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Abstract. We generalize the group law of curves of degree three by chords and
tangents to the Jacobi variety of a hyperelliptic curve. In the case of genus 2
we accomplish the construction by a cubic parabola. We derive explicit rational
formulas for the addition on a dense set in the Jacobian.

1. Introduction

The intention of this remark is an explicit description of the group law of hyperelliptic curves.
It appears that it is possible to generalize the chord and tangent method for curves of degree
three in a very naive way by replacing points by point groups of g points and by replacing
lines by certain interpolation functions.

Explicit descriptions of the group law play a less important role in the history of the
subject. They appear first in the new literature. Cassels remarked 1983: “I cannot even find
in the literature an explicit set of equations for the Jacobian of a curve of genus 2 together
with explicit expressions for the group operation in a form amenable to calculation . . .”
(cf. [2, 3]). Mazur remarked 1986: “. . . a naive attempt to generalize this group structure [of
degree 3 curves] to curves of higher degree (even quartics) will not work.” (cf. [8], p. 230).
With the development of cryptography arose algorithms for the group law. In 1987 Cantor
described the group law of a hyperelliptic curve in the context of cryptography (cf. [1, 6]).
Later group laws of more general classes of curves were described in [4, 11]. These group
laws work step by step and do not allow a visualization.

In this remark we derive explicit formulas for the group law for the Jacobi variety of
a curve of genus 2 starting from an interpolating cubic parabola. As the above algorithms
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perform the reduction in several steps we execute the reduction in only one step. The case
g > 2 can be performed by rational interpolation functions analogously. These interpolation
functions were first considered by Jacobi in connection with Abel’s theorem (cf. [5]). Our
formulas are much simpler than analogous formulas derived by Theta functions in [3] p. 114–
116, [7, 12]. A different geometric interpretation was given by Otto Staude in [10].

2. Preliminaries

Consider a hyperelliptic curve C = { (x, y) ∈ C2 | y2 = p(x) } ∪ {∞} of genus g where
p(x) = a0x

2g+1 + a1x
2g + · · · + a2g+1 is a complex polynomial with a0 6= 0, g ≥ 1 without

double zeros. C is endowed with the involution (x, y) := (x,−y), ∞ := ∞. The Jacobi
variety of C is the Abelian group

Jac(C) = Div0(C)/DivP (C),

where Div0(C) denotes the group of divisors of degree 0 and DivP (C) is the subgroup of
principal divisors (i.e. the zeros and poles of analytic functions), cf. [9]. We find in every
divisor class of Jac(C) an unique so called reduced divisor of the form

n1P1 + · · ·+ nmPm − (n1 + · · ·+ nm)∞,

where n1 + · · ·+ nm ≤ g, Pi 6= Pj, Pj,∞ for i 6= j and ni = 1 if Pi = Pi (cf. [9]). We remark
that

−(P −∞) ∼ P −∞ (∗)

and
P1 + · · ·+ Ph ∼ h∞ (∗∗)

if P1, . . . , Ph are the finite intersections of C with an algebraic curve.
Now we consider the two reduced divisors

J1 = P1 + · · ·+ Ph1 − h1∞, J2 = Q1 + · · ·+ Qh2 − h2∞

with 0 ≤ h1, h2 ≤ g (in this notation points Pi, Qj can occur repeatedly). Without restriction
of generality we have r (0 ≤ r ≤ h1, h2) pairs Ph1−k = Qh2−k, k = 0, . . . , r − 1. Because of
P + P ∼ 2∞ it follows

J1 + J2 ∼ P1 + · · ·+ Ph1−r + Q1 + · · ·+ Qh2−r − (h1 + h2 − 2r)∞.

In the case h1 + h2 − 2r ≤ g we have already a reduced divisor on the left side. Otherwise
we consider the interpolation function

y =
b0x

p + · · ·+ bp

c0xq + c1xq−1 + · · ·+ cq

=:
b(x)

c(x)

(cf. [5]) with p = h1+h2+g−2r−ε
2

, q = h1+h2−g−2r−2+ε
2

where ε is the parity of h1 + h2 + g. We
have p + q + 1 = h1 + h2− 2r degrees of freedom. We can determine the coefficients uniquely
up to a constant factor so that we interpolate the points Pi, Qj (in the case of a multiple
point P we require a corresponding degree of contact with C). These h1 + h2 − 2r points lie
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on the algebraic curve yc(x)− b(x) = 0. It follows p(x)c2(x)− b2(x) = 0. On the left side we
have a polynomial of degree ≤ h1 + h2 − 2r + g. Therefore we obtain h3 ≤ g further finite
intersections R1, . . . , Rh3 . With (∗), (∗∗) it follows that

R1 + · · ·+ Rh3 − h3∞

is the reduced divisor for J1 +J2. It appears that only for g = 1, 2 nonfractional interpolation
functions are sufficient.

Consider the case g = 2. Let J1 = P1 + P2 − 2∞, J2 = Q1 + Q2 − 2∞ be two reduced
divisors with Pi 6= Qj. The interpolation polynomial

y = b0x
3 + b1x

2 + b2x + b3

through the Pi, Qi (possibly with multiplicities) intersects C for b0 6= 0 in two further finite
points R1 and R2 with R1 6= R2. The result is

J1 + J2 = R1 + R2 − 2∞.

Figure 1. (P1 + P2 − 2∞) + (Q1 + Q2 − 2∞) ∼ R1 + R2 − 2∞

Remark. In the real case, contrarily to the case g = 1 for g = 2 the reduction of the sum of
two divisors with real points can give a sum of two complex conjugated points.

3. Explicit formulas

We use the construction in order to derive explicit formulas in the case g = 2. We consider
only the generic case where b0 6= 0 and all P1, P2, Q1, Q2 have different nonvanishing x-
coordinates. In this case we have the interpolation polynomial

y = b(x) = b0x
3 + b1x

2 + b2x + b3 =
4∑

i=1

yi

∏
j 6=i

(x− xj)

(xi − xj)
.

For the x-coordinates of the intersections with the curve y2 = a0x
5 +a1x

4 + · · ·+a5 we obtain

(b0x
3 + b1x

2 + b2x + b3)
2 − a0x

5 − a1x
4 − · · · − a5 = 0.
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For the six intersections it follows

x1 + x2 + x3 + x4 + x5 + x6 =
a0 − 2b0b1

b2
0

, x1x2x3x4x5x6 =
b2
3 − a5

b2
0

.

According to Vieta x5 and x6 are solutions of the quadratic equation

x2 +
(
x1 + x2 + x3 + x4 −

a0 − 2b0b1

b2
0

)
x +

b2
3 − a5

b2
0x1x2x3x4

= 0. (1)

Therefore we obtain

R1 = (x5,−b0x
3
5 − b1x

2
5 − b2x5 − b3), R2 = (x6,−b0x

3
6 − b1x

2
6 − b2x6 − b3).

4. Rational formulas

The group law of the previous section contains a root operation. It is possible to avoid roots
by the representation of divisors by Mumford and Cantor (cf. [1, 9]). We present a reduced
divisor P1 + P2 = (x1, y1) + (x2, y2) by the pair of polynomials

(
(x− x1)(x− x2),

y2 − y1

x2 − x1

(x− x1) + y1

)
=:

(
A(x), B(x)

)
= (x2 + αx + β, γx + δ)

if x1 6= x2. A divisor 2P1 = 2(x1, y1) has the representation
(
(x − x1)

2, p ′(x1)
2y1

(x − x1) + y1

)
.

The divisors of the form D = P1 = (x1, y1) form the so called Theta divisor Θ. We can
represent (x1, y1) by the pair (x− x1, y1). Now we consider the sum(

A1(x), B1(x)
)

+
(
A2(x), B2(x)

)
=

(
A3(x), B3(x)

)
.

The coordinates α, β, γ, δ form a coordinate system on Jac(C) − Θ. We show that the
group law has a rational form in the generic case Nb0β1β2 6= 0 (cf. below for b0, N). We
can replace the xi, yi of the cubic interpolation polynomial through the αi, βi, γi, δi by a
Groebner basis calculation. We insert the expressions for yi into b(x) and we consider the
ringC[x, y, a1, a2, b1, b2][x1, x2, x3, x4], the order x1 < x2 < x3 < x4 and the ideal(

(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)(y − b(x)),

α1 + x1 + x2, α2 + x3 + x4, β1 − x1x2, β2 − x3x4

)
.

By a computer calculation we find the first Groebner basis element

(a2
1 − 4b1)(a

2
2 − 4b2)

(
((β1 − β2)

2 + (α1 − α2)(α1β2 − α2β1))y − b̃(x)
)

where b̃(x) is independent from the xi. We require that the discriminants of A1, A2 do not
vanish. Furthermore we have

b0 =
1

N

(
(β2 − β1)(γ1 − γ2) + (α1 − α2)(δ1 − δ2)

)
,
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b1 =
1

N

(
(α2β2 − α1β1)(γ1 − γ2) + (α2

1 − α2
2 − β1 + β2)(δ1 − δ2)

)
,

b2 =
1

N

(
α2

2β1γ1 + α2
1β2γ2 − α1α2(β1γ1 + β2γ2) + (β1 − β2)(β1γ2 − β2γ1)+

+(α1α2(α1 − α2) + (α1β2 − α2β1))(δ1 − δ2)
)
,

b3 =
1

N

(
(α2 − α1)β1β2(γ1 − γ2) + α2

1β2δ1 + α2
2β1δ2 − α1α2(β2δ1 + β1δ2)+

+(β1 − β2)(−β2δ1 + β1δ2)
)

where N is the resultant (x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4) or

N = (β1 − β2)
2 + (α1 − α2)(α1β2 − α2β1).

Because of (1) we have

A3(x) = x2 +
(
− α1 − α2 −

a0 − 2b0b1

b2
0

)
x +

b2
3 − a5

b2
0β1β2

= 0

and

B3(x) = −
(
y5

x− x6

x5 − x6

+ y6
x− x5

x6 − x5

)
= −b(x5)− b(x6)

x5 − x6

x− b(x6)x5 − b(x5)x6

x5 − x6

= −(b2 + b1x5 + b1x6 + b0x
2
5 + b0x5x6 + b0x

2
6)x

+b3 + b2x5 + b2x6 + b1x
2
5 + b1x

2
6 + b1x5x6 + b0x

3
5 + b0x

2
5x6 + b0x5x

2
6 + b0x

3
6 .

Using α3 = −x5 − x6 and β3 = x5x6 we obtain

B3(x) = (−b2 + b1α3 − b0α
2
3 + b0β3)x− b0α3β3 + b1β3 − b3.

Therefore we have the explicit rational group law

α3 = −α1 − α2 −
a0 − 2b0b1

b2
0

,

β3 =
b2
3 − a5

b2
0β1β2

,

γ3 = −b2 + b1α3 − b0α
2
3 + b0β3,

δ3 = −b0α3β3 + b1β3 − b3

on the dense set of Jac(C)−Θ with (x1 − x2)(x3 − x4)Nb0β1β2 6= 0.

Remark. The formulas are also true in the limit x1 = x2, x3 = x4. The remaining special
cases can be treated similar.
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