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and general convex bodies. In particular, we discuss two lines of research whose
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radii of regular simplices and geometric inequalities among the radii.
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1. Introduction

Let Lj,n be the set of all j-dimensional linear subspaces (hereafter j-spaces) in n-dimensional
Euclidean space En. The inner j-radius rj(C) of a convex body C ⊂ En is the radius of a
largest j-ball (j-dimensional ball) contained in C, and the outer j-radius Rj(C) is the radius
of the smallest enclosing j-ball in an optimal orthogonal projection of C onto a j-space
J ∈ Lj,n, where the optimization is performed over Lj,n.

Studying radii of polytopes is a fundamental topic in convex geometry (see [1, 2, 9, 11, 12,
15]. Applications in functional analysis, statistics, computer vision, robotics, and medical
diagnosis (see [13] and the references therein) have initiated additional interest from the
computational point of view. In the investigation of the inner and outer radii, the following
two questions immediately arise.
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a) What are the radii of special classes of convex bodies, such as (regular) simplices?

b) Is there a general order on the radii?

The main purpose of this paper is to review the developments on these questions and to stress
the influences given by Weißbach, which then allows to provide some further generalizations
and refinements.

The modern developments on the first question were initiated by Pukhov [17] and Weiß-
bach [19] who computed the j-radii of the regular n-simplex for most pairs (j, n). However,
for the remaining pairs (j, n) these values were not known until recently (see [7]). In section 3
we present a unifying proof consisting of the major geometric ideas within the various parts
of the meanwhile complete characterization.

Concerning relations among the radii, it is easy to see that for any convex body C ⊂ En

we have rn(C) ≤ · · · ≤ r1(C), R1(C) ≤ · · · ≤ Rn(C), and R1(C) ≤ r1(C). Moreover, in
[14] it was shown rj(C) < Rn+1−j(C). The stated geometric inequalities are also displayed
in Figure 1. It is not difficult to see that for important classes of bodies (e.g., symmetric
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Figure 1: An arc between two radii represents a less than or equal relationship (from the
origin to the sink), which holds for all n-dimensional bodies.

bodies) Rn−1(C) ≤ r1(C) holds. Eggleston [10] first showed that for every n ≥ 3 there are
also bodies with Rn−1(C) > r1(C). A much simpler proof was provided by Weißbach [19],
using the regular simplices for n ≥ 4 and a special construction for n = 3, which we will refer
as the Weißbach polytope.

In Section 4 this result is strengthened twofold. On the one hand for the first time the
relevant radii of the Weißbach polytope are explicitly computed, which can then be used
to give an explicit quotient for the ratio of R2 and r1. On the other hand we review a
generalization, which was developed recently [8], showing that even for n ≥ 4 there exist
bodies C such that Rj > r1 for all j ≥ 2. From these results it follows that Figure 1 is
complete in the sense that for any two radii which are not connected by a directed path there
exist bodies C1, C2 such that the relationship between the two radii is ‘less than’ for C1 and
‘greater than’ for C2.

Finally, we give an application of these geometric inequalities. In [12] it was shown that
Rn(C) = sup

S⊂C
S Simplex

Rn(S) for every convex body C. Using the concept of totally non-spherical

bodies, we show that this result is not true for general outer j-radii.
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2. Preliminaries

Throughout the paper we work in Euclidean space En, i.e., Rn with the usual scalar product
x · y =

∑n
i=1 xiyi and norm ||x|| = (x · x)1/2. Bn and Sn−1 denote the (closed) unit ball and

unit sphere, respectively. For a set A ⊂ En, the linear hull of A is denoted by lin A and the
convex hull of A is denoted by conv A.

A set C ⊂ En is called a (convex) body if it is bounded, closed, convex and contains an
interior point. Let 1 ≤ j ≤ n. A j-flat is an affine subspace of dimension j, and a j-cylinder
is a set of the form J + ρBn with an (n− j)-flat J and ρ > 0. For a body C ⊂ En, the outer
j-radius Rj(C) of C (as defined in the introduction) is the radius ρ of a smallest enclosing
j-cylinder of C. It follows from a standard compactness argument that this minimal radius
is attained (see, e.g., [12]). Let 1 ≤ j ≤ k < n. If C ′ ⊂ En is a compact, convex set whose
affine hull F is a k-flat then Rj(C

′) denotes the radius of a smallest enclosing j-cylinder C ′
relative to F , i.e., C ′ = J ′ + Rj(C

′)(Bn ∩ E) with a (k − j)-flat J ′ ⊂ F and E the linear
k-space parallel to F .

For a simplex S = conv{v(1), . . . , v(n+1)}, let S(i) denote the facet of S which does not
contain the vertex v(i), i = 1, . . . , n + 1. Whenever a statement is invariant under orthogonal
transformations and translations we denote by T n the regular simplex in En with edge length√

2. The reason for the choice of
√

2 stems from the convenient embedding of T n into En+1.
Let Hn

α = {x ∈ En+1 :
∑n+1

i=1 xi = α}. Then the standard embedding Tn of T n is defined by

Tn := conv
{
e(i) ∈ En+1 : 1 ≤ i ≤ n + 1

}
⊂ Hn

1 ,

where e(i) denotes the i-th unit vector in En+1. By Sn−1 := Sn∩Hn
0 we denote the set of unit

vectors parallel to the n-flat in which Tn is embedded.
A j-cylinder C containing some simplex S is called a circumscribing cylinder of S if all

the vertices of S are contained in the boundary of C.

3. Outer radii of regular simplices

One access to understand the geometry of functionals such as radii and volumes is to inves-
tigate their behavior on special subclasses of convex bodies. Here we mainly consider the
class of regular simplices. In particular, for the analysis of geometric inequalities, they often
attain the extreme values. In [19, Theorem 1] Weißbach showed that

Rn−1(T
n) ≥

√
n− 1

n + 1
, with equality if and only if n is odd. (3.1)

While working on generalizations of (3.1) we recently discovered a paper of Pukhov [17] in
which the following result is obtained.

Theorem 1. Let 1 ≤ j ≤ n such that n is odd or j 6∈ {1, n− 1}. Then Rj(T
n) =

√
j

n+1
.

We describe an alternative proof discovered in [5]. Before doing so, some auxiliary statements
are needed.
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Lemma 2. For 1 ≤ j ≤ n it holds Rj(T
n) ≥

√
j

n+1
, and in case of equality every minimal

enclosing j-cylinder of T n is a circumscribing j-cylinder of T n.

Proof. Let s(1), . . . , s(n) be an orthonormal basis of Hn
0 , p ∈ Hn

1 and ρ > 0 such that C =
J +ρ(Bn+1∩Hn

0 ) is an enclosing j-cylinder of Tn with J = p+lin{s(j+1), . . . , s(n)}. Further let
x 7→ Px be the orthogonal projection onto lin{s(1), . . . , s(j)}, where P =

∑j
k=1 s(k)(s(k))T ∈

E(n+1)×(n+1). Then

||Pe(i)||2 =

j∑
k=1

(s
(k)
i )2 . (3.2)

Assume there exists a point x ∈ Hn
0 such that ||x−Pe(i)|| <

√
j/(n + 1) for all i = 1, . . . , n+1.

Since
∑n+1

i=1 s
(k)
i = 0 and

∑n+1
i=1 (s

(k)
i )2 = 1, we obtain from summing over all i

j >

n+1∑
i=1

||x− Pe(i)||2 = (n + 1)||x||2 − 2
n+1∑
i=1

j∑
k=1

s
(k)
i xT s(k) +

n+1∑
i=1

j∑
k=1

(s
(k)
i )2

= (n + 1)||x||2 + j ≥ j

(3.3)

which is a contradiction. This proves the first part of the theorem. For the second part, it is
easy to see that if Rj(T

n) =
√

j/(n + 1) then (3.3) becomes an equality chain if and only if
x = 0 and ||x− Pe(i)||2 = j/(n + 1) for all 1 ≤ i ≤ n + 1.

If a sequence of orthogonal vectors s(1), . . . , s(j) ∈ Sn−1 satisfies
∑j

k=1(s
(k)
i )2 = j/(n + 1) for

all i = 1, . . . , n + 1, we call it a good subspace basis (shortly, gsb). The proof of Lemma 2
implies that Rj(T

n) =
√

j/(n + 1) if and only if there exists a gsb for the pair (j, n). It is
not hard to see that

any orthonormal basis s(1), . . . , s(n) of Hn
0 is a gsb. (3.4)

It directly follows Rn(T n) =
√

n/(n + 1), which is a long known fact, not only since the
famous work of Jung [16].

As an easy consequence of (3.4), the basis completion theorem implies

Rj(T
n) =

√
j

n + 1
if and only if Rn−j(T

n) =

√
n− j

n + 1
. (3.5)

Property (3.5) immediately shows that Weißbach’s ‘if and only if n is odd’ statement on
equality in (3.1) corresponds directly to the old result, shown by Steinhagen [18], about the
(half) width of regular simplices.

R1(T
n) =


√

1
n+1

, if n is odd,√
n+1

n(n+2)
, if n is even.

(3.6)
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In fact, Steinhagen first showed that all minimal enclosing 1-cylinders of a regular simplex
are circumscribing. It was shown in [12] that minimal enclosing 1-cylinders are always cir-
cumscribing even for general simplices, and a similar statement for general j will be given in
Proposition 6.

Weißbach showed that the axis direction s(n) ∈ Sn−1 of a minimal enclosing (n − 1)-
cylinder of Tn for odd n must be of the form

√
1/(n + 1)(1, . . . , 1,−1, . . . ,−1)T where both

the number of 1’s and (−1)’s are (n + 1)/2. However, for the analysis in which cases the
lower bound

√
j/(n + 1) holds for general j, it seems to be more convenient to describe the

space where Tn is projected on.

Definition 3. Let 1 ≤ j < m. A sequence v(1), . . . , v(m) ∈ Sj−1 is called (j, m)-isotropic
if

∑m
i=1 v(i) = 0 and

∑m
i=1 v(i)(v(i))T = m/j I, where I denotes the j-dimensional identity

matrix. A polytope P ⊂ Bj is called (j, m)-isotropic if there exists a (j, m)-isotropic sequence
v(1), . . . , v(m) whose convex hull is P .

The next two propositions are taken from [5]. Their proofs are quite simple but purely
technical.

Proposition 4. Let 1 ≤ j ≤ n. There exists a gsb s(1), . . . , s(j) ∈ Sn−1 if and only if there
exists a (j, n + 1)-isotropic polytope P ⊂ Bj. Moreover, for any gsb s(1), . . . , s(j) ∈ Sn−1

we can choose P such that it is the projection of Tn on lin{s(1), . . . , s(j)} up to a linear
transformation.

Obviously, for every odd n ≥ 1 the unique (1, n + 1)-isotropic polytope is [−1, 1], and the
underlying sequence consists of 1’s and (−1)’s, both (n + 1)/2 times.

Also it is easy to see that every regular j-dimensional polytope with n + 1 vertices, all
on Sn−1, is (j, n + 1)-isotropic. Hence, at least for j = 2 there exist (2, n + 1)-isotropic
polytopes for all n ≥ 2. Moreover, for odd n we can choose a 3-dimensional prism with a
regular ((n + 1)/2)-gon as the base. By appropriately choosing the height of the prism, it
becomes (3, n+1)-isotropic. Proposition 5 shows how to combine lower dimensional isotropic
polytopes to obtain higher dimensional ones.

Proposition 5. Let 0 ≤ ji < mi, i = 1, 2 such that m2j1 > m1j2. Let j = j1 + j2,
m = m1 + m2, α =

√
(m2j1 −m1j2)/m2j, and β =

√
mj2/m2j, and suppose there exists

a (j1, m1)-isotropic polytope K1 = conv{u(1), . . . , u(m1)}, a (j1, m2)-isotropic polytope K2 =
conv{v(1), . . . , v(m2)}, and a (j2, m2)-isotropic polytope K3 = conv{w(1), . . . , w(m2)}, such that

K ′ = conv

{√
1
2

(
v(1)

w(1)

)
, . . . ,

√
1
2

(
v(m2)

w(m2)

)}
is a (j, m2)-isotropic polytope. Then there

exists a (j, m)-isotropic polytope

K = conv

{(
u(1)

0

)
, . . . ,

(
u(m1)

0

)
,

(
αv(1)

βw(1)

)
, . . . ,

(
αv(m2)

βw(m2)

)}
.

The reader may convince himself that neither it is possible to construct a (1, n + 1)-isotropic
polytope by the additive rule if n is even, nor it is possible to construct an (n − 1, n + 1)-
isotropic polytope by the additive rule at all.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. By Proposition 4, it suffices to show the existence of an (j, n + 1)-
isotropic polytope for every (j, n) with n odd or j 6∈ {1, n − 1}. We do an inductive proof
over j and n using Proposition 5 to construct the higher-dimensional isotropic polytopes from
lower dimensional ones.

From (3.6) and since every regular (n + 1)-gon with vertices on S1 is (2, n + 1)-isotropic
we see that the claim is true for pairs (j, n) with j ≤ 2. Moreover, by (3.5) the claim is true
for j ≥ n− 2.

Now assume that the claim is true for every pair (j′, n′) with j′ < j, n′ ≤ n or j′ ≤ j,
n′ < n. Due to the initial statements we can assume j ≥ 3 and because of (3.5) that
j < (n + 1)/2. We distinguish three cases:

Case 1, (j, n + 1) = (3, 9):
In this case we choose j1 = 2, j2 = 1, m1 = 3, m2 = 6. For sure K1 = K2 =

√
3/2 T 2 are (2, 3)-

isotropic and also (2, 6)-isotropic by duplicating every vertex. Now, K3 =
√

1/2 T 1 = [−1, 1]
is (1, 6)-isotropic (triplicating the two vertices) and

K ′ = conv

{√
1

2

(
v(1)

1

)
,

√
1

2

(
v(2)

1

)
,

√
1

2

(
v(3)

1

)
,√

1

2

(
v(1)

−1

)
,

√
1

2

(
v(2)

−1

)
,

√
1

2

(
v(3)

−1

)}
is (3, 6)-isotropic. Hence K1, K2 and K3 satisfy the conditions of the additive rule and
therefore there exists a (3, 9)-isotropic polytope.

Case 2, j ≥ 5 odd and n + 1 = 2j + 3:
Let m = n + 1 and choose j1 = j − 2, j2 = 2, m1 = m− j − 1, m2 = j + 1. Since j < m/2 it
holds j1 < m1 and since j1 = j− 2 6= j = m− j− 3 = m1− 2 there exists a (j1, m1)-isotropic
polytope K1. Completing the conditions of the additive rule we choose an m2-gon for K3

and the projection of
√

j/(j + 1) T j onto (lin K3)
⊥ as K2 (thus K ′ =

√
j/(j + 1) T j). Note

that m2j1 = j2 + j > 2m = m1j2 since j ≥ 5.

Case 3, j even or n + 1 6= 2j + 3:
Then we set j1 = j, j2 = 0, m1 = j+1 and m2 = m−j−1. Since j < m/2 it holds m2 > j and
if j +2 is odd m2 6= j +2 since m 6= 2j +3. Hence there exists a (j, m2)-isotropic polytope K2

by the induction hypothesis and K1 =
√

(j + 1)/(j + 2) T j+1 is a (j, m1)-isotropic polytope,
which obviously satisfies the conditions of the additive rule.

From the two cases which are excluded in Theorem 1 one is the even case in (3.6). So it
remains only Rn−1(T

n) with even n. A formula for this case was claimed by Pukhov [17]
and first shown by Weißbach [20], but that proof contained an error (see [6]). At the end of
2002, Weißbach suggested to us to work jointly on a new proof, but unfortunately he died in
June 2003. In a letter, he stressed his opinion that a major step would be to show that every
minimal enclosing (n− 1)-cylinder of the regular simplex is always circumscribing. Recently,
in [7] we were able to show the following statement:

Proposition 6. Let 1 ≤ j ≤ n and S be a simplex in En with facets S(1), . . . , S(n+1). Then
one of the following is true.
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a) Every minimal enclosing j-cylinder of S is a circumscribing j-cylinder of S.

b) Rj(S) = Rj−1(S
(i)) for some i ∈ {1, . . . , n + 1} and j ≥ 2.

c) Rj(S) = Rk(F ), for some k ∈ {1, . . . , j − 1}, where F is a k-face of S.

If j = 1 or if S = T n then always case a) holds.

Rather than presenting the whole proof of Proposition 6 we will concentrate on the case
j = n− 1 and S = T n, as major ideas are already contained in this case.

Lemma 7. The sequence (Rn−1(T
n))n≥2 is strictly increasing.

Proof. Let T n+1 be embedded in En+1 such that S(n+1) (which is T n) lies within H := {x ∈
En+1 : xn+1 = 0}, and let C = ` + Rn−1(T

n)(Bn+1 ∩H) be any minimal enclosing cylinder of
S(n+1) (taken in n-dimensional space) with ` a line in H. But, since

dist(v(n+1), `) ≥ dist(v(n+1), H) =

√
n + 1

n
> 1 > Rn(T n+1)

(where dist(·, ·) denotes the Euclidean distance), ` cannot be the axis of a minimal enclosing
cylinder of T n+1. Hence Rn−1(T

n) < Rn(T n+1).

Theorem 8. Let n ≥ 2 and ` ⊂ En be a line, such that C = ` + Rn−1(T
n)Bn is a minimal

enclosing cylinder of T n. Then C is also a circumscribing cylinder of T n.

Proof. The proof is split into three parts. In the first part we will exclude the special cases
that ` is parallel or perpendicular to one of the facets S(1), . . . , S(n+1) of T n. The other two
parts deal with the previously excluded cases. We can assume that T n is embedded in En

such that S(n+1) ⊂ H := {x ∈ En : xn = 0}.
Part 1: Suppose ` is neither perpendicular nor parallel to any of the facets of T n. Now
assume v(n+1) 6∈ bd(C). Let p, s ∈ En such that ` = p + lin{s}. Since, by assumption, ` is
not parallel to H, we can assume p = 0 ∈ ` ∩ H, and sn > 0. For every s′n ∈ (0, sn) and
s′ := (s1, . . . , sn−1, s

′
n) ∈ En let `′ = p + lin{s′}. Geometrically, `′ results from ` by rotating `

into the direction of the hyperplane H in such a way that the orthogonal projection of ` onto
H remains invariant (see Figure 2). Since ` and H are not perpendicular we obtain ` 6= `′.
Further, since v(1), . . . , v(n) ∈ H, we have

dist(v(i), `′) ≤ dist(v(i), `) , 1 ≤ i ≤ n , (3.7)

where “<” holds whenever v(i) 6∈ K := `⊥ ∩H. Obviously, dim(K) = n − 2. If none of the
v(i) lies in K, then, by choosing s′n sufficiently close to sn, all vertices of T n lie in the interior
of C ′ = `′ + Rj(T

n)Bn, a contradiction to the minimality of Rj(T
n). Hence, there must be

some vertex of S in K ∩ bd(C).
Let k + 1 be the number of vertices in K ∩ bd(C). By renumbering the vertices we can

assume v(1), . . . , v(k+1) ∈ K ∩ bd(C), 0 ≤ k ≤ n − 2. Then F := conv{v(1), . . . , v(k+1)} is a
k-face of T n. Since F and ` are perpendicular, F is congruent to T k and p = 0 is the unique
center of the circumball of F . Hence,

Rn−1(T
n) = Rk(F ) = Rk(T

k) =

√
k

k + 1
=

√
2k

2k + 2
.
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Figure 2: For n = 3 the figure shows how the underlying line ` of the cylinder C is rotated
towards its orthogonal projection onto the plane H. The distances between the vertices v(i),
1 ≤ i ≤ n, and the j-cylinder axis are not increased, and decreased if v(i) 6∈ K.

Now Theorem 1 and Lemma 7 imply that n = 2k + 1. But in this case it follows already
from Lemma 2 that C circumscribes T n, contradicting v(n+1) 6∈ bd(C).

Part 2: Now consider the case that ` is perpendicular to H and assume again v(n+1) 6∈ bd(C).
In this case any small perturbation of ` around p := `∩H keeps v(n+1) within the cylinder not
increasing the distances of all the other vertices to the new axis. So the same argumentation
as in the non-perpendicular case shows a contradiction to the assumptions.

Part 3: Finally, consider the case that ` is parallel to one of the facets of T n. By Lemma 2
and Theorem 1, we only have to consider the case n even. Suppose ` is parallel to S(n+1) and
that v

(n+1)
n > 0. Since Rn−1(T

n−1) =
√

(n− 1)/n we have v
(n+1)
n =

√
(n + 1)/n. Let p ∈ `.

Since v
(n+1)
n > 0 it holds pn ≥ 0 and obviously

Rn−1(T
n) ≥

√
n + 1

n
− pn . (3.8)

On the other hand, since ` is parallel to S(n+1), and since the cylinder radius of T n−1 is√
(n− 2)/n (recall that n− 1 is odd)

Rn−1(T
n)2 =

n− 2

n
+ p2

n. (3.9)

Let

p∗n =
3

2
√

n(n + 1)
> 0

be the unique minimal solution for pn to (3.8) and (3.9). As C is an optimal cylinder it must
hold pn = p∗n. But because of Lemma 2 and the equalities in (3.8) and (3.9) for p∗n this means
that all vertices of T n have the same distance to `, which shows that C is circumscribing.

As shown in [7], the optimal choice of ` for even n is the one parallel to a facet. The proof
includes study of the relevant polynomial equations, which we do not review here in detail.
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However, a crucial step towards a solution was the transformation of the original problem
into an optimization problem over symmetric polynomials, an idea which also Weißbach had
in mind for solving the problem. In [7] this transformation is presented for general outer
j-radii of the regular simplex, but here we will keep our focus on the case j = n− 1.

Let ` = p+lin{s}, where s ∈ Sn−1 and p ∈ lin{s}. Suppose C = `+Rn−1(T
n)(Bn+1∩Hn

0 )
is a minimal enclosing (and circumscribing) cylinder of the regular simplex Tn in standard
embedding. The orthogonal projection of a vector x ∈ Hn

1 onto the orthogonal complement
of lin{s} (relative to Hn

1 ) can be written as x 7→ Px with P = I− ssT ∈ E(n+1)×(n+1). Hence,
for a general polytope with vertices v(1), . . . , v(m) (embedded in Hn

1 ) the computation of the
square of Rn−1 can be expressed by the following optimization problem. Here, we use the
convention x2 := x · x.

min ρ2

(i) s.t. (p− Pv(i))2 ≤ ρ2 , i = 1, . . . ,m,
(ii) p · s = 0,
(iii) s ∈ Sn−1,
(iv) p ∈ Hn

1 .

(3.10)

In the case of Tn, (i) can be replaced by

(i’) (p− e(i) + sis)
2 = ρ2 , i = 1, . . . , n + 1 , (3.11)

where the equality sign comes from the fact that C is circumscribing. By (ii) and s ∈ Sn−1,
(i’) can be simplified to

(i”) p2 − ρ2 = s2
i + 2pi − 1 , i = 1, . . . , n + 1 .

Summing over all i gives (n+1)(p2− ρ2) = 1+2− (n+1), i.e., p2− ρ2 = 2−n
n+1

. We substitute

this value into (i”) and obtain pi = 1
2

(
3

n+1
− s2

i

)
. Hence, the pi can be replaced in terms of

the si,

ρ2 =
4n− 5

4(n + 1)
+

1

4

n+1∑
i=1

s4
i ,

p · s = −1

2

n+1∑
i=1

s3
i .

We arrive at the following characterization of the minimal enclosing cylinders:

Theorem 9. Let n ≥ 2. A vector s ∈ Sn−1 represents the axis direction of a minimal
enclosing cylinder of Tn ⊂ Hn

1 if and only if it is an optimal solution of the problem
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min
n+1∑
i=1

s4
i

s.t.
n+1∑
i=1

s3
i = 0 ,

n+1∑
i=1

s2
i = 1 ,

n+1∑
i=1

si = 0 .

(3.12)

Solving this system for even n in connection with Weißbach’s results for odd n yields the
following proposition.

Proposition 10. Let n ∈ N and T n be a regular simplex in En with edge length
√

2. Then

Rn−1(T
n) =


√

n−1
n+1

if n is odd,

2n−1

2
√

n(n+1)
if n is even.

4. Geometric inequalities

One reason why Weißbach considered the outer (n − 1)-radius of the regular simplex was
an older result of Eggleston [10], showing that for n ≥ 3 there exists a body C ⊂ En with
Rn−1(C) > r1(C). In [19] Weißbach gives a much simpler proof. By Lemma 2,

Rn−1(T
n) ≥

√
n− 1

n + 1
>

√
1

2
= r1(T

n) for n ≥ 4 . (4.1)

However, for n = 3 it holds Rn−1(T
n) = r1(T

n). By an elegant construction, Weißbach also
provides a proof of the remaining case.

Proposition 11. The Weißbach polytope

W = conv





0

−
√

1
2

1
2

 ,


0√

1
2

1
2

 ,


√

1
2

0

−1
2

 ,

 −
√

1
2

0

−1
2

 ,

 0

0

1−
√

6
2

 ,


√

2−2
√

3
4

−
√

2+2
√

3
4

0

 ,


−
√

2+2
√

3
4

−
√

2+2
√

3
4

0





fulfills R2(W ) > r1(W ).
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Figure 3: In the picture, all seven vertices of the Weißbach polytope W are visible. The upper
two and the left most and right most belong to the original regular simplex T 3. In all three
optimal projection directions of T 3 two of the additional vertices of W are projected outside
the circumball of the projection of T 3. The picture shows one of these three projections as
well as the circumball of the projection of T 3.

Note that the first four vertices of W are the vertices of a regular simplex with edge length
√

2.
Hence, it suffices to show that r1(W ) = r1(T

3) and in each of the three optimal projection
directions of T 3 the projection of W does not fit into the same circumball. This situation is
visualized in Figure 3.1

It turns out that the boundary of a minimal enclosing cylinder of W contains five vertices of
W , and that this condition can be used to compute the numerical value of R2(W ). E.g., one
of the minimal enclosing cylinders of W contains the vertices 1, 3, 4, 6, and 7. For any five
points in general position, there are six (complex) cylinders whose surface passes through
the given points (see [3]). Thus, solving the corresponding systems of polynomial equations
yields six cylinders (which are all real for our configuration), among which the one with radius
ρ ≈

√
2 · 0.50095 is the smallest one containing W . Hence, R2(W )/r1(W ) ≈ 1.0019.

In fact, R2 > r1 would already be obtained by adding only two of the three new vertices
to the regular simplex.

Since Rn−1(C) < r1(C) for many symmetric bodies, (4.1) and Proposition 11 show that
Rn−1 and r1 are incomparable, i.e., no arc between the nodes for Rn−1 and r1 can be added
in Figure 1. Now the question arises which other pairs of radii (which are not connected
by a directed path in that figure) are provably incomparable. For certain pairs, already the
regular simplex in addition with the class of ellipsoids shows incomparability, but for example
it holds R2(T

n) ≤ r1(T
n) for n ≥ 3 and R1(T

n) ≤ r2(T
n) for n ≥ 5 like for all symmetric

bodies. On the other hand it follows from the monotonicity of the outer and inner radii

1A colored, dynamic 3D model of the Weißbach polytope is available from the homepages of the authors
(www-m9.ma.tum.de/ brandenb/; www-m9.ma.tum.de/ theobald/).
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chains, that bodies C, C ′ with R2(C) > r1(C) and R1(C
′) > r2(C

′) imply that the diagram
in Figure 1 is already complete (since in both cases the other direction of the inequalities is
fulfilled by ellipsoids).

Bodies C which satisfy the inequalities R2(C) > r1(C) and R1(C) > r2(C) simultaneously
were considered in [8]. There, a body of constant breadth C with R2(C) > r1(C) is called a
totally non-spherical body as every projection of C onto arbitrary subspaces of dimension at
least 2 is different from the ball.

Proposition 12. For all n ≥ 3 there exists a totally non-spherical body C ⊂ En, i.e.,

rn(C) ≤ · · · ≤ r2(C) < r1(C) = R1(C) < R2(C) ≤ · · · ≤ Rn(C) .

Finally, we want to describe a small application of the existence of bodies (such as the
Weißbach polytope) which satisfy radii relations in the unusual direction (say, R2(C) >
r1(C)).

The following Proposition was shown in [12, (1.11)] by use of Helly’s theorem.

Proposition 13. If C is a body in En then

Rn(C) = sup
S⊂C

S Simplex

Rn(S) .

Proposition 13 provides an algorithmic reduction of the problem to compute Rn(P ) of a
polytope P to the computation of the outer n-radius of simplices defined by vertices of P .
Using the concept of non-spherical bodies, the following results imply that a similar result
does not hold for general outer j-radii, not even for the outer 2-radius in E3 (the radius of
the smallest enclosing cylinder). We make use of the following result, shown in [4, Theorem
3.17].

Proposition 14. Let 1 ≤ j ≤ n, such that n − j + 1 divides n + 1, and let S be an n-
dimensional simplex. Then

Rj(S)

r1(S)
≤

√
2j

n + 1
,

with equality if S = T n.

Proposition 11 and the case (j, n) = (2, 3) in Proposition 14 imply that the Weißbach polytope
W satisfies

R2(W ) > r1(W ) ≥ r1(S) ≥ R2(S) for all simplices S ⊂ W.

More generally, we can state the following theorem.

Theorem 15. If 1 ≤ j ≤ n+1
2

then every totally non-spherical body C ⊂ En satisfies

Rj(C) > sup
S⊂C

S Simplex

Rj(S) .
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Proof. In case j = 1, note that the constant breadth of C implies r1(C) = R1(C). However,
since no simplex can be of constant breadth, R1(S) < r1(S) ≤ r1(C) for any simplex S
contained in C.

Now suppose j ≥ 2 and let S ⊂ C be a simplex. Since r1(S) ≤ r1(C) < Rj(C), it
remains to show Rj(S) ≤ r1(S). If n + 1 is even, this follows from the monotonicity of
the outer radii and Proposition 14. If n is even, let S̄ be an (n + 1)-simplex, such that
S is congruent to one of the facets of S̄ and r1(S) = r1(S̄). Since j + 1 ≤ n+2

2
, we have

Rj(S) ≤ Rj+1(S̄) ≤ r1(S̄) = r1(S).
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