro’s
construction. The most interesting part of their work is in dimensions higher than two, but
they prove, in particular, that all the topological results which are true for algebraic curves
are also true for arbitrary T-curves. Then they give a new proof for many prohibitions which
were extended to T-curves such as Harnack theorem, Rokhlin’s formula and others.

The paper is organized as follows: Section 1 is devoted to introduce Rokhlin’s formula for
nonsingular real algebraic plane projective curves. In particular we recall the formulation of
Rokhlin’s formula introduced by Viro [28] in terms of the Euler characteristic of the connected
components of the complement of the curve and of the index, with respect to the curve, of
the points belonging to these connected components. In Section 2 we recall the fundamen-
tal results about T-curves, their type (introduced by Haas in [10]) and we describe briefly
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necessary and sufficient conditions for a T-curve to be a dividing T-curve [21]. In analogy
with the algebraic case, the type of a T-curve is related to the existence of two orientations
which are opposite each other and are called symmetric orientations. The characterization of
the type of T-curves is related with particular decompositions, called fragmentations, of the
triangle T equipped with special distribution of signs. These fragmentations are similar to
the decompositions in zones introduced by Haas in [10] in the context of maximal T-curves
that is T-curves having maximal number of connected components. In Section 3 we explain
how to calculate the index of a point with respect to a T-curve. In Section 4 we introduce
new operations, called “modifications”, which allow us to pass from a T-curve of type I to
others T-curves of type I with controlled topology. Finally in Section 5 we give a proof of
Rokhlin’s formula for primitive dividing T-curves.

I would like to thank M. Galbiati and I. Itenberg for the useful comments and discussions.
I am very grateful to the referee for his accurate and constructive observations.

1. Rokhlin’s formula

An important step in order to classify nonsingular real algebraic plane projective curves is
to study how the real point set RC is situated in the complex point set CC.

An algebraic curve C is a dividing curve or a curve of type I if RC divides CC, otherwise it
is of type II.

In the case of a dividing curve C, the real point set divides the complex point set in two
halves each of them inducing an orientation on the real curve RC. These two orientations
are opposite to each other and are called complex orientations of the real curve. The complex
orientations have been introduced in the study of the topology of real algebraic curves by
Rokhlin in 1974 [23].

Rokhlin’s formula gives prohibitions on complex orientations of a dividing curve and also
on its real scheme. Its classical formulation, which is given in two different ways for odd and
even degrees, can be expressed in terms of the degree, the mutual position of the connected
components and their orientations ([23], [19], [24]).

In 1988 Viro [28] proposed a new formulation of Rokhlin’s formula which summarizes in a
single expression the two classical formulations:

Theorem 1.1. (Viro formulation of Rokhlin’s Formula) For any nonsingular real algebraic
plane projective curve C of type I and degree m, one has∑

F∈(RP2\RC)

ind2
RC(xF ) χ(F ) =

m2

4
,

where xF is a point of the connected component F of RP2 \RC, indRC(xF ) is the index of xF

with respect to RC equipped with a complex orientation and χ(F ) is the Euler characteristic
of F .

The sum in the left hand side can be regarded as a sort of unusual integral with respect
to the Euler characteristic. In fact, even if the Euler characteristic is not a measure, it can
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be considered as a finitely-additive measure and for this type of functions it is possible to
develop an integration theory. As ind2

RC(x) is a linear combination of characteristic functions
of subset of RP2 \ RC (for a method to calculate the index see Section 3), we can set:∑

F∈(RP2\RC)

ind2
RC(xF ) χ(F ) =

∫
RP2\RC

ind2
RC(x) dχ(x)

2. T-curves

2.1. Construction

We use the following notions. An integer segment is a segment of R2 containing only two
points with integer coordinates: its endpoints. An integer polygon is a closed subset of R2

homeomorphic to a disc and bounded by a closed path of integer segments. A boundary-
segment of an integer polygon P is an integer segment of the boundary of P , and a boundary-
point of P is an endpoint of a boundary-segment of P .

Take a convex integer polygon P whose vertices have non-negative coordinates. Consider a
triangulation Γ of P having vertices with integer coordinates and a distribution of signs ε at
the vertices of Γ, i.e. choose a sign at each vertex of the triangulation.

Construct the symmetric copies σx(P ), σy(P ) and σxy(P ) where σx, σy and σxy are reflections
with respect to the x-axes, y-axes and the origin and denote by P# the union of the symmetric
copies of P .

By symmetry we extend the triangulation Γ of P to a triangulation of P#. We extend also
the distribution of signs on P to a distribution ε̄ on P# by the following rule: let (i, j) be a
vertex of Γ having sign εi,j, then the vertex ((−1)ai, (−1)bj) where a and b are integers has
sign εi,j(−1)ai+bj. A simplex of a triangulation equipped with a distribution of signs is called
empty if its vertices have same sign, non-empty otherwise. For any non-empty triangle of the
triangulation of P#, join the middle points of its two non-empty edges with a segment. Let
K be the union of these segments in P#, then the curve K is called the PL-curve associated
to the triple (P, Γ, ε).

We glue the disjoint union of the four copies of P by their boundary: we identify each
point (x, y) on an edge l of P# with its symmetric copy σ(x, y) = ((−1)α1(x), (−1)α2(y))
where (α1, α2) is any vector with integer relatively prime coordinates and orthogonal to l.
We denote the resulting space by P̂ . It is well known that we can associate to the polygon
P a complex toric surface X(P ) (see, for example [1], [2], [4], [6], [7], [8], [20] for a definition
and for the principal properties of a toric variety) and that the real part XR(P ) of X(P ) is
homeomorphic to P̂ . Let A be the image of the PL-curve K in P̂ . The curve A is a closed
PL-submanifold called the T-curve associated to the triple (P, Γ, ε).

Consider the following additional condition on the triangulation Γ:

Definition 2.1. A triangulation Γ of P is convex if there exists a convex piecewise-linear
function ν : T → R such that ν is linear on each triangle of Γ, but ν is not linear on the
union of any two triangles of Γ.
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Let us recall that non convex triangulations exist [3].

The theory developed by Viro (for more details see for example [25], [26], [27], [29], [18], [22],
[7]) assures that:

Theorem 2.2. (O. Ya. Viro) Under the assumption of convexity of the triangulation Γ of
P , there exists a nonsingular real algebraic curve C in X(P ) with Newton polygon P , and a
homeomorphism XR(P ) −→ P̂ mapping the real point set of C onto A.

The pair (P̂ , A) is called a chart of the algebraic curve C and the T-curve A is called an
algebraic T-curve.

If the polygon P is the triangle T in R2 of vertices (0, 0), (0, m), (m, 0), T-construction
allows us to construct a PL-curve K in T# and a T-curve A in T̂ . The space T̂ is homeomor-
phic to RP2 and in this case K (resp. A) is simply called the PL-curve (resp. the T-curve)
associated to the pair (Γ, ε). We say that A is a T-curve of degree m as it is constructed
starting from the integer m. Viro’s theorem assures that, under the assumption of convexity
of the triangulation Γ of T , there exists a nonsingular real algebraic plane projective curve
C of degree m and a homeomorphism RP2 −→ T̂ mapping RC onto A.

A triangulation is called primitive if it has, as vertices, all the integer points of T . In
the following, if not otherwise specified, we consider only primitive triangulations. In general
given a polygon P equipped with a triangulation Γ and a distribution of signs, we call an
integer point v of P̂ isolated if each edge of the extended triangulation containing v is non-
empty.

The parity of an integer point (i, j) ∈ Z2 is the pair ([i]2, [j]2) ∈ (Z2)
2 where [i]2 (resp.

[j]2) is the reduction, modulo 2, of the integer i (resp. the integer j).
We denote by δi with i = 1, 2, 3, 4 the four different parities of vertices; an integer segment

connecting two vertices of parities δi and δj is called of type δi,j.
Let us consider a boundary-edge l of type δi,j of an integer polygon P ; let (α1, β1) and

(α2, β2) be the endpoints of l, then any point (x, y) of l is identified in P̂ with its symmetric
copy

(
(−1)β1+β2(x), (−1)α1+α2(y)

)
, this is why we will denote by σi,j, with i, j ∈ {1, 2, 3, 4},

the symmetry
(
(−1)β1+β2 , (−1)α1+α2

)
of R2 where (α1, β1) (resp. (α2, β2)) is an integer point

of Z2 having parity δi (resp. δj).
In 1993 Itenberg [14] introduced special distributions of signs in T-construction.

Definition 2.3. The distributions Hµ
δi

with i = 1, 2, 3, 4 and µ = ± defined as follows:{
Hµ

δi
(a, b) = µ ∀ (a, b) ∈ (P ∩ Z2) having parity δi

Hµ
δi
(a, b) = −µ ∀ (a, b) ∈ (P ∩ Z2) having parity δs with s 6= i

are called Harnack distributions.

From the definition it follows that two Harnack distributions which coincide on three pairwise
different parities of vertices are equal.

Harnack distributions are very special. In fact, for instance, if a convex integer polygon P
is equipped with a triangulation and a Harnack distribution, then the isotopy type of the
T-curve obtained in P̂ by Viro method is independent of the choice of the triangulation and
of the choice of the Harnack distribution (see for example [16], [10], [11]). We recall here only
a description of the PL-curve associated to a triple (P, Γ, Hµ

δi
).
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Figure 1. A chart of a T-curve of degree 8 constructed starting from the triangle T equipped
with a primitive triangulation and the distribution H−

([0],[0]).

Proposition 2.4. Let P be an integer polygon and ns, ps (for s = 1, 2, 3, 4) be the number
of integer points of P having parity δs and belonging respectively to the interior part of P and
to the boundary of P . Let K be the PL-curve associated to the triple (P, Γ, Hµ

δi
) where Hµ

δi
is

a Harnack distribution and Γ is a primitive triangulation. Then the extended distribution of
signs on the symmetric copy σi,s(P ) of P is the Harnack distribution Hµ′

δs
for an appropriate

µ′ ∈ {+,−} and K ∩ σi,s(P ) can be described as follows:

• There exist ns circles (called ovals) such that each of them splits σi,s(P ) in two connected
components. One of these two components contains only one integer point and this point
is of parity δs.

• There exist ps arcs such that each of them splits σi,s(P ) in two connected components.
One of these two components contains only one integer point of P and this point is a
vertex of P with parity δs.

Example 2.5. Figure 1 represents a T-curve of degree 8 constructed starting from the
triangle T equipped with a primitive triangulation and the distribution H−

([0],[0]).

2.2. The type of a T-curve

In this section we briefly recall the principal concepts related to the type of a T-curve referring
to [21] for more details and proofs.

Take a T-curve A associated to a pair (Γ, ε) and let τ be a triangle of Γ. The T-curve
Aτ obtained applying T-construction to the triangle τ is a circle and then it admits only two
orientations, opposite each other, each of them inducing, in a natural way, an orientation on
the PL-curve Kτ associated to τ . Given an orientation of Aτ , for each τ ∈ Γ, it is not true in
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general that these orientations can be glued together obtaining an orientation of the T-curve
A, i.e. it is not true in general that the induced orientations on Kτ , for each τ ∈ Γ, give an
orientation of A. An orientation of a T-curve A associated to a pair (Γ, ε) is called symmetric
if it is obtained as the gluing of an orientation of each of the T-curves in τ̂ , for any τ ∈ Γ.

It is easy to verify that if a T-curve A associated to a pair (Γ, ε) admits a symmetric orien-
tation, then A admits exactly two symmetric orientations and one is opposite to the other
one.

Definition 2.6. A T-curve is a dividing T-curve or a T-curve of type I if it admits a
symmetric orientation, it is of type II otherwise.

In [21] it is proved that if an algebraic curve is associated to a T-curve by Viro’s method,
then the type of the T-curve coincides with the type of the algebraic curve and its symmetric
orientations are complex orientations as defined by Rokhlin.

The type of a T-curve can be expressed in terms of the triangulation and the distribution
of signs. Two different triangles of Γ with a common edge have same orientation if they induce
opposite orientations on their common edge, they have opposite orientations otherwise.

Definition 2.7. A symmetric orientation for the pair (Γ, ε) is a collection of pairs (τ, θ),
where τ ∈ Γ and θ is an orientation of τ , satisfying the following condition: each pair of
triangles τ , τ ′ with a common edge, have same orientation if and only if the distribution
ε|(τ∪τ ′) is a Harnack distribution.

It is easy to show [21] that a T-curve A associated to a pair (Γ, ε) admits a symmetric
orientation if and only if the pair (Γ, ε) admits a symmetric orientation.

2.3. Cycles, rays and fragmentation of T

The classification theorem of dividing T-curves, given in combinatorics terms, is based on
the study of a special decomposition of the triangle T .

Definition 2.8. A cycle of T is a closed path of integer segments l1, . . . , lr contained in T ,
having the same type and such that for s = 1, . . . , r, ls is not a boundary-segment of T , ls∩ls−1

and ls ∩ ls+1 are exactly the endpoints of the segment ls and ls ∩ lj = ∅ if j /∈ {s− 1, s, s + 1}
(where (s− 1) and (s + 1) are reduced modulo r).

We call zone of a cycle L the integer polygon of T \ L having L as boundary.

Definition 2.9. A ray of T is a path of integer segments l1, . . . , lr contained in T , having
the same type and such that the path l1 ∪ . . . ∪ lr has exactly two different points on the
boundary of T : its initial and final points. Moreover, for s = 2, . . . , r − 1, ls ∩ ls−1 and
ls ∩ ls+1 are exactly the endpoints of the segment ls and ls ∩ lj = ∅ if j /∈ {s− 1, s, s + 1}.

A ray R divides T in two parts. We call zone of R one of these two parts: if they contain
different number of vertices of the triangle T then the zone of R is the one containing less
number of vertices, otherwise it is the part of T \ R containing the integer segment whose
endpoints are (0, 0), (1, 0).

As cycles and rays are paths of integer segments having same type, it makes sense to
speak about their biparity referring to the type of their integer segments.
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Figure 2. A ray and a cycle of T .

Example 2.10. Figure 2 represents a ray and a cycle of T .

If L is a cycle of T having biparity δi,j, denote by ns the number of the integer points of parity
δs contained in the interior part of its zone Z and by p the number of the boundary-points
of Z that is the number of integer points of L.

Proposition 2.11. The zone Z of a cycle L of biparity δi,j verifies the following relation:

nk + nl = ni + nj +
p

2
− 1

Proof. Use Pick’s formula to calculate the area Ω of Z in Z2 and in the sublattice generated
by the vertices of parity δj, δi.

Ω = nk + nl + ni + nj +
p

2
− 1 =

= 2
(
ni + nj +

p

2
− 1

)
This relation implies the statement. 2

Remark. The property of the zone of a cycle stated by Proposition 2.11 is invariant under
translation of the cycle.

Let L1, . . . ,Lh be a finite number of cycles and rays of T such that, if i 6= j and Li ∩Lj 6= ∅
then Li∩Lj is a finite number of integer points. These cycles and rays subdivide T into finitely
many connected components, this decomposition of T is called fragmentation. In particular
L1 ∪ . . . ∪ Lh is the boundary of the fragmentation, the vertices of the fragmentation are
the integer points of L1 ∪ . . . ∪ Lh which are not boundary-points of T and the closure of a
connected component P of T \ {L1 ∪ . . . ∪ Lh} is called a fragment of T .
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Figure 3. A fragmentation of T (case (A)) and a decomposition of T which is not a fragmen-
tation of T (case (B)).

Example 2.12. Figure 3 represents two decompositions of T : the first one (case (A)) is a
fragmentation of T while the second one (case (B)) is not a fragmentation of T .

Definition 2.13. A distribution of signs ε on a fragmentation F is a fragmented Harnack
distribution if:

1. The distribution εs = ε|Ps is a Harnack distribution for each fragment Ps of F .

2. If Pr and Ps are fragments of F such that Pr ∩ Ps 6= ∅ then εr = εs on Pr ∩ Ps.

3. If Pr and Ps are fragments of F such that Pr ∩Ps contains an integer segment, then εs

and εr are two different Harnack distributions.

The classification of dividing T-curves is based on fragmentations and fragmented Harnack
distributions. In [21] it is proved that, given a fragmentation F it is always possible to
choose a fragmented Harnack distribution on F . Moreover the procedure used to assign a
fragmented Harnack distribution to F is unique in the sense that even if we assign to F two
different fragmented Harnack distributions the resulting T-curves are obtained one from the
other by a symmetry. Now we are able to state the classification theorem:

Theorem 2.14. (Classification Theorem) [21] A primitive T-curve is of type I if and only
if it is constructed starting from a fragmentation F of T equipped with a fragmented Harnack
distribution and a primitive triangulation on each fragment of the fragmentation.

3. The index of a point

Given a curve C in RP2 equipped with an orientation, we can consider for each point x ∈
RP2 \ C, the index indC(x) of this point with respect to the curve. We can calculate this
number in the following way: consider a line through the point x and transversal to the
curve C. Choose a normal vector field to the line which vanishes in x (Figure 4). Assign
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Figure 4. A normal vector field to a line.

Figure 5. Algebraic value of the intersection points.

to each intersection point between the curve and the line the value +1 if, in that point, the
local orientation of the curve agrees with the normal vector to the line, assign the value −1
otherwise (Figure 5). Let α be the sum of the values assigned to each intersection point.
Then the index in x is defined as

indC(x) =
∣∣∣α
2

∣∣∣
It is easy to check that the index does not depend on the choices of the line and of the normal
vector field. Besides it immediately follows that the index is constant on each connected
component of RP2 \ C and that the index of a point does not change if we reverse the
orientation of C. Thus for any real algebraic plane projective curve C of type I equipped
with one of its complex orientations indC is a well defined function on RP2 \ C which takes
half-integer values if the degree of the curve is odd, integer values otherwise.

Consider now a T-curve A of type I associated to a pair (Γ, ε) and one of its symmetric
orientations. We want to study the index of a connected component of T̂ \ A, that is the
index with respect to the T-curve A of a point belonging to that connected component.
We observe that each integer point of the extended triangulation is a point of T̂ \ A, and
that each connected component of T̂ \A contains at least one integer point. To calculate the
index of an integer point E, we construct, along the edges of the extended triangulation, a
pseudo-line J (i.e. J is homeomorphic to S1 and T̂ \ J is connected). We require that E ∈ J
and J is symmetric with respect to the origin.
Because of the construction, the T-curve intersects J transversally and J∩A does not contain
integer points. Consider an intersection point B between an edge l of J and A, and let τ and
τ ′ be the triangles of the extended triangulation such that τ ∩ τ ′ = l. As A is of type I, the
orientation of A in τ ∪ τ ′ is obtained gluing an orientation of the piece of A contained in τ
with an orientation of the piece of A contained in τ ′. This fact implies that the vectors of
the orientation of A at the point B in τ and τ ′ point outward for one of the two triangles
and inward for the other one, i.e. they coincide if we consider the two vectors applied in l
(see for example Figure 6).
Given a pseudo-line J , we associate to each integer segment l of J a non-zero normal vector
~v of l. Such a collection is called a normal vector system for J around the point E if each
couple of pairs (l1, ~v1), (l2, ~v2) satisfies the following condition:
(~v1 and ~v2 point to the same connected component of T# \ J ) ⇔ (l1 and l2 belong to the
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Figure 6. The vectors in B of the orientation of the T-curve in τ ∪ τ ′ point outward for τ
and inward for τ ′.

Figure 7. A normal vector system for J around the point E.

same connected component of (J \ E) ∩ T#).
Choose therefore a normal vector system νE for J around the point E (see for example
Figure 7).
We can now consider two vectors in B: one is given by νE, while the other one is determined
by one of the two vectors of the orientation of the T-curve. The algebraic value iJ,E(B) of
the point B is +1 if these two vectors agree, it is −1 otherwise. The index of the vertex E
with respect to the T-curve A is defined in the following way:

indA(E) =

∣∣∣∣∣
∑

B∈(J∩A) iJ,E(B)

2

∣∣∣∣∣
The value

α(E) =

∑
B∈(J∩A) iJ,E(B)

2

is called the algebraic index of E with respect to (A, J, νE). It is easy to verify that the index
is independent of the choice of J and that the sign of the algebraic index changes if we reverse
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the normal vector system.
Let F be another integer point belonging to J . It is possible to calculate indA(F ) using

J . For each pair of points E1 and E2 of J , denote by E1E2 the piece of J which connects
in T# the points E1 and E2. Given two normal vector systems ν1 and ν2 for J respectively
around the points E1 and E2, we say that ν1 and ν2 are coherent if ν1|E1E2

coincides with
ν2|E1E2

, otherwise they are called opposite.

Lemma 3.1. Let E and F be two integer points of J and νE and νF be two opposite normal
vector systems for J around E and F respectively. The algebraic indices α(E) and α(F ) of
E and F with respect to (A, J, νE) and (A, J, νF ) satisfy the following relation:

α(F ) = α(E)−
∑

B∈(EF∩A)

iJ,E(B)

Proof. Consider B ∈ J ∩A. The vector in B determined by the orientation of A is the same
when we calculate the index of E or the index of F, while the vectors in B determined by the
normal vector systems are opposite in the two cases if and only if B is contained in the piece
EF .
By definition of algebraic value of B, we obtain:

iJ,F (B) =

 −iJ,E(B) if B ∈ EF

iJ,E(B) otherwise

The statement follows therefore from these relations and from the definition of algebraic
index. 2

Definition 3.2. The number tFE =
∑

B∈(EF∩A) iJ,E(B) is called the relative algebraic index

of F with respect to (E, α(E)).

Lemma 3.3. Let l be an integer segment of J . The algebraic values of the two intersection
points between A and the union l# of the four symmetric copies of l are opposite.

Proof. Let τ be a triangle having l as edge, and B1 ∈ σ1(l), B2 ∈ σ2(l) be the intersection
points between A and l#. If B1 or B2 does not lie in J , we consider also J ′ = σxy(J). We
choose two coherent normal vector systems for J and J ′ around the origin. The triangles
σ1(τ) and σ2(τ) are glued in τ̂ along the non-empty copies of l, then the vectors of the
orientation of the T-curve in B1 and in B2 point outward to a triangle and inward to the
other one. The vectors determined by the normal vector systems of the pseudo-lines point
inward or outward to σ1(τ) and σ2(τ). Then the two points have opposite algebraic values.2

Theorem 3.4. Let F be a fragmentation of T and P be a fragment of F . If E and F are
two vertices of Γ|P having same parity, then for each symmetry σ of R2

indA(σ(E)) = indA(σ(F ))
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Proof. Let P s be a copy of P and Hµ′

δs
be the Harnack distribution on P s. Consider the

symmetric copies Es and F s of E and F in P s, a pseudo line J symmetric with respect to
the origin through O, Es and F s and opposite normal vector systems for J around Es and
F s.
By Lemma 3.1 the following equality holds:

α(Es) = α(F s)−
∑

B∈(EsF s∩A)

iJ,F s(B)

Let us verify that
∑

B∈(EsF s∩A) iJ,F s(B) = 0. An integer segment of J ∩ P s is non-empty if
and only if it contains an integer point of parity δs, thus there is exactly an even number of
intersection points between EsF s and A. Let B1 and B2 be two intersection points between
EsF s and A such that the piece B1B2 of J contains no other intersection points between J
and A. For such points one has:

iJ,F s(B1) = −iJ,F s(B2)

In fact let τ1 = Conv{v1, v2, v3} (resp. τ2 = Conv{v4, v5, v6}) be a triangle such that the
point B1 belongs to the edge Conv{v1, v2} (resp. B2 ∈ Conv{v4, v5}) and let v1 (resp. v4) be
the vertex of type δs. As P is a fragment we can construct a path of triangles in P s which
connects τ1 with τ2 and such that all the triangles of the path have same orientation. We
can have two different situations:

• τ1 and τ2 face on the same side of J . In this case if the orientation of τ1 is given by
v2, v1, v3, the orientation of τ2 is v4, v5, v6. It is simple to verify that the vectors
determined by the orientation of the T-curve in B1 and B2 point in opposite directions
with respect to J .

• τ1 and τ2 face on opposite sides of J . In this case if the orientation of τ1 is given by
v2, v1, v3, the orientation of τ2 is v4, v6, v5 and therefore it is simple to verify that
again the vectors determined by the orientation of the T-curve in B1 and B2 point in
opposite directions with respect to J . 2

Consider a dividing T-curve A of degree m associated to a pair (Γ, ε) and let F be the frag-
mentation of T , equipped with a fragmented Harnack distribution, to which A is associated.
Let L be a cycle (resp. a ray) of the boundary of F having biparity δi,j and zone Z. Denote
by P1,. . . , Pn the fragments contained in Z. Let P1 be such that its intersection with L con-
tains at least two integer points. As P1 is equipped with a Harnack distribution, in each of its
copies there exists a parity of isolated vertices, i.e. all the integer points of a certain parity
are isolated (Proposition 2.4). In the following we use these notions: for s ∈ {i, j, k, l}, P s

1 is
the copy of P1 in which the vertices of parity δs are isolated, Qs is the quadrant containing
P s

1 , if S is a subset of T , S# is the union of S and its symmetric copies and Ss = S# ∩Qs.

Lemma 3.5. There exist αi with i = 1, 2, 3, 4 such that:
•

∑4
s=1 αs = 0

• the index situation in P1
# is the following:
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copy of P1 Type of Index of Index of
isolated vertex isolated vertices non isolated vertices

P1
j δj | αj ∓ 1 | | αj |

P1
i δi | αi | | αi ± 1 |

P1
k δk | αk ∓ 1 | | αk |

P1
l δl | αl ∓ 1 | | αl |

Tab. 3.5. Index situation in P1
#

Proof. Consider an integer point E ∈ (P1 ∩ L) of parity δi. Construct a pseudo-line J1,
symmetric with respect to the origin, along the edges of the triangulation and such that
E ∈ J1. Construct the pseudo-line J2 = σy(J1). The union J1 ∪ J2 contains the four
symmetric copies of the integer point E. We can use one of the two pseudo-lines to calculate
the index of two copies of E and the other one for the other two copies. We can use J1 and J2

indifferently to calculate the index of the origin O. To calculate an algebraic index we have
to fix a normal vector system for each pseudo-line. We choose two coherent normal vector
systems ν1, ν2 for J1 and J2 around the origin.
For r = 1, 2, 3, 4 the points O and Er, with an appropriate normal vector system for J around
Er, satisfy Lemma 3.1.

α(Er) =

∑
B∈(J1∩A) iJ1,O(B)

2
−

∑
B∈(OEr∩A)

iJ1,O(B) if Er ∈ J1

α(Er) =

∑
B∈(J2∩A) iJ2,O(B)

2
−

∑
B∈(OEr∩A)

iJ2,O(B) if Er ∈ J2

By Lemma 3.3 it follows that
4∑

r=1

α(Er) = 0

To describe the index situation in P#
1 , consider the following additional condition on J1: the

pseudo-line J1 contains a vertex of Γ for any parity of integer points of P1. Let us denote by αs

the algebraic index of Es. As P1 is equipped with a Harnack distribution, then (Theorem 3.4)
| αi | is the index of all the vertices of type δi contained in P i and | αs | for s = j, k, l is the
index of all non isolated vertices of P s

1 (as all non isolated vertices have same index).
Moreover J1 can be also used to calculate the index of a vertex F of Γ of type δr 6= δi. If

we denote by α(F s) the algebraic index of the symmetric copy of F in P s
1 we have:

α(F s) = αs if s 6= i, r

α(F s) = αs ± 1 if s = i, r

4∑
s=1

α(F s) = 0

Therefore if α(F i) = αi ± 1 then α(F r) = αr ∓ 1. 2
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4. Modification on cycles and rays

We have seen in Section 2 that a fragmentation of T is associated to a dividing T-curve.
In this section we describe two operations, called “modifications on cycles and rays”, which
allow us to pass from a T-curve of type I to other T-curves of type I with controlled topology
and with known associated fragmentations. Consider a T-curve A of type I associated to
a pair (Γ, ε) and let F be the fragmentation of T, equipped with a fragmented Harnack
distribution, associated to A. Let L be a cycle or a ray of T having biparity δi,j; let us
remark that L is not necessary a cycle or a ray of the boundary B(F) of F . Starting from
A and from L, we construct a new fragmentation F ′ of T whose boundary B′ is the union of
the edges l of Γ which verify one of the following two conditions:

1. The edge l belongs to B(F) and it is not an edge of L.

2. The edge l is not an edge of B(F) and it is an edge of L.

We can choose a fragmented Harnack distribution ε′ for F ′ in such a way ε and ε′ coincide
outside the zone Z of L, then from Theorem 2.14 the fragmentation F ′ and the distribution
ε′ allow us to construct a dividing T-curve A′. We say that A′ is obtained from A by a
modification on the cycle (resp. the ray) L.

Lemma 4.1. If ε̃|P i
1

= Hµ
δi

then ε̃′|P i
1

= H−µ
δj

.

Proof. The extended distributions of ε and ε′ coincide on L#, then ε̃′|P i
1

and Hµ
δi

coincide
on the vertices of parity δi and δj. Besides ε̃′|P i

1
must be a Harnack distribution different

from Hµ
δi
, then ε̃′|P i

1
and Hµ

δi
are opposite on the vertices of parity δk and δl. This means

ε̃′|P i
1

= H−µ
δj

. 2

There exists the following relation between the connected components of Z# \ A′ and the
connected components of Z# \ A.

Lemma 4.2. Take two T-curves A and A′ obtained one from the other by a modification
on a cycle (a ray) L of biparity δi,j. Then A and A′, in the union of the symmetric copies of
the zone Z of L, are obtained one from the other by the symmetry σi,j.

Proof. From Lemma 4.1 and from Proposition 2.4, it follows that the part of A contained
in σi,s(Z) coincides with the part of A′ contained in σj,s(Z). Then the part of A and A′

contained in Z# are obtained one from the other by the symmetry σi,j too. 2

Corollary 4.3. Take two T-curves A and A′ obtained one from the other by a modification
on a cycle (a ray) L of biparity δi,j. If Z is the zone of L then a connected component of the
complement of the curve A in Z# ∩Qs is also a connected component of the complement of
the curve A′ in Z# ∩ (σi,j(Qs)).

Let E ∈ P1 be an integer point of type δi and αs with s = 1, 2, 3, 4 be as in Lemma 3.5.
Let us denote by Cs

r for r = 1, . . . , γs the connected components of the complement of A in
Zs for s = i, j, k, l. For each Cs

r , we define an integer number tsr called the relative algebraic
index of Cs

r with respect to (Es, αs).
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Choose an integer point Xs
r in Cs

r . Construct a pseudo-line J (symmetric with respect to the
origin) through Es and Xs

r such that EsXs
r ⊂ Zs. Choose a normal vector system ν for J

such that the algebraic index of Es with respect to (A, J, ν) is exactly αs (recall that it could

be also −αs). With this choices, we define: tsr = t
Xs

r
Es .

By Lemma 4.2 the symmetric copy σi,j(C
s
r ) of Cs

r is a connected component of Z# \ A′

in the quadrant Qs′ = σi,j(Qs), then

Zs′ \ A′ =

γs⋃
r=1

σi,j(C
s
r )

For each Cs
r , another integer number t′sr is also defined: it is the relative algebraic index of

σi,j(C
s
r ) with respect to (Es′

, αs′).

Lemma 4.4. Let A be a T-curve associated to a pair (Γ, ε). Let L be a cycle of T of biparity
δi,j, then the extended distribution ε̄ satisfies one of the following relations:

a) ε̄(Ei) = ε̄(Ej) ∀ integer points E ∈ L
b) ε̄(Ei) = −ε̄(Ej) ∀ integer points E ∈ L

Similarly for the extended distribution ε̄ restricted to L# ∩Qk and L# ∩Ql.

Proof. Consider the quadrants Qi and Qj (resp. the quadrants Qk and Ql) and look at the
polygons P i

1 and P j
1 (resp. P k

1 and P l
1). The vertices of parity δi and δj (resp. δk and δl)

are isolated respectively in the first polygon and in the second one. This means that the
distributions of signs on L# ∩ P i

1 and L# ∩ P j
1 are both alternate (resp. the distributions

of signs on L# ∩ P k
1 and L# ∩ P l

1 are both constant), that is ε̄(Ei) = ε̄(Ej) for each integer
point E ∈ L ∩ P1 or ε̄(Ei) = −ε̄(Ej) for each integer point E ∈ L ∩ P1 (resp. ε̄(Ek) = ε̄(El)
for each integer point E ∈ L ∩ P1 or ε̄(Ek) = −ε̄(El) for each integer point E ∈ L ∩ P1).
As the vertices of L are all of parities δi and δj and the signs of all the vertices having same
parity change in the same way with respect to a symmetry, the lemma is proved. 2

Proposition 4.5. If Cs
r is a connected component of Zs \ A with index | αs − tsr |, then

σi,j(C
s
r ) is a connected component of Z# \ A′ with index | αs′ + tsr |.

Proof. We can choose symmetric orientations for the T-curves A and A′ such that the two
orientations coincide outside Z# and are opposite inside Z# that is σi,j(A|Zs) and A′

|σi,j(Zs)

have opposite orientations. If Qs and Qs′ = σi,j(Qs) are symmetric quadrants with respect to
the origin, then we need only a pseudo-line J (constructed as before) to prove the proposition.
Otherwise we consider also J ′ = σxy(J). If a connected component Cs

r in Zs \ A has index
| αs − tsr | then the sum of the algebraic values of the intersection points between the curve
A and the piece EsXs

r is equal to tsr.
After the modification the point σi,j(X

s
r ) ∈ σi,j(C

s
r ) belongs to the quadrant Qs′ . By

definition, the index of σi,j(C
s
r ) with respect to the curve A′ is | αs′ − t′sr |. On the other

hand t′sr is the sum of the algebraic values of the intersection points between A′ and the piece
Es′Xs′

r which is the symmetric copy of the piece EsXs
r . As A ∩ Zs = A′ ∩ Zs′

with opposite
orientations, the two numbers tsr and t′sr must be opposite. 2

There exists another important property of cycles which can be formulated in terms of the
algebraic relative index. The most interesting aspect of this relation, which connects the
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relative algebraic indices and the Euler characteristics of the connected components of Z#\A,
is that it is really independent from the curve outside the zone of the cycle. Therefore it
describes a property of the curve contained in the zone of the cycle and, in particular, it is
invariant under translations.

Proposition 4.6. Let Z be the zone of a cycle L of biparity δi,j. The relative algebraic
indices and the Euler characteristic of the connected components Cs

r of Z# \ A satisfy the
following relation:∑

Zj\A

χ(Cj
r )t

j
r +

∑
Zi\A

χ(Ci
r)t

i
r −

∑
Zk\A

χ(Ck
r )tkr −

∑
Zl\A

χ(C l
r)t

l
r = 0

Proof. We prove the proposition by induction on the number n of cycles and rays which
intersect the zone Z.

n = 0: In this case P1 coincides with Z then the polygon Z is equipped with a Harnack
distribution and the index situation in Z# is the one described in Table 3.5. Denote by ns

the number of integer points of parity δs contained in the interior part of Z and by ps the
number of integer points of parity δs contained in L. From Proposition 2.4 it follows that
the complement of the curve in Zs has ns + ps + 1 connected components one of which has
Euler characteristic equal to 1− ns and each of all the others ns + ps connected components
encloses an isolated vertex and has Euler characteristic equal to 1.

The following relation comes immediately from the proof of Lemma 3.5:

∑
Zj\A

χ(Cj
r )t

j
r +

∑
Zi\A

χ(Ci
r)t

i
r −

∑
Zk\A

χ(Ck
r )tkr −

∑
Zl\A

χ(C l
r)t

l
r =

= ±(nj + pj)∓ (1− ni)∓ nk ∓ nl =

= ±(nj + pj − 1 + ni − nk − nl)

The number of vertices on L is exactly 2pj as a cycle of biparity δi,j has an even number of
vertices and half of them is of parity δi and the others are of parity δj. The statement follows
then from Proposition 2.11.

n ⇒ (n + 1): Suppose now that there are n + 1 cycles and rays intersecting the zone Z and
let L′ be one of these cycles and rays having biparity δi,l (if L′ is of biparity δi,j or δk,l the
statement can be proved in similar way).

We want to prove:∑
Zj\A

χ(Cj
r )t

j
r +

∑
Zi\A

χ(Ci
r)t

i
r −

∑
Zk\A

χ(Ck
r )tkr −

∑
Zl\A

χ(C l
r)t

l
r = 0 (1)

where tsr is the relative algebraic index of the component Cs
r of Zs with respect to (Es, αs).

Let A′ be the dividing T-curve obtained from the T-curve A by a modification on L′.
The cycle L belongs to the boundary of the fragmentation of A′ and its zone is intersected
by n cycles and rays.
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Let Z ′ be the zone of L′, Z ′◦ be its interior part, Z1 =
(
Z \ Z ′◦), Z2 = (Z ∩ Z ′) and Ē

be a point of (L \ Z ′) having parity δi and such that indA(Ēs) =| αs −ms | for s = i, j, k, l,
with ms such that mi + mj + mk + ml = 0. Observe that for each Cs

r the relative algebraic
index with respect to (Ēs, αs −ms) is bs

r defined by tsr = ms + bs
r.

Not to create confusion, let us use the following notions: C ′s
r denotes a connected com-

ponent of (Zs \ A′), t′sr will be its relative algebraic index with respect to (Es, αs). Cs
r is a

connected component of Zs \ A and its relative algebraic index with respect to (Es, αs) is
denoted by tsr.

Consider a point of Zs
1 . It lies outside the zone Z ′ of the cycle (the ray) L′, then its index

is the same with respect to the two T-curves. Then the indices of Ē and of its symmetric
copies are the same for the two T-curves.

On the other hand, consider a point belonging to a connected component Cs
r of Zs

2 : its
index with respect to the T-curve A is | αs− tsr |=| αs−ms− bs

r | while its index with respect
to the T-curve A′ is | αs′−ms′ + bs

r | (Proposition 4.5), where s and s′ are related in this way:
s = i, s′ = l; s = j, s′ = k; s = k, s′ = j; s = l, s′ = i (let us observe that if L′ is of biparity
δi,j or δk,l, the relations between s and s′ are different. Moreover all we are going to explain
must be modified, for these cases, keeping attention to relate in the exact way s and s′).

We can apply the inductive hypothesis to the T-curve A′ using the relative algebraic
index with respect to (Es, αs):∑

Zj\A′

χ(C ′j
r)t

′j
r +

∑
Zi\A′

χ(C ′i
r)t

′i
r −

∑
Zk\A′

χ(C ′k
r)t

′k
r −

∑
Zl\A′

χ(C ′l
r)t

′l
r = 0 (2)

We can split equalities (1) and (2) as the sum over Z1 \ A and over Z2 \ A. Recalling that
tsr = ms + bs

r, equality (1) is equivalent to the following one:

∑
s∈{i,j}

∑
Zs

2\A

χ(Cs
r )(ms + bs

r)−
∑

s∈{k,l}

∑
Zs

2\A

χ(Cs
r )(ms + bs

r) =

=
∑
Zj

2\A

χ(Ck
r )(mj + bk

r) +
∑
Zi

2\A

χ(C l
r)(mi + bl

r) +

−
∑
Zk

2 \A

χ(Cj
r )(mk + bj

r)−
∑
Zl

2\A

χ(Ci
r)(ml + bi

r) (3)

On the other hand using the relation
∑4

s=1 ms = 0 equation (3) is equivalent to the following
one: ∑

Zj
2\A

χ(Cj
r )−

∑
Zi

2\A

χ(Ci
r)−

∑
Zk

2 \A

χ(Ck
r ) +

∑
Zl

2\A

χ(C l
r) = 0 (4)

Let us prove this equality: denote by ps the number of intersection points between A and the
boundary B(Zs

2) of the polygon Zs
2 . For s = i, j, k, l the following equality holds:∑

Zs
2\A

χ(Cs
r ) = 1 +

ps

2
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On the other hand, consider ps as the sum βs + β′
s where βs and β′

s are respectively the
number of points in A ∩ B(Zs

2) ∩ L and in A ∩ B(Zs
2) ∩ L′. From Lemma 4.4:

βi = βj βk = βl β′
i = β′

l β′
j = β′

k

With these relations it is easy to verify equality (4). 2

5. Proof of Rokhlin’s formula for T-curves

We are able now to prove the following theorem:

Theorem 5.1. (Rokhlin’s Formula for T-curves) For every primitive dividing T-curve A of
degree m ∫

T̂\A
ind2

A(x) dχ(x) =
m2

4

Observe that this theorem is not a corollary of Rokhlin’s formula. In fact if we construct a T-
curve A using a convex triangulation we are sure that there exists a real algebraic projective
curve C such that the pair (RP2, RC) is homeomorphic to the pair (T̂ , A). For these T-curves,
that is for algebraic T-curves, we just know that Rokhlin’s formula is verified. On the other
hand we will prove the formula also for primitive T-curves constructed using a non convex
triangulation.

Let us explain the structure of the proof and then we will prove the necessary steps. Consider
a dividing T-curve A of degree m associated to the pair (Γ, ε) and the T-curve M obtained
from A by a modification on all the cycles and rays of the boundary of the fragmentation
associated to A. Let A0 = A, A1 . . . , Ak−1, Ak = M be the dividing T-curves such that for
i = 1, . . . , k the T-curves Ai−1 and Ai differ by a modification on a cycle or on a ray.

We first prove that the T-curve M satisfies Rokhlin’s formula (Lemma 5.2 below) and, second,
that, for i = 1, . . . , k, the T-curve Ai−1 satisfies Rokhlin’s formula if and only if the T-curve
Ai satisfies the formula (Theorem 5.3 below). Then we obtain that A satisfies Rokhlin’s
formula.

Let us prove the first step:

Lemma 5.2. The T-curve M satisfies Rokhlin’s formula.

Proof. The T-curve M is associated to a pair (Γ, H) where H is a Harnack distribution.
In [15] Itenberg proved that in this situation the real scheme of the T-curve M is < 1 <
(h−1)(h−2)

2
> q 3h2−3h

2
> if m = 2h or < J q < (m−1)(m−2)

2
>> if m = 2h + 1. Consider

a complex orientation of M : for even degrees the index of each exterior oval is 1 and the
index of each interior oval is 0, while for odd degrees we have h(h+1)

2
ovals with index 3

2
and

(m−1)(m−2)−h(h+1)
2

ovals with index 1
2
. It is easy to verify that Rokhlin’s formula is satisfied

for such schemes. 2

Let Z be the zone of a cycle or a ray of T . The value Rok(A,Z) =
∫

(Z#\A)
ind2

A(x) dχ(x) is

called the contribution of Z in the Rokhlin’s formula for the T-curve A.

Let us prove now the last step to complete the proof of Rokhlin’s formula.
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Theorem 5.3. Let A and A′ be two T-curves of type I and degree m obtained one from the
other by a modification on a cycle or a ray. Then∫

(T̂\A)

ind2
A(x) dχ(x) =

∫
(T̂\A′)

ind2
A′(x) dχ(x)

Proof. Let Z be the zone of the cycle or the ray, then it is possible to split the two integrals
as the sum between the integral on Z# and on T̂ \Z#. As A and A′ coincide outside Z# the
statement of the theorem is verified if and only if the contributions of Z in Rokhlin’s formula
for the T-curves A and A′ are equal.

We will study separately the case of dividing T-curves whose fragmentations differ by a
modification on a cycle and the case of two curves of type I differing by a modification on a
ray.

The case of a cycle. Suppose that A and A′ differ by a modification on a cycle L of biparity
δi,j and let E be an integer point of L ∩ P1 of type δi, ps = card

(
(A ∩ L#) ∩Qs

)
and αr for

r = i, j, k, l be as in Lemma 3.5; observe that
∑

(Zs\A) χ(Cs
r ) = 1 + ps

2
and recall that from

Lemma 4.4 one has that pj = pi and pk = pl, then the contribution of Z in the Rokhlin’s
formula for the T-curve A can be written as follows:

Rok(A,Z) =
∑

(Z#\A)

χ(Cs
r )ind2

Cs
r
(Xs

r ) =

=
∑

s∈{j,i,k,l}

∑
(Zs\A)

χ(Cs
r )αs

2 +
∑

(Z#\A)

(
−2αsχ(Cs

r )t
s
r + χ(Cs

r )(t
s
r)

2
)

=

= (αj
2 + αi

2)
(
1 +

pj

2

)
+ (αk

2 + αl
2)

(
1 +

pk

2

)
+

∑
(Z#\A)

χ(Cs
r )

(
−2αst

s
r + (tsr)

2
)

Consider now the T-curve A′. From Proposition 4.5 it follows that if Cs
r is a connected

component of Zs \A with index | αs− tsr | then σi,j(C
s
r ) is a connected component of Zs′ \A′

with index | αs′ + tsr |, where s and s′ are related in this way: s = i, s′ = j; s = j, s′ = i;
s = k, s′ = l; s = l, s′ = k. Denote by p′s = card

(
(A′ ∩ L#) ∩Qs

)
. As the distributions on L

coincide for the two T-curves, we have card
(
(A′ ∩ L#) ∩Qs

)
= card

(
(A ∩ L#) ∩Qs

)
that

is p′s = ps for s ∈ {i, j, k, l}. Using these facts the contribution of Z in Rokhlin’s formula for
the T-curve A′ can be written as follows:

Rok(A′,Z) =
∑

(Z#\A′)

χ(σi,j(C
s
r ))ind2

σi,j(Cs
r )(X

s′

r ) =

= (αj
2 + αi

2)
(
1 +

pj

2

)
+ (αk

2 + αl
2)

(
1 +

pk

2

)
+

∑
(Z#\A)

χ(Cs
r )

(
2αs′tsr + (tsr)

2
)

We can now compare the contribution of Z in Rokhlin’s formula for the T-curve A with the
one for the T-curve A′:
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Rok(A′,Z)−Rok(A,Z) =

=
∑

(Z#\A)

(2αs′χ(Cs
r )t

s
r) +

∑
(Z#\A)

(2αsχ(Cs
r )t

s
r)

As the algebraic values of the indices satisfy the relation αj + αi + αk + αl = 0, we obtain:

Rok(A′,Z)−Rok(A,Z) =

= 2(αj + αi)

∑
Zj\A

χ(Cj
r )t

j
r +

∑
Zi\A

χ(Ci
r)t

i
r

 +

+ 2(αj + αi)

− ∑
Zk\A

χ(Ck
r )tkr −

∑
Zl\A

χ(C l
r)t

l
r

 (5)

Proposition 4.6 implies that the right hand side of equality (5) is zero.

Therefore if A and A′ differ by a modification on a cycle, one has:∫
(T̂\A)

ind2
A(x) dχ(x) =

∫
(T̂\A′)

ind2
A′(x) dχ(x)

The case of a ray. Suppose now that the fragmentations of the two T-curves A and A′ differ
by a modification on a ray R of biparity δi,j. The endpoints of R are different vertices of T;
we can suppose (unless we can change coordinate system) that they belong to the y-axis in
the case they both belong to the same edge of T, or, otherwise, that one endpoint is on the
x-axis and one on the y-axis.

In the first situation (resp. the second) the path R = R ∪ σy(R) (resp. R = R#) is a
closed path of integer segments having same type.

Let E be an integer point of R of type δi, and αi, for i = 1, . . . , 4, be the algebraic index
of the symmetric copy of E in the i-th quadrant (as described in Lemma 3.5). Denote by Z
the part of T# \R which is homeomorphic to a disk; let ~z be a vector with even coordinates
such that the translation tr(R), in R2, of R by the vector ~z, contains no integer points with
negative coordinates. If tr(R) is not contained in T , consider the smallest m′ such that the
triangle T ′ of vertices (0, 0), (0, m′), (m′, 0) contains tr(R). We can regard R (resp Z) as a
translation of the cycle tr(R) of biparity δi,j (resp. of the zone Z of tr(R)) of the triangle
T ′.

If A is associated to a pair (Γ, ε), let (Γ#, ε#) be the extended triangulation and dis-
tribution of T#. Equip Z with the triangulation tr(Γ#|Z) and assign to a vertex v of this
triangulation, the sign of the vertex which corresponds to v via translation. Construct the
PL-curve K associated to Z. Consider the point tr(E), its symmetric copies and assign to
the point in the i-th quadrant the algebraic value αi. In this situation the cycle tr(R) satisfies
Propositions 2.11 and 4.6.

In the first case we have that Z# gives exactly two copies of Z#
, then:

2

∫
Z#\A

ind2
A(x) dχ(x) =

∫
Z#\K

ind2
K(x) dχ(x)
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In the second case Z coincides with Z#
and Z# gives four copies of Z, therefore:

4

∫
Z#\A

ind2
A(x) dχ(x) =

∫
Z#\K

ind2
K(x) dχ(x)

then the statement follows from the proof given in the case of a cycle and the proof of
Rokhlin’s formula is now complete. 2
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Zbl 0824.14045−−−−−−−−−−−−

[23] Rokhlin, V. A.: Complex orientations of real algebraic curves. Funktional Anal. i
Prilozhen. 8 (1974), 71–75. Zbl 0317.14028−−−−−−−−−−−−

[24] Rokhlin, V. A.: Complex topological characteristics of real algebraic curves. Uspekhi
Mat. Nauk 33 (1978), 77–89. Zbl 0437.14013−−−−−−−−−−−−

[25] Viro, O. Ya.: Curves of degree 7, curves of degree 8 and Ragsdale conjecture. Lecture
Notes in Mathematics, 1060 (1980), 187–200. cf. Sov. Math. Dokl. 22 (1980), 566–570.

Zbl 0422.14032−−−−−−−−−−−−
[26] Viro, O. Ya.: Gluing of plane real algebraic curves and constructions of curves of degree

6 and 7. Lecture Notes in Mathematics 1060 (1984), 187–200. Zbl 0576.14031−−−−−−−−−−−−
[27] Viro, O. Ya.: Progress in the topology of real algebraic varities over the last six years.

Russian Math. Surveys 41(3) (1986), 55–82. Zbl 0619.14015−−−−−−−−−−−−
[28] Viro, O. Ya.: Some integral calculus based on Euler characteristic. Lecture Notes in

Math. 1346 (1988), 127–138. Zbl 0686.14019−−−−−−−−−−−−
[29] Viro, O. Ya.: Real algebraic curves: constructions with controlled topology. Leningrad

Math. J. 1(5) (1990), 1059–1134. Zbl 0732.14026−−−−−−−−−−−−
[30] Walker, R. J.: Algebraic curves. Princeton Univ. Press, Princeton, N.J. 1950.

Zbl 0039.37701−−−−−−−−−−−−
[31] Wilson, G.: Hilbert’s sixteenth problem. Topology 17 (1978), 53–73. Zbl 0394.57001−−−−−−−−−−−−

Received January 25, 2002

http://www.emis.de/MATH-item?01910270
http://www.emis.de/MATH-item?0876.14017
http://www.emis.de/MATH-item?0335.14011
http://www.emis.de/MATH-item?0628.52002
http://www.emis.de/MATH-item?0824.14045
http://www.emis.de/MATH-item?0317.14028
http://www.emis.de/MATH-item?0437.14013
http://www.emis.de/MATH-item?0422.14032
http://www.emis.de/MATH-item?0576.14031
http://www.emis.de/MATH-item?0619.14015
http://www.emis.de/MATH-item?0686.14019
http://www.emis.de/MATH-item?0732.14026
http://www.emis.de/MATH-item?0039.37701
http://www.emis.de/MATH-item?0394.57001

