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Abstract. Let P and P’ be (2k + 1)-dimensional Pappian projective spaces. Let
also f: P — P*and f': P"— P’ be null systems. Denote by Gi(f) and Gy (f)
the sets of all invariant k-dimensional subspaces of f and f’, respectively. In the
paper we show that if £ > 2 then any mapping of Gi(f) to Gr(f’) sending base
subsets to base subsets is induced by a strong embedding of P to P'.
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1. Introduction

Let P be an n-dimensional projective space. For each number m = 0,1,...,n—1 we denote by
Gm(P) the Grassmann space consisting of all m-dimensional subspaces of P. Then Gy(P) =
P. Note also that G,_1(P) is an n-dimensional projective space; it is called dual to P and
denoted by P*.

A mapping f: P — P* is called a polarity if

q€ f(p) =pe flq)

for any two points p and ¢ of P. It is well known that any polarity is a collineation of P to
P

A polarity f: P — P* is said to be a null system if for each point p of P the subspace
f(p) contains p. Null systems of P exist only for the case when n is odd and the projective
space P is Pappian, see [1], [2]. The last means that P is isomorphic to the projective space
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of 1-dimensional subspaces of some (n + 1)-dimensional vector space over a field. For this
case any null system of P is associated with some non-degenerate alternating form, see [2] or
[18].

From this moment we will assume that our projective space P is Pappian and n = 2k +1.

Let f : P — P* be a null-system. Since f is a collineation, for any m-dimensional
subspace S C P the set f(S) is an m-dimensional subspace of P*. Then the principle of
duality of projective geometry (see, for example, [2]) shows that f(S) can be considered as
an (n —m — 1)-dimensional subspace of P. Thus for each number m = 0,1,...,n — 1 the
mapping f induces some bijection

fm . gm(P) - gnfmfl(,]));
clearly, fo = f and f is a bijective transformation of Gy (P). If m < k then we set

Gn(f) = {5 €Gn(P)|SC fin(S) }.

In particular, Go(f) coincides with P and Gi(f) is the set consisting of all k-dimensional
subspaces S C P such that fi(S) = 5.

Recall that two m-dimensional subspaces S and U of P are called adjacent if the dimension
of SNU is equal to m — 1 (this condition holds if and only if the subspace spanned by S and
U is (m + 1)-dimensional). It is trivial that any two O-dimensional or (n — 1)-dimensional
subspaces are adjacent; for the general case this fails.

Adjacency preserving transformations of G (f) were studied by W.L. Chow [7] and W.-1.
Huang [11], [12]. The classical Chow’s theorem [7] states that any bijective transformation of
Gr(f) preserving the adjacency relation in both directions is induced by a collineation of P to
itself. W.-1. Huang [12] has shown that any surjective adjacency preserving transformation of
Gr(f) is a bijection which preserves the adjacency relation in both directions; a more general
result was given in Huang’s subsequent paper [13] (it will be formulated in Section 4).

Let P’ be another n-dimensional Pappian projective space and f’': P’ — P’ be a null
system (P’* is the projective space dual to P’). In the present paper we consider mappings of
Gr(f) to Gk(f') which send base subsets of Gy (f) to base subsets of G (f’) (the definition will
be given in the next section) and show that these mappings are induced by strong embeddings
of P to P'.

2. Base subsets of G, (f)

First of all we recall the concept of base subsets of Grassmann spaces (see [15], [16] and [17]).
Let I := {1,...,n+ 1} and B = {p;}icr be a base for the projective space P. For each
natural number m = 1,...,n — 1 the finite set B,, consisting of all m-dimensional subspaces

{p’i17 s 7pim+1}

is called the base subset of G,,(P) associated with B (for any set X C P we denote by X the
subspace of P spanned by X).
We say that B is an f-base if for all 1 € I

f(pi) = B —{po(i)}
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where
(i) 1+k+1 H1<i<k+1
o(i) =
i—k—1 ifk+2<i<2k+2.

For this case
Bm = B NGun(f), m=1,...k

is said to be the base subset of G,,(f) associated with the f-base B.

Lemma 1. The following statements hold true:
(1) The set By, consists of all subspaces U € B, such that

piEU:>po(i)¢U Viel.
(2) For any subspace U € By, and any i € I we have
pi €U or psui €U

Proof. These statements are direct consequences of the definition. n

Proposition 1. Any base subset of G(f) contains

’“if (k T 1)
m=0 m
elements.

Proof. For any m = 0,1,...,k+1 we put B}, for the set of all subspaces U € By containing
exactly m points p; such that ¢ < k 4+ 1. The second statement of Lemma 1 shows that for
each set

(i1, ... im} C{1,.. . k+1}

there is unique subspace belonging to By, and containing p;,, ... p;,,. Hence

k1
= (")

k+1 k+1
. k41
Bl = > =2 (). 0

m=0 m=0

and

3. Mappings of G,,(f) to G,,(f’) induced by strong embeddings

An injective mapping g : P — P’ is called an embedding if it is collinearity and non-
collinearity preserving (g sends triples of collinear points and non-collinear points to collinear
points and non-collinear points, respectively). Any surjective embedding is a collineation.
An embedding is said to be strong if it transfers independent sets to independent sets (recall
that a set X C P is independent if the subspace X is not spanned by a proper subset of X).
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Since our projective spaces have the same dimension, any strong embedding of P to P’ maps
bases to bases.
For each number m = 0,...,n — 1 any strong embedding g : P — P’ induces the
injection
Im : Gn(P) = Gu(P')
which sends an m-dimensional subspace S C P to the subspace W For the case when
m =n — 1 it is a strong embedding of P* to P’*; we will denote this embedding by ¢*. If

fla=g"f (1)
then for any m < k the g,,-image of G,,(f) is contained in G,,(f’), in other words, g induces

an injection of G,,(f) to G, (f').

Proposition 2. Let g : P — P’ be a strong embedding satisfying (1) and such that the
mapping

gm : Gm(f) = Gm(f') (2)
15 bijective for some natural number m < k. Then g is a collineation.

Proof. We show that the mapping
gmfl : gmfl(f) - gmfl(fl> (3)

is bijective.

For any subspace S” belonging to G,,—1(f’) there exist subspaces U], U} € G,,(f') such
that S = U] NUj. Then U] and U; are adjacent and the subspace spanned by them is
(m + 1)-dimensional. By our hypothesis, the mapping (2) is bijective and the equalities

g(Uh) =U; and ¢(Us) = U,

hold for some subspaces U; and U, belonging to G,,(f). An immediate verification shows
that

g(U1 U UQ) C g<U1> U g(Uz) C U{ U Ué

Since U] U U} is (m + 1)-dimensional, the dimension of U; U U, is not greater than k + 1;
this dimension is equal to £+ 1 (U; and U, are distinct k-dimensional subspaces). In other
words, U; and U, are adjacent and

S = UlﬂUz

belongs to G,,—1(f). Then

9(S) = g(U1) N g(Uz) C g(Ur) Ng(Us) = Uy NU; = S

The subspaces ¢(5) and S” are both (k—1)-dimensional, hence g(S) = S’. We have established
that (3) is surjective; but this mapping is injective and we get the required.

By induction, we can prove that the embedding ¢ is surjective. This means that g is a
collineation. O
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4. Result

Theorem 1. (W.-1. Huang [13]) Let g be an adjacency preserving mapping of Gr(f) to Gi(f")
and suppose that for each S € Gi(f) there exists U € Gi(f) such that

9(S)Ng(U) =0.
Then g is induced by a strong embedding of P to P’.

In the present paper the following statement will be proved.

Theorem 2. Let k > 2 and g be a mapping of Gi(f) to Gx(f') sending base subsets to base
subsets. Then g is induced by a strong embedding of P to P'.

Theorem 2 and Proposition 2 give the following.

Corollary 1. Let k > 2 and g be a surjection of Ge(f) to Gr(f') sending base subsets to base
subsets. Then g is induced by a collineation of P to P’.

Remark 1. Adjacency preserving mappings of Grassmann spaces were studied by many
authors, see [6], [7], [11], [9], [10], [14]. These results are closely related with the discipline
known as characterizations of geometrical mappings under mild hypotheses, see [3].

Remark 2. Mappings of Grassmann spaces transferring base subsets to base subsets were
considered in author’s papers [15], [16], and [17].

Remark 3. Let G be the Grassmann space of m-dimensional subspaces of some (2m + 1)-
dimensional projective space. A. Blunck and H. Havlicek [5] have characterized the adjacency
relation on G in terms of non-intersecting subspaces; this result was exploited to study trans-
formations of G sending non-intersecting subspaces to non-intersecting subspaces.

5. Proof of Theorem 2

5.1.

Let S be a subspace belonging to Gi(f). Consider a base subset By containing S (it is
trivial that this base set exists). By our hypothesis, g(Byy) is a base subset of Gy (f") and
there exists U’ € g(Byy) such that

g(S)yNnU = 0.
Since U" = ¢(U) for some U € By, the mapping ¢ satisfies the second condition of Theorem 1.
Thus we need to prove that g is adjacency preserving.

Now we want to show that ¢ is injective. We will exploit the following statement which
is a simple consequence of more general results related with Tits buildings (see [4], [8], [18]

or [19]).
Lemma 2. For any two elements of G(f) there exists a base subset containing them.

Let S and U be distinct elements of Gi(f) and By, be a base subset of G (f) containing them.
If g(S) = g(U) then the cardinal number of g(Byy) is less than the cardinal number of Byy.
Then ¢(Byy) is not a base subset of Gi(f’); this contradicts to our hypothesis. Therefore, f
is injective.
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5.2.

Let B = {p;}ier be an f-base for P and By, be the base subset of Gy(f) associated with
B. We say that R C By is an ezact subset of By if By is unique base subset of Gi(f)
containing R; otherwise, the subset R is said to be inezact.

1) By our hypothesis, g(Byi) is a base subset of Gi(f"). The mapping g transfers inexact
subsets of By, to inexact subsets of g(Byy).

Proof. If R is an inexact subset of By then there is another base subset of Gi(f) containing
R. Since g is injective, there exist at least two distinct base subsets of Gi(f’) containing
g(R); hence g(R) is inexact. O

For any set R C By, and any number ¢ € I denote by S;(R) the intersection of all subspaces
U € R containing p;. Clearly, R is exact if each S;(R) is a one-point set. Now we show that
the inverse statement holds true.

2) A subset R of Byy, is exact if and only if

Proof. If S;(R) # {p;} for some number i then one of the following possibilities is realized:

(A) S;(R) is empty,

(B) Si(R) contains a point p;, j # 1.
We show that for each of these cases there exists an f-base B}, different from By and such
that the base subset of Gy (f) associated with B, contains R; this means that R is inexact.
Case (A): Let p; be a point of the line p;p,(;) (spanned by the points p; and ps(;)) such that
D; 7 Pi, Po(i)- Set

B = (B—{p})u{pi}.

Then

f@;) = (B = {pi,po}) U{pi} = B — {poii)}

and

f(poy) = B—{pi} =B — {pj};
for any j # i,0(1) we have
f(pj) = B—={potiy} = B = {pis po(yy}) Ui} = B' = {po() }-
Therefore, B’ is an f-base. Each subspace S € R is spanned by points of the set
B—{pi} =8B —{p;}
and R is contained in the base subset of Gy (f) associated with B'.

Case (B): Lemma 1 shows that j # o(i). Besides p,(; belongs to S,;)(R); indeed, if some
subspace U € R does not contain p,(; then p; € U (Lemma 1) and the condition (B)
guarantees that p; is a point of U, hence p,(;) ¢ U. Now take two points

P € pip; and Py € Po(i)Po(i)
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such that

p; # pipj and Pl # Do(i) Do(j)
and set

B = (B —{pi,ps(j)}) YULDi Vi) }-
Then

f®) = (B—4{pi,poiy}) U{pi} =

(B - {piapa(i)7p0(j)}) U {p;7p;'(])} =B - {pg(i)}’
f(poy) = B—Api} = (B —{pi,po(y}) U{D,;y} = B — {p}}

and

f(0j) = B—=Apsiiy} = (B —={pi; pon}) U{Pi} = B' = {1y} -
f(Pff(j)) = (B—={pj;ps(j}) U {p:r(j)} =
(B = A{pi, s, oy }) UADE Pt = B — {pj};
if m#1i,j,0(i),0(5) then
fom) = B = {Poem)} = (B = {Pis Po(j): Pomy }) UADE Dy} = B = {Pom) }-

We have established that B’ is an f-base. Lemma 1 and the condition (B) show that each
subspace S € R contains one of the lines p;p; or p(i)Po(j); i.e. S is spanned by one of these
lines and points of the set

B —{pi, Pjs Po(i)s Po(j)} = B' — {Dis Pj» Potiys Py}
This implies that R is contained in the base subset of G (f) associated with 5. O

Let 0 < m < k and U be an m-dimensional subspace spanned by points of the base B (in
other words, U is an element of the base subset of G,,(P) associated with B or a point of B if
m = 0). Put By (U) for the set of all subspaces belonging to By, and containing U. This set
is empty for the case when U ¢ By,,. If U is an element of By, then By (U) is not empty;
the cardinal number of this set will be denoted by ¢, (it does not depend on the choice of
UeB fm)-

Proof. Let us consider two subspaces 1" € By; and U € By; such that 7" C U. It is trivial
that By,(U) is a proper subspace of By, (T"). This implies the required inequality. ]

Now consider two distinct points p; and p; such that (i) # j. The line p;p; belongs to By
and the set

Byi(pipi) U Bk (poiy) (4)

is inexact (if some subspace S belongs to (4) and contains p; then p; € S). Since By (pip;)
and By (ps(i)) are non-intersecting sets, the cardinal number of (4) is equal to ¢y + ;.
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4) If R is an inezact subset of By containing to+t, elements then there exist two distinct
numbers i and j such that o(i) # j and

R = Byi(pipj) U Bsr(poiy)-

Proof. Since R is inexact, S;(R) # {p;} for some number i. If S;(R) is not empty then we
take any point p;, j # i belonging to S;(R); by Lemma 1, j # o(¢). For the case when S;(R)
is empty we can take an arbitrary point p; such that j # ¢,0(i). Then for any subspace
U € R one of the following possibilities is realized:

(A) p; € U then U belongs to By (pip;).
(B) pi ¢ U then p,;y € U and U belongs to Byi(ps(:))-
Hence
R C Byr(pip) U Bk (Do)

These sets have the same cardinal number and the inclusion can be replaced by the equality.
O

5.3.

We say that R C By, is a c-subset of By, if its complement By, — R is an inexact subset
containing ty + t; elements.

5) The mapping g transfers c-subsets of By to c-subsets of g(Byx).

Proof. Since g is an injection, it is a direct consequence of the definition of c-subsets and the
statement 1). O

6) For any set R C By, the following conditions are equivalent:

(A) R is a c-subset,
there exists a line L € By such that R = Bi(L).
B) th line L € By h that R = By, (L

Proof. (A) = (B). Assume that R is a c-subset of By;. Then

R = By — (Bgr(pip;) U B (Do) (5)

for some numbers ¢ and j such that j # o(i). We show that the line

L := pips(j

has the required property.

Let S € R. By (5), po(s) does not belong to S. Thus p; € S. The equation (5) implies
also that the line p;p; is not contained in S. Since p; is a point of S, p; ¢ S and p,(;) belongs
to S. Therefore, S € By (L).

Consider a subspace S belonging to By,(L). Since p; € S, S does not belong to Byx(po(s))-
The condition py(;) € S guarantees that p; ¢ S and the line p;p; is not contained in S. Then
S does not belong to By (pip;). By (5), S € R.
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(B) = (A). Let L € Byy. Then L = p;p; and j # o(i). If some subspace S € By is not
contained in the set By, (L) then one of the following cases is realized:

— pi ¢ S then p,;) € S and S belongs to By (po())
— p; € S and p; ¢ S then p,;) € S and S is an element of By (pips(j))-
Therefore, By, — Byr(L) is contained in

Byi(potiy) U Bri(Pibo(s))-
The arguments given above show that these sets are coincident. O

Let R and R’ be distinct c-subsets of By;. Then
R = Bfk(L) and R, = Bfk(L,)7

where L and L’ are distinct elements of By;. Denote by S the subspace spanned by L and
L'; the dimension of S is equal to 2 or 3.
Consider the case when k = 2. If S € By, then

RNR ={S};

for this case we will say that our c-subsets form an (A)-pair. If S does not belong to By,
then R "R’ is empty.
If £ > 3 then there are the following possibilities for the subspace S:

(A) S belongs to By, then
RNR = B(S)
contains to elements,
(B) S belongs to Bys then
RNR = B(S)
contains t3 elements,
(C) S does not belong to Bys and Bys, for this case the set R N'R’ is empty.
We say that our c-subsets form an (A)-pair or a (B)-pair if the corresponding case is realized.

7) The mapping g transfers any (A)-pair of c-subsets to an (A)-pair of c-subsets. If k >3
then g maps (B)-pairs to (B)-pairs.

Proof. Let R and R’ be distinct c-subsets of By,. By (5), g(R) and g(R') are c-subsets of
g(Byi). Since f is injective, R N R" and g(R) N g(R’) have the same cardinal numbers and
the arguments given before (7) imply the required. ]

8) Let S and S’ be distinct elements of By,. Then the following statements are fulfilled:

(i) For the case when k = 2 the subspaces S and S" are adjacent if and only if there
exists a c-subset of By, containing them.

(ii) For the case when k = 2m > 2 our subspaces are adjacent if and only if there
erists a sequence Ry, ..., Ry, of c-subsets of By such that any two R; and R,
form a (B)-pair if i # j and each R; contains S and S'.



398 M. Pankov: Mappings of the Sets of Invariant Subspaces of Null Systems

(i) Let k =2m+1 > 3. Then S and S’ are adjacent if and only if there exists a
sequence Ry, ..., Rmi1 of c-subsets of By such that each R; contains S and S’
and the following conditions hold true:

— Ri and R; form a (B)-pair if i # j and 1,5 are both less than m + 1,
— if i <m then R; and Rp,11 is a (B)-pair,
— Ry and Ryyqq form an (A)-pair.

Proof. The statement (i) is trivial. For the case (ii) or (iii) the existence of a sequence of
c-subsets satisfying the corresponding conditions implies that the subspace SN S’ is (k — 1)-
dimensional (i.e. S and S are adjacent).

Now assume that S and S are adjacent. Then the dimension of SN .S’ is equal to k — 1.
Clearly, we can restrict ourself to the case when S NS’ is spanned by pq,...,px. If K =2m
then the lines

Li = pai—1p2i
1 =1,...,m define a sequence of c-subsets satisfying the required conditions. For the case
when k = 2m + 1 we set
Li = P2;—1P2; if 7= ]_, oo, and Lm+1 = Pk-1Dk-
It is easy to see that the c-subsets associated with these lines are as required. O

The statements (7) and (8) show that the restriction of g to each base subset of Gi(f)
is adjacency preserving. Since for any two elements of Gi(f) there exists a base subset
containing them (Lemma 2), the mapping g preserves the adjacency.

Acknowledgment. The author thanks the referee for intent reading the paper and correc-
tions.
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