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Abstract. A new classification of two-dimensional real division algebras is given.
We also obtain a new classification of commutative real division algebras.

1. Introduction

A finite-dimensional real vector space V equipped with a bilinear product xy is said to be
a real division algebra if there are no zero divisors: xy = 0 implies x = 0 or y = 0. By the
celebrated Bott-Milnor-Kervaire Theorem [4], real division algebras exist only in dimensions
1, 2, 4, 8. Standard examples are the reals R, the complexes C, the quaternions H, and the
octonions O, an excellent up-to-date reference to the latter being Baez [2]. Writing Alg(V )
for the totality of bilinear products on V , which is a finite-dimensional real vector space
in its own right, the division algebra structures on V form a subset of Alg(V ) which, by a
theorem of Kuzmin [8] (see also Petersson [9, 5.]), is open in the natural topology. Hence,
if n-dimensional real division algebras exist at all, they exist in abundance, and classifying
them up to isomorphism becomes a nontrivial problem (unless n = 1). In the present paper,
we take up this problem for n = 2, which was done before by Althoen and Kugler [1],
Burdujan [3] and, more recently, by Gottschling [5]. Our reason for doing so again is that
we adopt a completely different point of view. Rather than working with structure constants
and multiplication tables as in [1], [3], [5], we prefer a more intrinsic approach that is based
on the second author’s general classification theory [10] for two-dimensional nonassociative
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algebras over arbitrary base fields. Indeed, the classification of two-dimensional real division
algebras follows from this almost immediately and implies the classification of commutative
real division algebras as an instant corollary. We also show how the original solution to the
latter problem due to Kantor-Solodovnikov [7] fits canonically into this picture. The paper
concludes with a few comments on the methodology of the Althoen-Kugler approach [1] to
two-dimensional real division algebras. In particular, the key ingredient of this approach, a
theorem of Segre [13] which says that the number of nonzero idempotents in a two-dimensional
real division algebra is at least one and at most three, will be recast here in a purely algebraic
setting.

2. The unital heart

We begin by recalling a few facts from [10]. Specializing V = R2 throughout, we continue to
write Alg(V ) for the set of nonassociative (possibly nonunital) algebra structures on V . The
product of x, y ∈ V relative to A ∈ Alg(V ) will be denoted by xAy = LA(x)y = RA(y)x,
where LA(x), RA(y) stand for the left, right multiplication of x, y, respectively, in A. The
group G = GL(V ) × GL(V ) acts on Alg(V ) exponentially from the right according to the
rule

xA(f,g)y := f(x)Ag(y) (x, y ∈ V )(1)

for A ∈ Alg(V ), (f, g) ∈ G. This action obviously preserves the property of being a division
algebra and is compatible with passing to the opposite multiplication:

A(f,g)op = Aop(g,f).(2)

Notice that (1), (2) make sense also when f, g are not invertible. A ∈ Alg(V ) is said to be
regular if LA(u) and RA(v) are invertible for some u, v ∈ V . In this case, the orbit of A under
G contains a unital algebra which is unique up to isomorphism [10, 1.10]; we call it the unital
heart of A. If A is a division algebra, its unital heart, being a unital real division algebra of
dimension two, must be the complex numbers [4, Kap. 7, §3 5.], forcing A ∼= C(f,g) for some
(f, g) ∈ G. Conversely, every algebra of this form is a division algebra.

3. Complex numbers

In dealing with complex numbers, we dispense ourselves from the previous notations to
replace them by more conventional ones, writing L(z), z′ 7→ zz′, for the left multiplication by
z ∈ C and τ, z 7→ z, for complex conjugation. Specializing [10, 2.2] to K = C, we obtain

Proposition 1. Every f ∈ EndR(V ) can be written uniquely in the form

f = L(z) + L(w)τ (z, w ∈ C).
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Moreover,

det f = |z|2 − |w|2. �(3)

Similarly, writing S1 = {z ∈ C | |z| = 1} for the unit circle in the complex plane, 1 = idV

for the identity transformation on V , and putting C× = C− {0}, [10, 2.8] for K = C, d = 1
specializes to

Lemma 1. For v, v′ ∈ C− S1, g, g′ ∈ GL(V ), the following statements are equivalent.

(i) C(1+L(v)τ,g) ∼= C(1+L(v′)τ,g′).

(ii) There exist u ∈ C×, σ ∈ {1, τ} satisfying

v′ =
u2

|u|2
σ(v), g′ = σgσL(u). �

In applications, we use Proposition 1 to decompose g ∈ GL(V ) as

g = L(z) + L(w)τ (z, w ∈ C, |z| 6= |w|)(4)

and observe

gL(u) = L(zu) + L(wu)τ (u ∈ C),(5)

τgτ = L(z) + L(w)τ.(6)

4. Main results

We write H = {z ∈ C | Im(z) ≥ 0} for the closed upper half-plane.

Theorem 1. (Classification of two-dimensional real division algebras) The two-dimensional
real division algebras are isomorphic to precisely one of the following.

a) C(τ,τ),

b) C(1+L(v)τ,τ), v ∈ (C− S1) ∩H,

c) C(τ,1+L(w)τ), w ∈ (C− S1) ∩H,

d) C(1+L(v)τ,1+L(w)τ), v ∈ (C− S1) ∩H, w ∈ C− S1, and v ∈ R implies w ∈ H.
Conversely, all algebras listed in a) – d) are two-dimensional real division algebras.

Proof. The final statement follows from (3). Now suppose D is a two-dimensional real
division algebra. Specializing [10, 2.3 and 2.12] to K = C, M = R×

+ = {r ∈ R | r > 0}, D is
isomorphic to precisely one of the following types of algebras.

α) C(1+rτ,g), r ∈ R×
+ − {1}, g ∈ GL(V ),

β) C(1,τ),

γ) C(τ,L(w)τ), w ∈ S1,
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δ) C(1,1+L(w)τ), w ∈ C− S1,

ε) C(τ,1+L(w)τ), w ∈ C− S1.
These five types will now be discussed separately.
α) Decomposing g as in (4), we consider the following cases.

Case 1. z 6= 0.
By Lemma 1 (for u = 1, σ = τ) and (6) we may assume z−2 ∈ H. Applying Lemma 1 again
(for u = z−1, σ = 1), (5) yields D ∼= C(1+L(v′)τ,g′), where

v′ = r|z|2z−2 ∈ H, g′ = 1 + L(w′)τ, w′ = wz−1 ∈ C− S1.

If v′ ∈ R, we may invoke (6) once more to assume w′ ∈ H. Thus D is of type d) with v 6= 0.
Conversely, reading this argument backwards, every algebra of type d) with v 6= 0 is of type
α).

Case 2. z = 0.
First Lemma 1 (for u = 1, σ = τ) and (6) allow us to assume w−2 ∈ H, then Lemma 1 (for
u = w −1, σ = 1) and (5) imply D ∼= C(1+L(v′)τ,τ), where v′ = r|w|2w−2 ∈ (C − S1) ∩ H.
Thus D is type b) with v 6= 0. Again we have the converse, so every algebra of type b) with
v 6= 0 is of type α).

β) D is of type b) with v = 0.

γ) Since [10, 2.12 c)] allows us to multiply w by a third power in S1 without changing the
isomorphism class of D , we may assume w = 1, forcing D to be of type a).

δ), ε) We have D ∼= C(σ,1+L(w)τ) for some σ ∈ {1, τ}. Since [10, 2.12 d)] allows us to replace
w by w if necessary, we may assume w ∈ H. Thus D is of type d) with v = 0 for σ = 1 and
of Type c) for σ = τ .
It remains to prove uniqueness. Lemma 1 combined with the preceding discussion shows
that, since types α) – ε) are disjoint, so are types a) – d). Uniqueness of parameters for
each type except c) again follows from Lemma 1. But since passing to the opposite algebra
interchanges types b) and c) by (2), it follows for type c) as well. �

Theorem 2. (Classification of commutative real division algebras) The commutative real
division algebras are isomorphic to precisely one of the following.

a) R.

b) C(τ,τ).

c) C(1+L(w)τ,1+L(w)τ), w ∈ (C− S1) ∩H.
Conversely, all algebras listed in a), b), c) are commutative real division algebras.

Proof. By a theorem of Hopf [4, Kap. 7, §3 3.], a commutative real division algebra has
dimension at most two. Hence Theorem 2 follows from Theorem 1 and the following lemma.

Lemma 2. Given f = L(u) + L(v)τ, g = L(z) + L(w)τ ∈ EndR(V ) (u, v, z, w ∈ C), the
algebra C(f,g) is commutative if and only if uw = vz.

Proof. A straightforward computation gives

xC(f,g)y − yC(f,g)x =
(
L(vz − uw) + L(uw − vz)τ

)
(xy)
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for all x, y ∈ V . Applying Proposition 1, the assertion follows. �

5. The Kantor-Solodovnikov classification

In order to match the Kantor-Solodovnikov classification of commutative real division alge-
bras [7, Theorem 20.1] with our own, we first note that the group GL(V ) acts on Alg(V ) ex-
ponentially from the left according to the rule x(fA)y = f(xAy) for x, y ∈ V, f ∈ GL(V ), A ∈
Alg(V ). This action obviously preserves the property of being a commutative algebra and is
compatible with the right action of G on Alg(V ) as defined in (1). Secondly, we canonically
identify EndR(V ) with the algebra of 2-by-2 real matrices through the basis of unit vectors
and write

ϑ : V × V −→ R, (x, y) 7−→ ϑ(x, y) := Re(xy),

for the canonical scalar product on V . Then τ = ( 1 0
0 −1 ), and the transpose (i.e., the adjoint

relative to ϑ) of f = L(z) + L(w)τ ∈ EndR(V ) (z, w ∈ C) is given by

tf = L(z) + L(w)τ.(7)

Linearizing (3) at 1 in the direction f , we also get

trace(f) = 2 Re(z).(8)

Lemma 3. Let A ∈ Alg(V ) and f ∈ GL(V ). Then

a) f : A(f,f) ∼−→ fA is an isomorphism.

b) fA ∼= αfA for all α ∈ R, α 6= 0.

Proof. a) is immediate, and b) follows from a) combined with [10, 1.14]. �

Proposition 2. (cf. Kantor-Solodovnikov [7, Theorem 20.1]) For a real algebra D to be a
commutative division algebra it is necessary and sufficient that D ∼= R or there exist

f =

(
α β
β γ

)
∈ EndR(V ) (α, β, γ ∈ R)

satisfying
a) D ∼= fC,

b) det f ∈ {1,−1},
c) β ≥ 0,

d) α ≥ 0, and α = 0 implies γ ≥ 0,

e) α + γ = 0 implies α = −γ = 1, β = 0.
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In this case, f is unique.

Proof. Sufficiency being obvious, it is enough to prove necessity and uniqueness. So let D
be a commutative real division algebra, without loss of dimension > 1. We first observe that
Lemma 1 (for u = 1, σ = τ), (6) and Lemma 3 a) yield

(1+L(w)τ)C ∼= (1+L(w)τ)C (w ∈ C− S1).(9)

Hence, by Theorem 2, D is isomorphic to fC where either f = τ or f = 1 + L(w′)τ for some
w′ = α′ + β′i (α′, β′ ∈ R) such that β′ is nonnegative for α′ = −1 and has the same sign as
1 + α′ otherwise. Moreover, f = τ iff trace(f) = 0 by (8), and an easy computation gives

1 + L(w′)τ =

(
1 + α′ β′

β′ 1− α′

)
.(10)

Thus a), e) hold, and scaling, which is justified by Lemma 3 b), allows us to assume b),
c), d) as well. Finally, to establish uniqueness, suppose f, g ∈ EndR(V ) are symmetric and
satisfy a) – e). By symmetry and e) we may assume that the trace of f is nonzero. Thus
f = r1+L(w)τ (r ∈ R, r 6= 0, w ∈ C) by (7), (8), and a), Lemma 3 b) yield D ∼= f ′C where
f ′ = 1

r
f = 1 + L(w′)τ, w′ = 1

r
w. Hence the trace of g is nonzero as well, by Theorem 2, (9)

and e), so the preceding argument also gives g = s1 + L(z)τ (s ∈ R, s 6= 0, z ∈ C), D ∼=
g′C, g′ = 1

s
g = 1 + L(z′)τ, z′ = 1

s
z. Combining Theorem 2 with (9) again, we conclude

w′ = z′ or w′ = z′. This not only implies det f ′ = det g′ by (3), hence det f = ( r
s
)2 det g

and then ( r
s
)2 = 1 by b), but also, thanks to the first part of d) and (10), that r(1 + α′)

and s(1 + α′), where α′ = Re(w′) = Re(z′), are nonnegative. Therefore r and s have the
same sign for α′ 6= −1, while α′ = −1 implies r > 0, s > 0 by the second part of d) and
(8), (10). Summing up we obtain r = s, whence Im(w′), Im(z′) by c) and (10) have the same
sign. Since w′ differs from z′ at most by conjugation, this yields w′ = z′, hence f = g. �

Remark. Condition e) is missing in [7, Theorem 20.1], which therefore lists the algebras
L(w)τC, w ∈ S1 ∩H, as being mutually nonisomorphic while in fact they are all isomorphic
to τC. Explicitly, choosing any cube root v of w, L(v) : L(w)τC ∼−→ τC is an isomorphism. �

6. The Althoen-Kugler Classification

We won’t even try to match the Althoen-Kugler classification [1] (nor Burdujan’s [3] or
Gottschling’s [5]) of two-dimensional real division algebras with our own since this would
be a daunting and not particularly rewarding task. Instead, we will focus on two points
of a more methodological nature. We begin by recasting Segre’s Theorem [13] in a purely
algebraic setting. To do so, we pick up ideas going back to Walcher [14], [15] and Röhrl-
Walcher [12], who work with commutative algebras of characteristic not 2 but often allow
m-ary (rather than just binary) ones and get more detailed information over the reals and
complexes, cf. [14, 3.3].

Proposition 3. Let A be a two-dimensional nonassociative algebra over an arbitrary base
field k. Then one of the following holds.
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a) A has rank 2, i.e., there exists a linear form λ on A such that x2 = λ(x)x for all x ∈ A.

b) The number of one-dimensional subalgebras of A is at most 3. Moreover, it is at least
1 if there are no cubic field extensions of k.

Proof. For completeness, we give the proof in full. Referring to Roby [11] for polynomial
maps over commutative rings (including, e.g., finite fields), we follow Walcher (loc. cit.) to
consider the cubic form N : A →

∧2 A = k given by N(x) = x ∧ x2 for all x ∈ A ⊗ R and
all commutative associative k-algebras R. If N is zero, x, x2 are linearly dependent for all
x in any base field extension of A. Hence there is a rational function ρ on A, homogeneous
of degree 1, such that every base change of A satisfies the relation x2 = ρ(x)x whenever it
makes sense. For ρ = 0 we are done. Otherwise, clearing denominators, we find an integer
m ≥ 0 and relatively prime homogeneous polynomial functions f, g of degree m, m + 1,
respectively, on A such that f(x)x2 = g(x)x for all x in any base field extension of A. Thus
f(x) = 0 implies g(x) = 0 provided x is not zero, and the homogeneous form of Hilbert’s
Nullstellensatz (Hartshorne [6, I Ex. 2.1]) shows that f divides some power of g. This forces
m = 0, and we obtain a). If N is not zero, the equation N = 0 defines a closed subscheme
of P1

k (the projective line over k) whose irreducible components correspond to the irreducible
factors of N and have all codimension 1, i.e., consist of single points. Furthermore, the k-
rational points of this subscheme are precisely the one-dimensional subalgebras of A. Hence
b) holds. �

Corollary. (Segre’s Theorem [13]) The number of nonzero idempotents in a two-dimensional
real division algebra is at least 1 and at most 3.

Proof. Since nonzero elements that square to zero do not exist, Proposition 3 a) does not
hold. Hence b) does, and the one-dimensional subalgebras correspond exactly to the non-zero
idempotents. �

The second point we wish to make concerns the Althoen-Kugler classification itself. Classi-
fying algebraic objects up to isomorphism in the naive sense of the word amounts to writing
down a list of examples that represents each isomorphism class exactly once. While Theorem 1
above produces such a list for two-dimensional real division algebras, the Althoen-Kugler clas-
sification does not (but Burdujan [3] and Gottschling [5] do, though [3] contains no proof).
More specifically, it is the two-dimensional real division algebras containing three nonzero
idempotents (one of the two “generic” cases, the other one being comprised by those alge-
bras that contain a single nonzero idempotent) where a classification list fails to materialize.
Instead, the authors merely construct classifying invariants by attaching three multiplication
tables Ti(D) (i = 0, 1, 2) to any two-dimensional real division algebra D containing three
nonzero idempotents in such a way that, given another algebra D′ of this kind, D and D′

are isomorphic if and only if Ti(D) = Tj(D
′) for some i, j = 0, 1, 2 [1, Theorem 6]. Therefore

the approach to two-dimensional real division algebras by means of idempotents seems to be
less natural than the one adopted here.
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