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3Dpto. de Análisis Matemático, Universidad de Alicante
03080-Alicante, Spain

e-mail: Salvador.Segura@ua.es

Abstract. If K is a convex body in the Euclidean space En, we consider the six
classic geometric functionals associated with K: its n-dimensional volume V , (n−
1)-dimensional surface area F , diameter d, minimal width ω, circumradius R and
inradius r. We prove that the n-spherical symmetric slices are the convex bodies
that maximize both, the volume and the surface area, when another two geometric
magnitudes are fixed, specifically, for given values of the pairs of magnitudes (ω,
d) and (ω, R).
Besides, it is proved that the sets of constant width maximize the minimal width
when the circumradius and the inradius are prescribed.
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1. Introduction

Let K be a convex body (i.e., a compact convex set) in the n-dimensional Euclidean space
En. Associated with K there are n + 1 well-known functionals: the intrinsic volumes Vi(K),
i = 0, . . . , n, which include volume, surface area, or mean width. Let us denote by F the
(n−1)-dimensional surface area of K and by V its n-dimensional volume. Let us also denote
by ωn the (n− 1)-dimensional surface area of the unit ball Bn, and by κn its n-dimensional
volume. Their values are

ωn = nκn, and κn =
πn/2

Γ
(n

2
+ 1
) ,

where Γ represents the Euler Gamma function.
But some other functionals are also well-known and interesting, namely, the diameter

of the convex body d = d(K), its minimal width ω = ω(K) (i.e., the minimum distance
between two parallel support hyperplanes of K), its circumradius R = R(K) and its inradius
r = r(K).

For many years mathematicians have been interested in inequalities involving some of
these functionals; and moreover, in finding the convex bodies for which the equality sign
is attained. The study of intrinsic volumes led immediately to the discovery of inequalities
amongst them. Good references for the study of these functionals are [2], [7] or [10].

In this paper we are going to study inequalities involving the functionals V (the area in
the planar case), F (corresponding to the perimeter in the plane), d, ω, R and r.

If two of the above quantities are considered, there are still important questions which
remain open: the problems of minimizing the volume or the surface area for given values of
the minimal width seem to be hard.

Of course, inequalities involving more than two of the above quantities are naturally more
difficult to obtain, and one of the most studied problems is to find the convex bodies that
optimize a particular functional when other two ones are fixed.

Besides, the question becomes more interesting when the equality, for a particular in-
equality, is not attained for a single figure, but for a continuous family of sets. In this case,
that inequality is called an optimal inequality; optimal inequalities say which is the maxi-
mum or minimum value of the first quantity for each pair of possible values of the other two
considered functionals (maximum or minimum which can be attained for, of course, more
than one figure).

There are almost no inequalities of this type for general convex bodies in arbitrary di-
mension. Most of the known inequalities have, as extremal sets, a single set. For instance,
in [5], the following inequality has been obtained:

F n−1 ≥ nn−2κn−1dV n−2, (1)

which is the best possible in the sense that there is a sequence of double cones with increasing

diameters such that F n−1
(
nn−2κn−1dV n−2

)−1
tends to 1. Besides, a family of Bonnesen-style

inequalities, which provide sharp bounds for the inradius and circumradius with respect to
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the unit ball, include

V − rS + (n− 1)rnκn ≤ 0 (2)

and

(n− 1)V − 2RS + (n + 1)Rnκn ≥ 0, (3)

which are due to Bokowski and Diskant (inequality (2)) and Bokowski and Heil (inequality
(3)); the extremal set for both inequalities is the Euclidean ball. References for these results
can be found in [7] or [10].

Recently, in [6], it has been proved the following assertion: the sets that minimize the
volume for given values of the (n−1)-dimensional surface area and the inradius are (amongst
other) the cap-bodies, i.e., the convex hull of the ball Bn(r) and a finite number of points
such that the segment joining any two of them intersects the ball, see Figure 1 (a); this
statement is equivalent to the optimal inequality

nV ≥ rF. (4)

In this paper we obtain the solutions for the following problems:

– Maximizing the volume and the surface area for given values of the pair (ω, d).

– Maximizing the volume and the surface area for given values of the pair (ω, R).

We prove the optimal inequalities for each of the above problems, determining also its corre-
sponding extremal sets.

Besides, in [9], the following result is proved:

Theorem. (Scott, 1981) Let K be a convex body in the Euclidean space En having diameter
d and circumradius R. Then, there exists a convex body K̄ of constant width d which contains
K, and which also has circumradius R.

Then, since for any convex body of constant width in En the relation d = R + r holds, the
above theorem assures that the inequality

d ≥ R + r (5)

is true for an arbitrary convex body K of the n-dimensional Euclidean space, with equality
when K has constant width d.

This inequality was also deduced by Santaló in [8] for the planar case, using a well-known
theorem (see [1, p. 138]) which states that every convex body with diameter d is a subset of
a set of constant width d.

Here, following similar arguments to those used by Santaló in the planar case (see [8]),
we solve the “dual” problem of maximizing the minimal width for given values of the pair
(R, r); this is, we state the inequality

ω ≤ R + r.
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2. Maximizing the volume and the (n − 1)-dimensional surface area

In this section, we obtain the new inequalities that state which are the sets with maximum
volume and (n − 1)-dimensional surface area for each pair of possible values of another two
functionals; more precisely, we study the cases (ω, d) and (ω, R).

Theorem 1. Let K be a convex body in the Euclidean space En, with diameter d and minimal
width ω. Then its n-dimensional volume V and (n− 1)-dimensional surface area F verify

V ≤ κn−1

2n−1
dn

∫ arcsin
ω
d

0

cosn θ dθ (6)

and

F ≤ κn−1

2n−2

(
(d2 − ω2)

n−1
2 + (n− 1)dn−1

∫ arcsin
ω
d

0

cosn−2 θ dθ

)
. (7)

In both inequalities, equality holds when and only when K is an n-spherical symmetric slice
with diameter d and minimal width ω, i.e., the part of the n-ball with radius d/2, Bn(d/2),
bounded by two parallel hyperplanes equidistant from the origin, at distance apart ω.

Corollary 1. Let K be a convex body in the Euclidean space En, with minimal width ω and
circumradius R. Then its n-dimensional volume V and (n − 1)-dimensional surface area F
verify

V ≤ 2κn−1R
n

∫ arcsin
ω
2R

0

cosn θ dθ (8)

and

F ≤ 2κn−1

(4R2 − ω2)
n−1

2

2n−1
+ (n− 1)Rn−1

∫ arcsin
ω
2R

0

cosn−2 θ dθ

 . (9)

The equality holds, in both inequalities, when and only when K is the n-spherical symmetric
slice with minimal width ω and circumradius R.

Figure 1 (b) shows the extremal sets for the above inequalities in the 3-dimensional Euclidean
space.

Remark 1. In the particular case of the 3-dimensional Euclidean space, the corresponding
inequalities are

V ≤ π

12
ω(3d2 − ω2), F ≤ π

2
(d2 − ω2 + 2ωd),

V ≤ π

12
ω(12R2 − ω2), F ≤ π

2
(4R2 − ω2 + 4ωR),

with extremal sets shown in Figure 1 (b).



M. A. H. Cifre et al.: Two Optimization Problems for Convex Bodies . . . 553

..

..

................
.......................
..
..
..
..
.

(a) Cap-body (b) Spherical Symmetric Slice

Figure 1. Extremal sets for: (a) inequality (4) (b) Theorem 1 and Corollary 1

2.1. The case (ω, d)

In order to prove Theorem 1, let K ⊂ En be an arbitrary convex body and Kc = 1
2
(K−K) its

central symmetrization. Then, it is known (see [1]) that Kc is a centrally symmetric convex
body with

d(Kc) = d(K), ω(Kc) = ω(K), F (Kc) ≥ F (K) and V (Kc) ≥ V (K).

Hence, it suffices to consider the family of all convex bodies in En which present symmetry
about the origin.

Thus, let K ⊂ En be a centrally symmetric convex body with diameter d and minimal
width ω. The properties of this kind of sets allow us to assure that the circumball of K is
the n-ball Bn(d/2), as well as to take the inball Bn(ω/2) so that both Bn(d/2) and Bn(ω/2)
have the same center: the origin of coordinates.

Besides, the inball touches the body K in two diametrically opposite points, and hence,
there are two parallel hyperplanes H and H ′ which support both K and Bn(ω/2). Let
s(H, H ′) be the slab between H and H ′, and let

Ks = s(H, H ′) ∩Bn(d/2).

Clearly, R(Ks) = R(K) and r(Ks) = r(K); since K ⊂ Ks, we have V (K) ≤ V (Ks) and
also F (K) ≤ F (Ks); in both cases equality holds if and only if K = Ks is the n-spherical
symmetric slice. In [6], the formulae for the volume and the (n− 1)-dimensional surface area
of the n-spherical symmetric slice Ks with fixed circumradius R and inradius r have been
obtained. Since Ks is symmetric about the origin, r = ω/2 and R = d/2, and then,

V (Ks) =
κn−1

2n−1
dn

∫ arcsin
ω
d

0

cosn θ dθ (10)

and

F (Ks) =
κn−1

2n−2

(
(d2 − ω2)

n−1
2 + (n− 1)dn−1

∫ arcsin
ω
d

0

cosn−2 θ dθ

)
. (11)

Hence, inequalities (6) and (7) have been proved.
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2.2. The case (ω, R)

From (10) and (11) it follows that the right-hand sides in, respectively, inequalities (6) and
(7), are increasing functions in d for each fixed value of ω (since these functions represent
the volume and the surface area of an n-spherical symmetric slice, which increase with the
diameter). Hence, using the relation d ≤ 2R which holds for every convex body, the result
here is a direct consequence of Theorem 1.

3. Maximizing the minimal width

In this section we obtain the “dual” inequality to the relation (5), i.e., we prove the following
theorem.

Theorem 2. Let K ⊂ En be a convex body with minimal width ω, circumradius R and
inradius r. Then,

ω ≤ R + r, (12)

and equality holds when K is a constant width set.

Using similar arguments, this theorem generalizes, to arbitrary dimension, the analogous
result for the planar case which was obtained by Santaló in [8].

Proof. Let Bn(R) be the circumball of K, and let us denote by r∗ the maximum

r∗ = max
{
ρ ≥ 0 : Bn(ρ) ⊂ K, Bn(ρ) and Bn(R) are concentric

}
.

As a limit case, r∗ may vanish if the circumcenter lies on the boundary of the set K; hence,
it holds 0 ≤ r∗ ≤ r.

Besides, it is clear that the ball Bn(r∗) touches the boundary of K in, at least, one point;
let P denote it. Then, there exists a common support hyperplane H to both K and the ball
Bn(r∗) through the point P .

r
∗

R

K

H

P

H
′

Figure 2. Proof of inequality (12)

Let H ′ be the support hyperplane to K which is parallel to H (see Figure 2). Clearly, H ′

either intersects or is tangent to the circumball Bn(R), because in the opposite case, the
circumradius of the set should be strictly greater than R.



M. A. H. Cifre et al.: Two Optimization Problems for Convex Bodies . . . 555

Then, the width in the direction determined by the perpendicular vector to the hyperplane
H, ω(K, H⊥), is, at most, R + r∗, and therefore,

ω ≤ ω(K, H⊥) ≤ R + r∗.

Since r∗ ≤ r, we can conclude that

ω ≤ R + r.

Finally, a well-known property of the sets of constant width (see, for instance, [1, p. 135])
assures that the circumball and the inball (which is unique) of such a set are concentric, as
well as the sum of their radii equals its minimal width, ω = R+r. Some other good references
for these kind of properties can be [3] or [4].

So, this family of sets verifies the equality in (12), which concludes the proof of the
theorem.
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