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Abstract. We give an application of the second extension of the Thas-Walker
construction and exhibit a 4-parameter family F of explicit examples of spreads of
PG(3, R) with asymplecticly complemented regulization. In F there are symplectic
spreads and also asymplectic algebraic spreads. A spread S of PG(3, R) is called
rigid if, apart from the identity, there exists no collineation leaving S invariant; a
rigid spread S is said to be hyperrigid if there exists no duality leaving S invariant.
The family F contains hyperrigid algebraic spreads as well as rigid algebraic spreads
which are not hyperrigid.
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1. Introductory survey

The present article continues a series of nine papers [20]–[28] the author wrote on construc-
tions of spreads, hence we give a survey of the investigations done up till now in order to
position the present paper and to make reading easier.

1.1 Posing the problems. All locally compact 4-dimensional translation planes which ad-
mit an at least 7-dimensional collineation group were classified by D. Betten; cf. [30, Chap-
ter 73]. As contrast to his results D. Betten asked for an explicit example of a 4-dimensional
translation plane with smallest possible collineation group, i.e., a translation plane which
admits no collineation except translations and homotheties; cf. [3, p. 140]. Equivalent to
Betten’s problem is
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Task R. Give an explicit example of a rigid topological spread of the real projective 3-space
PG(3, R).

A spread S of a projective space Π is called rigid, if the only collineation leaving S invariant is
the identity. A spread S of PG(3, R) is topological, if S represents a 4-dimensional translation
plane. The full collineation group of a rigid topological spread of PG(3, R) is 5-dimensional;
cf. [30, p.395]. When we stress the line geometric aspects of a spread S of a projective 3-space
Π3 we must also take dualities of Π3 into account. A rigid spread S of Π3 is called hyperrigid,
if there exists no duality of Π3 leaving S invariant.

Task HR. Give an explicit example of a hyperrigid topological spread of PG(3, R).

Task R is solved in [20] and [28] by tacking together partial spreads along common reguli.
In [28, Theorem 3] we exhibit a rigid topological spread of PG(3, R) which is not hyperrigid;
this spread is built up by parts of four different regular spreads. Task HR is solved by [28,
Theorem 4] where we exhibit spreads which are built up by parts of five different regular
spreads. These “patchwork” solutions of Task R and HR in [20] and [28] make us ask for
more aesthetical solutions, hence

Task AR. Give an explicit example of an algebraic rigid spread of PG(3, R).

Task AHR. Give an explicit example of an algebraic hyperrigid spread of PG(3, R).

A spread of PG(3, R) is called algebraic, if its Klein image is an algebraic subvariety of the
Klein quadric. We may omit the demand “topological” in Task AR and AHR since we show in
Section 8 of the present paper that each algebraic spread of PG(3, R) is topological. Weaker
than Task AR and AHR is

Task A. Construct a non-regular algebraic spread of PG(3, R).

Our approach to the solution of Task A, AR, and AHR follows two guidelines:

G1. We construct spreads as compositions of reguli.

G2. We conjecture that “in the neighborhood” of the regular spread there exist solutions of
Task A, AR, and AHR.

1.2 Regulizations. A first attempt are [21] and [22] where we give explicit examples of
spreads of PG(3, R) whose collineation groups are 6-dimensional and which admit hyperbolic
resp. parabolic regulizations in the sense of N. Knarr (cf. [23, Def. 1.1] or [16, p. 35]). The
immediate addition of an elliptic supplement to [21] and [22] fails because of two obstacles:
The applied constructions could not be modified to an elliptic case without using the complex
extension of PG(3, R) and the same holds for Knarr’s definition. Hence we give in [23] an
equivalent definition which also comprises the elliptic case:

Definition 1. Let Π3 = PG(3, K) be a projective 3-space with commutative coordinating field
K. A proper regulus R of Π3 is a set of lines meeting three given mutually skew lines, by
Rc we denote the complementary regulus. A single line is improper regulus and defined to be
self-complementary. By a regulization of a spread S of Π3 we mean a collection Σ of reguli
contained in S such that Σ contains at most two improper reguli and such that each element
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of S is member of exactly one regulus of Σ or of all reguli of Σ; cf. [23, Def. 1.2]. The set of
all lines obtained by taking the union of complementary reguli to the reguli of Σ is called the
complementary congruence Sc

Σ of S with respect to Σ; in symbols Sc
Σ := ∪(Rc | R ∈ Σ). If Sc

Σ

happens to be a non-degenerate linear congruence of lines (hyperbolic, parabolic, or elliptic),
then Σ is called net generating regulization (hyperbolic, parabolic, or elliptic); cf. [23, Def. 1.3].
If Sc

Σ belongs to a single linear complex of lines, then we say that Σ is a unisymplecticly
complemented regulization of S; cf. [25, Def. 1]. If Sc

Σ belongs to no linear complex of lines,
then Σ is named asymplecticly complemented regulization of S; cf. [27, Def. 1].

1.3 The Thas-Walker construction and its extensions. The concepts of Definition 1
together with Klein’s correspondence λ of line geometry lead without constraint to the Thas-
Walker construction and its two extensions. The Klein image of a proper (improper) regulus
is called proper (improper) conic. In Π3 we start from a spread S with regulization Σ and
study following collection of conics: {λ(Rc) | R ∈ Σ} =: F.

Case 0: Σ is net generating. By [23, Proposition 3.1], F is a flock of the quadric λ(Sc
Σ) which

is elliptic or hyperbolic or a cone, if Σ is elliptic or hyperbolic or parabolic, respectively. A
flock of a quadric Q of PG(3, K), K commutative, is a collection of disjoint conics which
partitions Q and which contains no improper conic, if Q is hyperbolic, exactly one improper
conic, if Q is a cone, and at most two improper conics, if Q is elliptic; cf. [23, Def. 3.1].
Conversely, let F be a flock of a quadric Q embedded into the Klein quadric H5 and put⋃

k∈F

(
λ−1(k)

)c

=: S(F) and
{(

λ−1(k)
)c

| k ∈ F
}

=: Σ(F); (1)

then S(F) is a spread of PG(3, K) with the net generating regulization Σ(F) (cf. [23, Propo-
sition 3.3]) and S(F) is also a dual spread (cf. [23, Theorem 2.8]).

Remark 1. The procedure of winning a spread from a flock via (1) is known from finite
geometry as Thas-Walker construction; cf. [12, pp. 7–8], [32, p. 95], [35], [36]. In [23] we
show that the Thas-Walker construction is valid in the infinite (commutative) case, too. In
the finite case, i.e., in PG(3, q), a flock of a quadric Q is defined as a set of q− 1 or q +1 or q
conics of Q according Q is elliptic, hyperbolic, or a cone. Apart from two exceptional points
an elliptic flock uniquely covers the carrier quadric. Note that in the infinite elliptic case we
impose a weaker condition; cf. [23, Def. 3.1 and Remark 3.1].

Case 1: Σ is unisymplecticly complemented. By [25, p. 239 (S3)], the complementary con-
gruence Sc

Σ is contained in a single linear complex G of lines which must be general. By [25,
Proposition 1], F is a flockoid of the Lie quadric λ(G). A flockoid F of a Lie quadric L4 of
PG(4, K), K commutative, is a collection of (proper or improper) conics of L4 such that F
contains at most two improper conics and such that for each 1-dimensional subspace ` of L4

there exists exactly one conic k ∈ F with ` ∩ k 6= ∅; cf. [25, Def. 3]. If conversely F is a
flockoid of a Lie quadric L4 embedded into the Klein quadric H5, then the line set S(F) from
(1) is a spread of PG(3, K) and Σ(F) from (1) is either a unisymplecticly complemented or an
elliptic regulization of S(F) (cf. [25, Proposition 2]) and S(F) is also a dual spread (cf. [25,
Corollary 1]).
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Remark 2. The author calls the procedure of winning a spread from a flockoid of a Lie
quadric via (1) in the subsequent first extension of the Thas-Walker construction. Note
the difference between symplectic spreads and spreads with unisymplecticly complemented
regulization; in [26, Section 5, Type 1 and 2] we give explicit examples of asymplectic spreads
with unisymplecticly complemented regulization and in Section 7 of the present paper we
give explicit examples of symplectic spreads with asymplecticly complemented regulization.
Nevertheless there is following connection:

Lemma 1. Let S be a spread of PG(3, K), K commutative, with a unisymplecticly comple-
mented regulization Σ. Then the complementary congruence Sc

Σ is a symplectic spread.

Proof. Put i(Σ) := # ∩ (R | R ∈ Σ); cf. [27, Def. 3]. By [23, Remark 2.4], i(Σ) ∈ {0, 1, 2}.
If i(Σ) ∈ {1, 2}, then Σ is parabolic or hyperbolic according to [23, Remark 2.5] and [23,
Remark 2.6] and this contradicts the assumption that Σ is unisymplecticly complemented.
Hence i(Σ) = 0 and, by [23, Remark 2.9], Sc

Σ is a spread contained by definition in a linear
congruence which by [25, p. 239 (S3)] must be general, i.e., Sc

Σ is a symplectic spread. 2

Remark 3. From finite geometry is known: Symplectic spreads of PG(3, q) and ovoids of
the Lie quadric Q(4, q) are equivalent objects; cf. [34], [18]. The definition of an ovoid can
be taken over unchanged from the finite to infinite case: An ovoid of a Lie quadric L4 of
PG(4, K), K commutative, is a point set which has exactly one point in common with each
line of L4. Immediately we get:

If F is a flockoid of the Lie quadric L4, then ∪(k | k ∈ F) is an ovoid of L4.

Only a few classes of ovoids of Q(4, q) are known:

(1) the classical ovoids,
(2) for q even ovoids of Q(4, q) ⊂ PG(4, q) which can be projected into Tits ovoids of PG(3, q),
(3) for q odd: (3a) the semifield Kantor ovoid K1,

(3b) the non-semifield Kantor ovoid K2,
(3c) the Thas-Payne ovoids, and,
(3d) the Penttila-Williams ovoid of Q(4, 35); cf. [34], [19].

Which of these ovoids of Q(4, q) carries a flockoid? An elliptic flock of a classical ovoid is
also a flockoid of Q(4, q); cf. [25, Remark 9]. By [5], a Tits ovoid carries no conic. By [33,
p. 230], the semifield Kantor ovoid K1 can be decomposed in just one way into a set of conics
having a common point, but this set is no flockoid since any two different conics of a flockoid
are disjoint; cf. [25, Lemma 3(i)]. For the ovoids from (3b), (3c), and (3d) no decomposition
into conics is known to the author.

Case 2: Σ is asymplecticly complemented. By [27, Proposition 1], F is a flocklet of the Klein
quadric H5. A flocklet F of the Klein quadric H5 of PG(5, K), K commutative, is a collection
of (proper or improper) conics of H5 such that F contains at most two improper conics and
such that for each Latin plane γ of H5 there exists exactly one conic k ∈ F with γ ∩ k 6= ∅;
cf. [27, Def. 2]. If conversely F is a flocklet of the Klein quadric H5, then the line set S(F)
from (1) is a spread of PG(3, K) and Σ(F) from (1) is either an asymplecticly complemented
or a unisymplecticly complemented or an elliptic regulization of S(F) (cf. [27, Proposition 2
and Remark 1]).
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Remark 4. The author calls the procedure of winning a spread from a flocklet of the Klein
quadric via (1) the second extension of the Thas-Walker construction. It is an open question
whether a spread with asymplecticly complemented regulization must be a dual spread. In
the finite and topological case each spread is also a dual spread (cf. [6] and [7], respectively),
note however following fact: In PG(2t + 1, K) with t ≥ 1 and infinite field K there exists a
spread which is not a dual spread; cf. [1, Teorema 2.2]1. Therefore (and in contrast to Case 0
and 1) we have to consider in Case 2 also the dual of the second extension of the Thas-Walker
construction. By a flockling F of the Klein quadric H5 of PG(5, K), K commutative, we mean
a collection of (proper or improper) conics of H5 such that F contains at most two improper
conics and such that for each Greek plane δ of H5 there exists exactly one conic k ∈ F with

δ ∩ k 6= ∅; cf. [27, Def. 2]. If F is a flockling of H5, then
⋃

k∈F

(
λ−1(k)

)c

is a dual spread.

Lemma 2. Let S be a spread of PG(3, K), K commutative, with an asymplecticly comple-
mented regulization Σ. Then the complementary congruence Sc

Σ is an asymplectic spread.

Proof. Take over the proof of Lemma 1, mutatis mutandis. 2

Remark 5. In finite geometry one means by an ovoid of the Klein quadric Q+(5, q) a point
set of Q+(5, q) meeting each plane of Q+(5, q) in just one point; cf. [4, p. 31]. In the infinite
case it is advisable to use two concepts: An ovoilet of the Klein quadric H5 is a point set of
H5 meeting each Latin plane of H5 in just one point and an ovoiling of H5 is a point set of
H5 meeting each Greek plane of H5 in just one point. From [1, Teorema 2.2] follows that
there exist ovoilets which are not ovoilings. Immediately we get:

If F is a flocklet of the Klein quadric H5, then ∪(k | k ∈ F) is an ovoilet of H5. If F is a
flockling of the Klein quadric H5, then ∪(k | k ∈ F) is an ovoiling of H5.

In the finite case the concepts ovoilet and ovoiling coincide. Examples of non-classical ovoids
of Q+(5, q) can be found in [4] and [9], it seems to be unknown which of these ovoids carries
a flocklet.

Remark 6. Each elliptic flock can be interpreted as flockoid of a suitable Lie quadric (cf. [25,
Remark 9]), this is not valid for hyperbolic or parabolic flocks (cf. [25, Remark 8]). Each
flockoid can be interpreted as well as flocklet and flockling (cf. [27, Remark 3]), but it is an
open question whether each flocklet must be flockling.

1.4 Thas-Walker sets. Assume Char K 6= 2 (K commutative), let E =: Q3 be an elliptic
quadric of PG(3, K), L4 =: Q4 be a Lie quadric of PG(4, K), H5 =: Q5 be the Klein quadric of
PG(5, K), and denote the polarity of Qj by πj (j = 3, 4, 5). A proper conic of Qj is uniquely
determined by the (j − 3)-dimensional subspace πj(spank), a collection C of proper conics
of Qj is uniquely determined by the set {πj(spank) | k ∈ C}, j = 3, 4, 5.

Let T be a set of (j − 3)-dimensional subspaces of PG(j, K) and put

T ′ := {X ∈ T | πj(X) ∩ Qj 6= ∅}, and Fj(T ) := {πj(X) ∩ Qj | X ∈ T ′}. (2)

1For spreads which are not dual spreads see also [6] and [14].
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Case j = 3: We say T is a Thas-Walker point set with respect to the elliptic quadric Q3, if
F3(T ) is a flock of Q3.

Case j = 4: We say T is a Thas-Walker line set with respect to the Lie quadric Q4, if F4(T )
is a flockoid of Q4.

Case j = 5: We say T is a Thas-Walker plane set of Latin type with respect to the Klein
quadric Q5, if F5(T ) is a flocklet of Q5.

If T is a Thas-Walker set with respect to the quadric Qj, then the spread S(Fj(T )) con-
structed from Fj(T ) via (1) has a Klein image λ(S(Fj(T ))) which is on H5 and on the cone
having the (4− j)-dimensional vertex π5(span Qj) and the directrix T (j = 3, 4, 5), in other
words, we get λ(S(Fj(T ))) by projecting T from π5(span Qj) onto H5.

Initial examples. The latitudinal circles of a sphere Q3 of PG(3, R) together with North
pole N and South pole S form a flock Flat3 of Q3. The range T03 of points on N ∨ S =: c is
a Thas-Walker point set with respect to Q3 satisfying F3(T03) = Flat3. We embed the sphere
Q3 together with Flat3 into a Lie quadric Q4, then Flat3 is a flockoid Flat4 of Q4. All lines
incident with the point π4(span Q3) =: V and meeting c form a pencil T04 of lines such that
T04 is a Thas-Walker line set with respect to Q4 satisfying F4(T04) = Flat4. We embed the Lie
quadric Q4 together with Flat4 into the Klein quadric H5 = Q5, then Flat4 is a flocklet Flat5

of Q5. All planes incident with the line π5(span Q3) =: d and meeting c form a pencil T05 of
planes such that T05 is a Thas-Walker plane set of Latin type with respect to Q5 satisfying
F5(T05) = Flat5.

j = 3. Following the guideline G2 we show in [24, Section 3.1] that in the neighborhood of the
range T03 of points there exist rational cubics wε,ϕ (ε, ϕ ∈ R are deviations and w0,0 = T03)
such that wε,ϕ are Thas-Walker point sets with respect to Q3. The spreads S(F3(wε,ϕ)) are
algebraic and for (ε, ϕ) 6= (0, 0) non-regular; cf. [24, Theorem 3.2.1] together with [26, Remark
16] and [24, Theorem 3.3.1]. Thus we have solutions of Task A. Because of [23, Lemma 1.1],
a spread of PG(3, R) with net generating, especially elliptic regulization is never rigid. By
the way, the determination of all collineations of PG(3, R) leaving a spread S(F3(wε,ϕ)) with
εϕ 6= 0 invariant is equivalent to the determination of all collineations which leave invariant
the elliptic quadric Q3 = E, a distinguished point pair p on Q3, and the skew cubic wε,ϕ; see
[24, p. 140–141].

j = 4. In [26, Section 4] we replace the vertex V of T04 with a conic cε1,ε2,ε3 in the neighbor-
hood of V (ε1, ε2, ε3 ∈ R are deviations and c0,0,0 = V ) and generate a line set Aε1,ε2,ε3 by a
projectivity from c (= g1) onto cε1,ε2,ε3 such that A0,0,0 = T04; appropriate bounds for ε1, ε2, ε3

guarantee that Aε1,ε2,ε3 is a Thas-Walker line set with respect to Q4; cf. [26, Lemma 3]. The
spreads S(F4(Aε1,ε2,ε3)) =: Aε1,ε2,ε3 with ε1ε2 6= 0 are algebraic (see [26, Theorem 3]) and
rigid, if ε3 6= 0 (see [26, Theorem 5]). Thus we have solutions of Task AR, but the spreads
Aε1,ε2,ε3 with ε1ε2ε3 6= 0 are not hyperrigid; cf. [26, Remark 22 and 23]. For the spreads
Aε1,ε2,ε3 with ε1ε2 6= 0 it is possible to give beside the algebraic also a rational parametric
description; see [26, Theorem 3 and 1]. This fact and properties of the normal ruled surface
corresponding to the line set Aε1,ε2,ε3 enable us to determine all automorphic collineations of
Aε1,ε2,ε3 by synthetic considerations and by comparing coefficients2; see [26, p. 330–335].

2If we wanted full analogy with the cases j = 3 and j = 5, we would have to alter the proceeding and
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j = 5. This case is dealt with in the present paper. To the lines c and d we add a line
eε1,ε2,ε3,ε4 =: e which belongs to the neighborhood of d (ε1, ε2, ε3, ε4 ∈ R are deviations). We
generate a plane set Bε1,ε2,ε3,ε4 by projectivities between c, d, and e such that B0,0,0,0 = T05;
appropriate bounds for ε1, ε2, ε3, ε4 guarantee that Bε1,ε2,ε3,ε4 is a Thas-Walker plane set of
Latin type with respect to Q5; cf. Lemma 4. If ε1ε2 6= 0, then c, d, e are mutually skew
lines of PG(5, R), i.e., Bε1,ε2,ε3,ε4 is a 2-regulus, cf. [15, p. 199], and the corresponding point
set is a Segre variety S2;1, cf. [8, p. 116], [15, p. 190]. Each spread S(F5(Bε1,ε2,ε3,ε4)) =:
Bε1,ε2,ε3,ε4 with ε1ε2 6= 0 is an algebraic asymplectic spread with asymplecticly complemented
regulization which is the only regulization of Bε1,ε2,ε3,ε4 ; see Theorem 13 and 2. Synthetic
considerations show that the determination of all collineations and dualities of PG(3, R)
leaving Bε1,ε2,ε3,ε4 invariant is equivalent to the determination of all collineations of PG(5, R)
which leave invariant the Klein quadric H5, a distinguished point pair p on H5, and the Segre
variety S2;1 corresponding to Bε1,ε2,ε3,ε4 ; see Corollary 1 and Lemma 6. We get the common
automorphic collineations of H5, p, and S2;1 by comparing coefficients which involves longer
computer aided calculations with numerous ramifications. Result: For ε1ε2 6= 0, ε2 6= ± ε1,
and ε4 6= −ε3 the spread Bε1,ε2,ε3,ε4 is hyperrigid; see Theorem 3. Thus we have solutions of
Task AHR.

In Section 7 we shortly discuss the special case with (ε2, ε4) = (0, 0) and ε1ε3 6= 0. Each
spread Bε1,0,ε3,0 is symplectic and admits an asymplecticly complemented regulization (see
Theorem 5), but symplectic spreads are never hyperrigid (see Lemma 7). Each spread Bε1,0,ε3,0

is properly contained in the complete intersection of a general linear complex and a cubic
complex of lines.

1.5 Table of solutions. The subsequent table shows where solutions of the tasks from
Subsection 1.1 can be found.

Reference Task R Task HR Task A

[28, Theorem 3] yes no no
[28, Theorem 4] yes yes no
[24, Theorem 3.2.1 and 3.3.1] no no yes
[26] yes no yes
present paper yes yes yes

Table 1

2. Thas-Walker plane sets of Latin type in terms of coordinates

Let λ be the Klein mapping of the lines of Π = PG(3, K) onto the points of the Klein quadric
H5 which is embedded into a projective 5-space Π5 = PG(5, K) with point set P5. For the

show: The determination of all collineations of PG(3, R) leaving a spread Aε1,ε2,ε3 with ε1ε2 6= 0 invariant
is equivalent to the determination of all collineations which leave invariant the Lie quadric Q4 = L4, a
distinguished point pair p on Q4, and the normal ruled surface corresponding to the line set Aε1,ε2,ε3 .

3Theorem 1 answers the question posed in [27, p. 487] for explicit examples of asymplectic algebraic
spreads with asymplecticly complemented regulization.
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rest of this paper, we assume that Π and Π5 are the projective spaces on K4 and K4 ∧ K4,
respectively, and that λ maps the line cK∨dK of Π onto (c∧d)K ∈ P5. The standard basis
B of K4 yields the ordered basis (p0, . . . ,p5) =: B5 of K4 ∧K4 with

p0 := b0 ∧ b1, p1 := b0 ∧ b2, p2 := b0 ∧ b3, p3 := b2 ∧ b3, p4 := b3 ∧ b1, p5 := b1 ∧ b2.

Thus

H5 = {pK ∈ P5 | p =
5∑

k=0

pkpk and h5(p) := p0p3 + p1p4 + p2p5 = 0}. (3)

To the quadratic form h5 there belongs the symmetric bilinear form Ω with

Ω(p,q) := h5(p + q)− h5(p)− h5(q) = p0q3 + p3q0 + p1q4 + p4q1 + p2q5 + p5q2 (4)

for p =
∑5

k=0 pkpk, q =
∑5

k=0 pkqk. Now Ω describes the polarity π5 of the Klein quadric
H5 [31, p. 9]; note that we do not assume Char K 6= 2.

We generate a set B of planes of Π5 by joining points of equal parameter of three “directing
curves” c, d, and e given by parametric representations. Thus

c = {cuK | cu =
5∑

k=0

pkck(u) and u ∈ U ⊆ K ∪ {∞}}, (5)

d = {duK | du =
5∑

k=0

pkdk(u) and u ∈ U ⊆ K ∪ {∞}}, (6)

e = {euK | eu =
5∑

k=0

pkek(u) and u ∈ U ⊆ K ∪ {∞}}, (7)

where ck, dk, and ek are mappings from U into K such that

{cu,du, eu} is a triangle for each u ∈ U; (8)

B = {βu := cuK ∨ duK ∨ euK | u ∈ U}. (9)

In order to have a clearly arranged description of the set B, we define (3×6)-matrices

MB(u) :=

 c0(u) · · · c5(u)
d0(u) · · · d5(u)
e0(u) · · · e5(u)

 for u ∈ U. (10)

The subsequent Lemma 3 sums up the conditions which guarantee that B is a Thas-Walker
plane set of Latin type with respect to the Klein quadric (3). In spite of its length, Lemma 3
is nearly trivial, since it is only the translation of (TWLa2)–(TWLa4) from [27, Lemma 3]4

into coordinates; compare also [26, Lemma 1].

4Note that in [27, Lemma 3] we had to assume Char K 6= 2.
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Lemma 3. Assume Char K 6= 2. The set B of planes described by (5) up to (9) is a Thas-
Walker plane set of Latin type with respect to the Klein quadric (3) if, and only if, the
following six conditions hold 5:

(C2) #(Ue) ≤ 2 with Ue := {u∈U |F3(u) = 0} wherein

F3(u) :=

∣∣∣∣∣∣
Ω(cu, cu) Ω(cu,du) Ω(cu, eu)
Ω(du, cu) Ω(du,du) Ω(du, eu)
Ω(eu, cu) Ω(eu,du) Ω(eu, eu)

∣∣∣∣∣∣ .

(C3) If b∈Ue, then there exists exactly one point sK∈H5 with Ω(s, cb)=Ω(s,db)=Ω(s, eb)=0.

(C4) Put C4(ξ, η, ζ, u) :=∣∣∣∣∣∣∣∣
(−c3 − ζ c1 + η c2)(u) (−c4 + ζ c0 − ξ c2)(u) (−c5 + ξ c1 − η c0)(u)

(−d3 − ζ d1 + η d2)(u) (−d4 + ζ d0 − ξ d2)(u) (−d5 + ξ d1 − η d0)(u)

(−e3 − ζ e1 + η e2)(u) (−e4 + ζ e0 − ξ e2)(u) (−e5 + ξ e1 − η e0)(u)

∣∣∣∣∣∣∣∣ .

For each (ξ, η, ζ) ∈ K3 the equation C4(ξ, η, ζ, u) = 0 in the unknown u has exactly one
solution in U.

(C5) Put C5(ξ, η, u) :=∣∣∣∣∣∣∣∣
(c3 + ξ c4 + η c5)(u) (η c0 − c2)(u) (−ξ c0 + c1)(u)

(d3 + ξ d4 + η d5)(u) (η d0 − d2)(u) (−ξ d0 + d1)(u)

(e3 + ξ e4 + η e5)(u) (η e0 − e2)(u) (−ξ e0 + e1)(u)

∣∣∣∣∣∣∣∣ .

For each (ξ, η) ∈ K2 the equation C5(ξ, η, u) = 0 in the unknown u has exactly one solution
in U.

(C6) Put C6(ξ, u) := ∣∣∣∣∣∣∣∣
(c4 + ξ c5)(u) (−ξ c1 + c2)(u) −c0(u)

(d4 + ξ d5)(u) (−ξ d1 + d2)(u) −d0(u)

(e4 + ξ e5)(u) (−ξ e1 + e2)(u) −e0(u)

∣∣∣∣∣∣∣∣ .

For each ξ ∈ K the equation C6(ξ, u) = 0 in the unknown u has exactly one solution in U.

(C7) Put C7(u) := ∣∣∣∣∣∣∣∣
c0(u) c1(u) c5(u)

d0(u) d1(u) d5(u)

e0(u) e1(u) e5(u)

∣∣∣∣∣∣∣∣ .

The equation C7(u) = 0 in the unknown u has exactly one solution in U.

5In order to have full correspondence with [26, Lemma 1] the conditions start with (C2).
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Proof. We use the characterization of a Thas-Walker plane set of Latin type by the properties
(TWLa2)–(TWLa4) given in [27, Lemma 3].

If βu ∈ B, then

δu := π5(βu) = {pK ∈ P5 | Ω(p, cu) = Ω(p,du) = Ω(p, eu) = 0}. (11)

An arbitrary point (cuξ + duη + euζ)K, (ξ, η, ζ) ∈ K \ {(0, 0, 0)}, of cuK ∨ duK ∨ euK
is incident with the plane δu if, and only if, (ξ, η, ζ) is a solution of the system of linear
equations Ω(cuξ +duη +euζ, cu) = Ω(cuξ +duη +euζ,du) = Ω(cuξ +duη +euζ, eu) = 0 with
determinant F3(u). As βu ∩ δu = ∅ ⇔ F3(u) 6= 0, so (C2)⇔(TWLa2) and (C3)⇔(TWLa3)6.

By applying the antiautomorphism π5, (TWLa4) turns into the equivalent condition

(TWLa4∗) For each Latin plane γ of H5 there exists exactly one plane δu in DU := {δu | u ∈
U} with γ ∨ δu 6= P5 (⇔ γ ∩ δu 6= ∅).

Next we apply λ−1 in order to replace the condition γ ∩ δu 6= ∅ with an equivalent condition
in the 3-space Π. By L[P ] we denote the star of lines incident with a point P of Π. We
put λ−1(π5(cu)) =: Nu,1, λ−1(π5(du)) =: Nu,2, λ−1(π5(eu)) =: Nu,3; the linear complexes Nu,i

(i = 1, 2, 3) of lines need not be general for each u ∈ U. Let X be a point of γ with X ∈ δu.
Now λ−1(γ) is a star of lines with a vertex, say Y ∈ P . As X and cuK are conjugate with
respect to H5, so λ−1(X) ∈ L[Y ]∩Nu,1; analogously, λ−1(X) ∈ L[Y ]∩Nu,i for i = 2, 3. Thus
we have: γ ∩ δu 6= ∅ ⇔ #(L[Y ] ∩Nu,1 ∩Nu,2 ∩Nu,3) ≥ 1.

Now it is evident that the following condition is equivalent to (TWLa4) resp. (TWLa4∗):

(CONP) For each Y ∈ P there exists exactly one u ∈ U with

#((L[Y ] ∩Nu,1) ∩ (L[Y ] ∩Nu,2) ∩ (L[Y ] ∩Nu,3)) ≥ 1.

How to express (CONP) in coordinates can be taken over from [26, Proof of Lemma 1]
without any changes. 2

Remark 7. Let B be a set of planes described by (5)–(9). Provided that (C2) and (C3)
hold for B, then dim(γ ∩βu) ∈ {−1, 0} for all pairs (γ, u) where γ is a Latin plane of H5 and
u ∈ U. Furthermore, #(L[Y ] ∩Nu,1 ∩Nu,2 ∩Nu,3) ∈ {0, 1} for all (Y, u) ∈ P × U.

Proof. Assume, to the contrary, dim(γ ∩ βu) ∈ {1, 2}; then βu ∩ H5 contains a line, a
contradiction to footnote 6. 2

Remark 8. In Section 3, we aim at cubic equations C4(ξ, η, ζ, u) = 0, . . . , C7(u) = 0 in u.
Hence we will choose linear functions cj, dj, ej; in other words, the directing curves c, d, e will
be linearly parametrized lines.

Remark 9. Lemma 3 comprises the first extension of the Thas-Walker construction, too,
namely for certain constant functions cj; cf. [26, (11) and Lemma 1]. In [26] we also aimed
at cubic equations C4(ξ, η, ζ, u) = 0, . . . , C7(u) = 0 in u and the dj were chosen as linear, the
ej as quadratic functions; cf. [26, Remark 2].

6From the proof of [27, Lemma 3] we read off: (C2) and (C3) guarantee that βu ∩ H5 is either a (proper
or improper) conic or empty for each u ∈ U.
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Remark 10. Lemma 3 comprises the elliptic case of the ordinary Thas-Walker construction,
too, namely for certain constant functions cj and dj. We get cubic equations C4(ξ, η, ζ, u) =
0, . . . , C7(u) = 0 in u, if the ej are chosen as cubic functions. This idea is pursued in [24].

3. A family of Thas-Walker plane sets of Latin type

At the beginning of this Section we exhibit the setting (12) for a set Bε1,ε2,ε3,ε4 of planes by
using (5)–(8) and a matrix of the form (9). Subsequently we expose the geometric background
of the setting (12) and finally we determine bounds for the deviations ε1, ε2, ε3, ε4 such that
Bε1,ε2,ε3,ε4 becomes a Thas-Walker plane set of Latin type.

For the rest of this paper we assume K = R. By Bε1,ε2,ε3,ε4 we denote the set of planes
described by the (3×6)-matrices:

MB(ε1, ε2, ε3, ε4, u) :=

 0 0 1 0 0 u
1 u 0 −1 −u 0

−u(1 + ε1) 1 + ε2 ε4 u(1− ε1) −(1− ε2) −uε3

 (12)

and

MB(ε1, ε2, ε3, ε4,∞) :=

 0 0 0 0 0 1
0 1 0 0 −1 0

−(1 + ε1) 0 0 1− ε1 0 −ε3

 (13)

for all u ∈ R and for εj ∈ R.
In order to check (8), we form the submatrix of MB(ε1, ε2, ε3, ε4, u), u ∈ R, consisting of

the first three columns and the submatrix of MB(ε1, ε2, ε3, ε4,∞) consisting of the last three
columns, and get for the values of the two corresponding determinants 1 + ε2 + u2(1 + ε1)
and 1− ε1, respectively. Hence we have:

If |ε1| < 1 and |ε2| < 1, then rank(MB(ε1, ε2, ε3, ε4, u)) = 3 for all u ∈ R ∪ {∞}. (14)

An arbitrary plane set Bε1,ε2,ε3,ε4 of Π5 yields the line set

Bε1,ε2,ε3,ε4 :=
⋃(

λ−1(ξ) | ξ ∈ Bε1,ε2,ε3,ε4

)
(15)

of Π; compare [27, Lemma 4].

First we give a short, but detailed description of the initial Thas-Walker sets T03, T04, and
T05 (compare Section 1.4). For sake of convenience we use the basis (p′′0, . . . ,p

′′
5) =: B′′

5 of
K4 ∧K4 with

p′′j = pj + pj+3, p′′j+3 = pj − pj+3, (j = 0, 1, 2); (16)

H5 = {pK ∈ P5 | p =
5∑

k=0

p′′kp
′′
k and p′′0

2 + p′′1
2 + p′′2

2 − p′′3
2 − p′′4

2 − p′′5
2 = 0}, (17)

compare [26, (4) and (5)]. For the elliptic quadric (“sphere”) we choose

Q3 = {pK ∈ H5 | p′′3 = p′′4 = 0}, (18)
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and N = (p′′2 + p′′5)R as North pole, S = (p′′2 − p′′5)R as South pole of the latitudinal flock
Flat3. Hence

T03 = c = N ∨ S = {Cu | u ∈ R ∪ {∞}} with

Cu := (p′′2(1+u)+p′′5(1−u))R = (p2+p5u)R for u ∈ R and C∞ = (p′′2−p′′5)R = p5R. (19)

We embed Q3 into the Lie quadric

L4 = Q4 = {pK ∈ H5 | p′′3 = 0}, (20)

then V = π4(span Q3) = p′′4R and T04 = {p′′4R∨Cu | u ∈ R∪{∞}}; cf. [26, (6), p. 315 Step 1].
Finally, Q4 ⊂ Q5 = H5, d = π5(span Q3) = p′′3R ∨ p′′4R, and T05 = {Cu ∨ p′′3R ∨ p′′4R | u ∈
R∪{∞}}. In order to describe T05 according to Remark 8, we choose d = e = p′′3R∨p′′4R and
endow d = e with two different linear parametrizations such that points with equal parameter
correspond in an elliptic autoprojectivity of d = e because of (8). For our examples we use
on the one hand

d := {Du | u ∈ R ∪ {∞}} with

Du := (p′′3+p′′4u))R = (p0+p1u−p3−p4u)R for u ∈ R and D∞ = p′′4R = (p1−p4)R (21)

and on the other hand
e := {Eu | u ∈ R ∪ {∞}} with

Eu := (−p′′3u + p′′4))R = (−p0u + p1 + p3u−p4)R for u ∈ R and E∞ = p′′3R = (p0−p3)R.
(22)

Thus we have
T05 = {βu := Cu ∨ Du ∨ Eu | u ∈ R ∪ {∞}}. (23)

The first and second row of (12), (13) result from (19) and (21). Note that c and d are skew.

Remark 11. For the planes β0 and β∞ holds:

β0 ∩ H5 = {C0} and β∞ ∩ H5 = {C∞}, (24)

i.e., λ−1(β0) and λ−1(β∞) are improper reguli.

Next we replace the line e from (22) with a new linearly parametrized line which we also call
e. This new e shall satisfy following four demands:

Demand 1. The lines c, d, and e shall be mutually skew, at least in the general case.
Demand 2. We want that (24) is valid also for the new linearly parametrized line e.
Demand 3. At least in the general case, the new line e shall not be contained in the 3-space
π5(c). By the way, π5(c) is described by the equations p′′2 = p′′5 = 0.
Demand 4. At least in the general case, e and π5(c) shall span Π5.

Remark 12. Aim of Demand 1 is that Bε1,ε2,ε3,ε4 becomes a 2-regulus. For sake of conve-
nience we pose Demand 2. To justify Demand 3 we consider the involutoric collineation ιλ
of Π5 which fixes each point of c and each point of the 3-space π5(c). If e ⊂ π5(c), then
each plane of Bε1,ε2,ε3,ε4 is invariant under ιλ which together with ιλ(H5) = H5 implies7

ι(Bε1,ε2,ε3,ε4) = Bε1,ε2,ε3,ε4 . Since we aim at hyperrigid spreads we try to avoid the described
situation by Demand 3. Finally, we sharpen Demand 3 by Demand 4.

7The collineation ιλ of PG(5, R) is induced by a transformation of PG(3, R); compare Section 5.3.
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For the new line e we make the subsequent setting:

e = {(−f u + g)R | u ∈ R ∪ {∞}} with

f := p′′3 +p′′0r0+p′′1r1+p′′2r2+p′′5r5 and g := p′′4 +p′′0s0+p′′1s1+p′′2s2+p′′5s5, ri, si ∈ R. (25)

We note that e is skew to c in any case. Demand 1 is satisfied, if

r0s1 − r1s0 6= 0. (26)

The plane corresponding to the parameter 0 is spanned by the points C0, D0, and gR.
Clearly, (C0 ∨ D0 ∨ gR) ∩ H5 = {C0} implies gR ∈ π5(C0), hence s2 = s5; if s2 = s5, then
(C0∨D0∨gR)∩H5 = {C0} is equivalent to | s2

0+s2
1| < 1. From (C∞∨D∞∨fR)∩H5 = {C∞}

we deduce r2 = −r5 and | r2
0 + r2

1| < 1. Demand 2 is fulfilled, if

r2 = −r5, s2 = s5, | r2
0 + r2

1| < 1, and | s2
0 + s2

1| < 1. (27)

As e ⊂ π5(c) ⇔ (r2, r5, s2, s5) = (0, 0, 0, 0), so Demand 3 is satisfied, if

(r2, r5, s2, s5) 6= (0, 0, 0, 0). (28)

Finally, Demand 4 is fulfilled, if
r2s5 − r5s2 6= 0. (29)

In order to avoid an overboarding number of parameters we put r1 = s0 = 0. As new line e
we use

(eε1,ε2,ε3,ε4 =) e := {Eu | u ∈ R ∪ {∞}} with

Eu :=
(
−(p′′3 + p′′0ε1 + p′′2

ε3

2
− p′′5

ε3

2
)u + p′′4 + p′′1ε2 + p′′2

ε4

2
+ p′′5

ε4

2

)
R =(

−p0u(1 + ε1) + p1(1 + ε2) + p2ε4 + p3u(1− ε1) + p4(−1 + ε2)− p5uε3

)
R and (30)

E∞ := (p′′3 + p′′0ε1 + p′′2
ε3

2
− p′′5

ε3

2
)R = −p0(1 + ε1) + p3(1− ε1)− p5ε3, εj ∈ R. (31)

The line e with (30) and (31) satisfies Demand 1 for ε1ε2 6= 0, Demand 2 for |ε1| < 1 and
|ε2| < 1, and Demand 4 for ε3ε4 6= 0. The third rows of (12) and (13) result from (30) and
(31), respectively.

Remark 13. If ε1ε2 6= 0, then c, d, e are mutually skew and Bε1,ε2,ε3,ε4 is a 2-regulus; this
case will be discussed in Section 5 in detail. As we aim also at non-regular symplectic spreads,
so we have to guarantee that our setting (12), (13) comprises also the special situation in
which Bε1,ε2,ε3,ε4 is contained in a 4-space, but not in a 3-space. If ε2 = ε4 = 0 and ε1ε3 6= 0,
then d and e have exactly the point p′′4R in common and dim(c ∨ d ∨ e) = 4; this special
case is dealt with shortly in Section 7.

In the following lemma, we are content with appropriate bounds for the four deviations εj.

Lemma 4. If |εj| < 10−4 for j = 1, 2, 3, 4, then Bε1,ε2,ε3,ε4 is a Thas-Walker plane set of
Latin type with respect to the Klein quadric (3) and Bε1,ε2,ε3,ε4 from (15) is a spread of Π.
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Proof. By Lemma 3, we have to check the conditions (C2)–(C7) for Bε1,ε2,ε3,ε4 . We compute
F3(u) = 2 u (1 + u2) (4 u2 − 4 u2ε2

1 + uε2
4 + 2 uε4ε3 + uε2

3 + 4− 4 ε2
2) for u ∈ R and F3(∞) =

0. An easy estimation of the discriminant of the last factor of F3(u) shows Ue = {0,∞}, i.e.,
(C2) holds true.

Let sR = (
∑5

k=0 pksk)R be an arbitrary point of H5, i.e.,

s0s3 + s1s4 + s2s5 = 0. (32)

Now Ω(s, c0) = s5 = 0, Ω(s,d0) = s3−s0 = 0, and Ω(s, e0) = s4(1+ε2)+s5ε4+s1(−1+ε2) = 0
together with (32) imply s2

0(1 + ε2) + s2
1(1− ε2) = 0 whence s0 = s1 = 0. Except p2R, there

is no point sR ∈ H5 with Ω(s, e0) = Ω(s,d0) = Ω(s, e0) = 0. From Ω(s, c∞) = s2 = 0,
Ω(s,d∞) = s4 − s1 = 0, Ω(s, e∞) = s3(−1− ε1) + s0(1− ε1)− s2ε3 = 0, and (32) we deduce
s2
0(1 − ε1) + s2

1(1 + ε1) = 0 and, consequently, s0 = s1 = 0. Except p5R, there is no point
sR ∈ H5 with Ω(s, c∞) = Ω(s,d∞) = Ω(s, e∞) = 0. Hence (C3) and (24) are valid.

For our setting (12) C4(ξ, η, ζ, u) = 0 becomes the cubic equation

Au3 + Bu2 + Cu + D = 0 with

A := −ζ2(1 + ε1)− 1 + ε1,

B := (−ε4 − ε3) ξ ζ + (2 ε1 − 2 ε2) ζ + (ε4 + ε3) η + η2 (1 + ε1) + (1− ε1) ξ2,

C := −1 + ε2 + (ε4 + ε3) ζ η + (ε4 + ε3) ξ + (−1− ε2) ζ2 + (2 ε1 + 2 ε2) η ξ,

D := ξ2 (1 + ε2)− η2 (−1 + ε2) (33)

in the unknown u since A < 0 for all ζ ∈ R. Using (13) we compute C4(ξ, η, ζ,∞) = A,
hence it suffices to show that (33) has exactly one solution in R. By [10, p. 31], this condition
holds, if

−18ABCD −B2C2 + 27A2D2 + 4AC3 + 4B3D > 0. (34)

We substitute the coefficients of (33) in (34) and get the condition

Γ(ξ, η, ζ, ε1, ε2, ε3, ε4) := 4 + · · ·+ 4ζ8 (−1− ε1) (−1− ε2)
3 > 0. (35)

Thus
Γ(ξ, η, ζ, 0, 0, 0, 0) = 4ξ8 + · · ·+ 4η8 + · · ·+ 4ζ8 + · · ·+ 4. (36)

We compare this with [26, Proof of Lemma 3]: In essential we have the same situation here.
By applying the estimation procedure given in [26, Proof of Lemma 3] to Γ(ξ, η, ζ, ε1, . . . , ε4),
we get: C4(ξ, η, ζ, u) = 0 has exactly one solution in R for all (ξ, η, ζ) ∈ R. We leave it to
the reader to fill in the gaps and to prove the validity of (C5), (C6), and (C7) for the set
Bε1,ε2,ε3,ε4 of planes. 2

For the rest of this paper we assume

(ε1, ε2, ε3, ε4) ∈ I4 \ {(0, 0, 0, 0)} =: Iε with I := {x ∈ R | 10−4 > |x|}. (37)

Each spread Bε1,ε2,ε3,ε4 , see (15), admits the regulization

Λε1,...,ε4 := {λ−1(ξ) | ξ ∈ (Bε1,...,ε4)
′} where (Bε1,...,ε4)

′ := {ξ ∈ Bε1,...,ε4 | ξ ∩ H5 6= ∅}. (38)



R. Riesinger: Constructing Non-regular Algebraic Spreads. . . 193

In the following, the plane of Bε1,...,ε4 corresponding to the parameter u is denoted by βu.
The point set

Φ(Bε1,...,ε4) :=
⋃

(βu | u ∈ R ∪ {∞}) (39)

is a 3-surface in PG(5, R); we speak of a 2-ruled surface with generating planes βu. Using
(12) and (13) we get the following parametric representation:

Φ(Bε1,ε2,ε3,ε4) =
{(

(p2 + p5u) + (p0 + p1u− p3 − p4u)v + (−p0(1 + ε1)u + p1(1 + ε2)+

p2ε4 + p3(1− ε1)u− p4(1− ε2)− p5ε3u)w
)
R |(u, v, w) ∈ (R ∪ {∞})3

}
. (40)

The algebraic representation of Φ(Bε1,ε2,ε3,ε4) depends on the mutual situation of the directing
lines c, d, e, compare Remark 13, and is given in Section 5 and Section 7. We do not need
this ramification for the description of the regulizations Λε1,ε2,ε3,ε4 in the next Section 4.

4. The regulizations Λε1,ε2,ε3,ε4

From the Proof of Lemma 4 we know that β0 ∩ H5 = {p2R} and β∞ ∩ H5 = {p5R}, hence
λ−1(p2R) and λ−1(p5R) are the improper reguli of Λε1,ε2,ε3,ε4 .

Proposition 1. If u ∈ R>0, then βu ∩ H5 is a proper conic. If u ∈ R<0, then βu ∩ H5 = ∅.
Moreover,

(Bε1,ε2,ε3,ε4)
′ :=

{
βu | u ∈ R≥ 0 ∪ {∞}

}
and Bε1,ε2,ε3,ε4 =

⋃(
λ−1(βu) | u ∈ R≥ 0 ∪ {∞}

)
.

(41)

Proof. We join the point Cu from (19) and an arbitrary point mµR ∈ Du ∨ Eu, i.e.,

mµ
(21)∧(30)

=

(p0+p1u−p3−p4u)+
(
−p0u(1+ε1)+p1(1+ε2)+p2ε4+p3u(1−ε1)+p4(−1+ε2)−p5uε3

)
µ,

µ ∈ R, and get the line `µ = {
(
(p2 + p5u)x + mµ

)
R | x ∈ R} ∪ {Cu}. The determination of

`µ ∩ H5 is equivalent to the solution of the quadratic equation

G(x) := ux2 + (ε4 − ε3) µ ux + (1− µ u (1 + ε1)) (−1 + µ u (1− ε1)) +
(u + µ (1 + ε2)) (−u + µ (−1 + ε2))− ε3ε4µ

2u = 0

in the unknown x. As discriminant of the above equation we get:

DG(x) := uH(u) with H(u) := 4
(
µ2(1− ε2

1) + 1
)
u2 + (ε3 + ε4)

2µ2u + 4 + 4 µ2(1− ε2
2).

For the discriminant DH(u) of the quadratic equation H(u) in the unknown u holds DH(u) < 0
as an easy estimation shows. Now DH(u) < 0 and H(0) ≥ 4 imply H(u) > 0 for all u, µ ∈ R
and all ε1, . . . , ε4 ∈ I. Hence: DG(x) > 0 ⇔ u > 0. 2

If ε1 6= 0, then the regulization Λε1,ε2,ε3,ε4 is composed of the proper reguli
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Ru := λ−1(βu) = λ−1({pR ∈ H5 | p =
∑5

k=0 pkpk and(
u2(1− ε1) + 1 + ε2

)
p0 + 2ε1up1 +

(
u2(1 + ε1) + 1 + ε2

)
p3 = 0

∧
(
u2(−1 + ε1)− 1 + ε2

)
p0 +

(
u2(−1− ε1)− 1 + ε2

)
p3 + 2ε1up4 = 0

∧ − (ε3 + ε4) up0 − 2ε1 u2p2 − (ε3 + ε4) up3 + 2ε1up5 = 0}) (42)

with u > 0 and the two improper reguli {λ−1(p2R)} and {λ−1(p5R)}; in symbols

Λε1,ε2,ε3,ε4 = {Ru | u ∈ R>0} ∪ {λ−1(p2R), λ−1(p5R)}. (43)

The determination of the equations of βu for the case ε1 = 0 is left to the reader.

Proposition 2. Assume (ε1, ε2, ε3, ε4) ∈ Iε, see (37). If (ε1, ε2) = (0, 0) and ε3 = −ε4,
then Λε1,ε2,ε3,ε4 is an elliptic regulization; in all other cases Λε1,ε2,ε3,ε4 is an asymplecticly
complemented regulization.

Proof. We determine the intersection of the planes β1, β2 and β3 corresponding to u = 1,
u = 2, and u = 3. We have to consider various cases.

(a) If ε1ε2 6= 0, then dim (C1 ∨ D1 ∨ E1 ∨ C2 ∨ D2 ∨ E2) = 5, i.e., β1 ∩ β2 = ∅. Hence
d′ = dim (∩(ξ | ξ ∈ (Bε1,...,ε4)

′)) = −1, dp = dim (∩(ξ | ξ ∈ (Bε1,...,ε4)
p)) = −1, and the

statement follows from [27, (11) and Table 2].

(b) If ε1 6= 0 and ε2 = 0, then we have:

β1∩β2 =
{(

p0(1+2 ε1)+p1(−3)+p3(−1+2 ε1)+p4·3+p5(2 ε3+2 ε4)
)
R

}
6⊂ β3 ⇒ dp = −1.

(c) In the case ε1 = 0 and ε2 6= 0 we compute also β1 ∩ β2 ∩ β3 = ∅.
(d) If (ε1, ε2) = (0, 0) and ε3 6= −ε4, then β1 ∩ β2 ∩ β3 = ∅.
(e) If (ε1, ε2) = (0, 0) and ε3 = −ε4, then (−p0 + p3)R ∨ (−p1 + p4)R ⊂ βu for all u ∈ R.
Thus dp = 1 and the statement follows from [27, (11) and Table 2]. 2

Now we are able to define the family F mentioned in the abstract8:

F := {Bε1,ε2,ε3,ε4 | (ε1, ε2, ε3, ε4) ∈ IF} with

IF := Iε \ {(x1, x2, x3, x4) ∈ Iε | x1 = x2 = 0 ∧ x3 = −x4}. (44)

In the following we investigate only cases where Λε1,...,ε4 is asymplecticly complemented. We
thoroughly discuss the general case, i.e., ε1ε2 6= 0, in Section 5 and throw a short look onto
one special case, namely that with (ε2, ε4) = (0, 0) and ε1ε3 6= 0, in Section 7.

8For Iε see (37).
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5. The spreads Bε1,ε2,ε3,ε4 with ε1ε2 6= 0

5.1. Algebraic representation of Bε1,ε2,ε3,ε4
By Remark 13, the lines c, d, e are mutually skew, hence

v′ resp. vp = dim
(∨

ξ | ξ ∈ (Bε1,...,ε4)
′ resp. (Bε1,...,ε4)

p
)

= dim(c ∨ d ∨ e) = 5;

according to [27, (10) and Table 1], the spreads Bε1,ε2,ε3,ε4 are asymplectic. The plane set
Bε1,ε2,ε3,ε4 is a 2-regulus and the corresponding point set Φ(Bε1,ε2,ε3,ε4), see (39) and (40), is a
Segre manifold S2;1 of Π5 whose system Σ2 of generating planes coincides with Bε1,ε2,ε3,ε4 =
{βu | u ∈ R ∪ {∞}} and whose system Σ1 of generating lines contains c, d, e, cf. [8, p. 116],
[15, p. 190]. In order to change from (40) to the simple description of a Segre manifold as
given in [15, p. 192, (25.36)], we use the basis {a00, a01, a02, a10, a11, a12} with

a00 = p2, a01 = p0 − p3, a02 = p1(1 + ε2) + p2ε4 + p4(−1 + ε2),

a10 = p5, a11 = p1 − p4, a12 = −p0(1 + ε1) + p3(1− ε1)− p5ε3 (45)

such that (19), (21), (30), and (45) imply:

Cw = (a00+a10w)R, Dw = (a01+a11w)R, Ew = (a02+a12w)R for all w ∈ R∪{∞} and (46)

Φ(Bε1,ε2,ε3,ε4) = {(a00+a01u+a02v+a10w+a11uw+a12vw)R | (u, v, w) ∈ (R∪{∞})3}. (47)

According to [15, p. 189, Theorem 25.5.1] holds:

Φ(Bε1,ε2,ε3,ε4) = Q1 ∩ Q2 ∩ Q3 with (48)

Q1 := {xR ∈ P5 | x =
1∑

j=0

2∑
k=0

ajkxjk and x00x11 − x01x10 = 0}, (49)

Q2 := {xR ∈ P5 | x01x12 − x02x11 = 0}, and Q3 := {xR ∈ P5 | x02x10 − x00x12 = 0}. (50)

Proposition 3. For the Klein image of the spread Bε1,ε2,ε3,ε4 holds:

λ(Bε1,ε2,ε3,ε4) = H5 ∩ (Q1 ∩ Q2 ∩ Q3). (51)

Proof. (a) For X ∈ λ(Bε1,ε2,ε3,ε4) there exists uX ∈ R ∪ {∞} with X ∈ βuX
because of (41).

The plane βuX
is a generating plane of the Segre manifold Φ(Bε1,ε2,ε3,ε4)

(48)
= Q1 ∩ Q2 ∩ Q3.

Hence X ∈ Q1 ∩ Q2 ∩ Q3.

(b) Assumed Y ∈ H5 ∩ (Q1 ∩ Q2 ∩ Q3). By [8, p. 116], the point Y of the Segre manifold
Q1∩ Q2∩ Q3 is on exactly one generating plane, say βuY

. From Y ∈ βuY
∩ H5 6= ∅ we deduce

via Prop. 1 that uY ∈ R≥ 0 ∪ {∞}. This and (41) imply: λ−1(Y ) ∈ Bε1,ε2,ε3,ε4 . 2

Now (51) and (49), (50) show that Bε1,...,ε4 is an algebraic spread. By Lemma 8 follows that
Bε1,...,ε4 is topological and also a dual spread. Because of ε1ε2 6= 0 and Proposition 2 the
regulization Λε1,ε2,ε3,ε4 is asymplecticly complemented. We sum up in
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Theorem 1. Put Qk := λ−1(Qk), k = 1, 2, 3, for the three quadratic line complexes which
are described in Plücker coordinates by the equations

ε2
2ε3 (−1 + ε1) p2

0 − 2 ε2
2ε3p0p3 + 2 ε1ε

2
2 (1− ε1) p0p5 + ε2

1ε4 (1− ε2) p2
1+

2 ε2
1ε2 (−1 + ε2) p1p2 + 2 ε2

1ε4p1p4 + 2 ε2
1ε2 (−1− ε2) p2p4 + ε2

2ε3 (−1− ε1) p2
3+ (52)

2 ε1ε
2
2 (1 + ε1) p3p5 + ε2

1ε4 (1 + ε2) p2
4 = 0,

ε2
2 (1− ε1) p2

0 + 2 ε2
2p0p3 + ε2

1 (1− ε2) p2
1 + 2 ε2

1p1p4 + ε2
2 (1 + ε1) p2

3 + ε2
1 (1 + ε2) p2

4 = 0, (53)

and

(ε3 + ε4) p0p1 − 2 ε2p0p2 + (ε3 + ε4) p0p4 + (ε3 + ε4) p1p3 − 2 ε1p1p5 − 2 ε2p2p3+

(ε3 + ε4) p3p4 − 2 ε1p4p5 = 0, (54)

respectively. If |εj| < 10−4 (j = 1, 2, 3, 4) and ε1ε2 6= 0, then Bε1,ε2,ε3,ε4 = Q1 ∩ Q2 ∩ Q3

is an asymplectic algebraic spread which admits the asymplecticly complemented regulization
Λε1,ε2,ε3,ε4 described in Section 4. The spread Bε1,ε2,ε3,ε4 is topological and a dual spread.

5.2. Proper reguli contained in Bε1,ε2,ε3,ε4
Lemma 5. Let k be a proper conic contained in the Segre manifold S2;1 such that k does not
belong to a generating plane of S2;1. Then k and an arbitrary generating plane ξ of S2;1 have
exactly one common point.

Proof. The underlying space is a real projective 5-space. Let P ∈ k be an arbitrary point.
By [15, p. 190, Theorem 25.5.3], P is on exactly one generating plane αP of S2;1. In case
of αP = ξ there is nothing to do, hence we assume αP 6= ξ. Because of k 6⊂ αP , the
subspace A := αP ∨ span k is either of dimension 3 or 4. If dim A = 3, then A ∩ S2;1

consists of αp and a line S0;1 as follows from [8, p. 172, Hilfssatz9 über lineare Schnitte der
Ss−1;1]; this yields the absurdity that the conic k is contained in the line S0;1. Consequently,
dim A = 4. Now Burau’s Hilfssatz shows that A∩ S2;1 consists of αp and an S1;1 which by [8,
p. 133] is a hyperbolic quadric of a 3-space. Obviously, k ⊂ S1;1. According to [15, p. 190,
Theorem 25.5.3], ξ and αP are skew which implies ξ 6⊂ A. Hence ξ ∩ A is a line on S1;1,
in other words, a generatrix of the hyperbolic quadric S1;1. This generatrix has exactly one
common point with k(⊂ S1;1). Each common point of ξ and k(⊂ A) must belong to ξ ∩ A.2

Theorem 2. If the assumptions of Theorem 1 are valid, then the spread Bε1,...,ε4 contains no
proper regulus off the asymplecticly complemented regulization Λε1,...,ε4 described in Section 4.
The spread Bε1,...,ε4 admits exactly one regulization, namely Λε1,...,ε4.

Proof. Let R ⊂ Bε1,ε2,ε3,ε4 be a proper regulus. From (41) follows

λ(R) ⊂
⋃(

βu | u ∈ R≥ 0 ∪ {∞}
) (39)
⊂ Φ(Bε1,ε2,ε3,ε4).

9We add that this Hilfssatz is valid for real projective spaces, too.
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This implies that for u− ∈ R<0 the generating plane βu−
of the Segre manifold Φ(Bε1,ε2,ε3,ε4)

and the proper conic λ(R) have no common point. Consequently, λ(R) is contained in a
generating plane of Φ(Bε1,ε2,ε3,ε4) by Lemma 5. 2

5.3. Collineations and dualities which leave Bε1,ε2,ε3,ε4 invariant

By PGLe(4, R) we denote the extended collineation group of Π = PG(3, R) which consists
of all collineations and all dualities of Π. Each τ ∈ PGLe(4, R) induces a collineation τλ ∈
PGL(6, R) of Π5 = PG(5, R) with τλ(H5) = H5, i.e., λ ◦ τ = τλ ◦ λ. For a spread S of Π we
put AutS := {κ ∈ PGL(4, R) | κ(S) = S} for the group of all automorphic collineations of
S and Aute S := {τ ∈ PGLe(4, R) | τ(S) = S} for the group of all automorphic collineations
and dualities of S.

Consider the improper reguli {λ−1(p2R)} and {λ−1(p5R)} of the regulization Λε1,ε2,ε3,ε4

satisfying (RZ1) by definition, cf. [23, p. 140]. Because of (RZ1) and Theorem 2 the lines
λ−1(p2R) and λ−1(p5R) are the only lines of the spread Bε1,ε2,ε3,ε4 that do not belong to a
proper regulus of Bε1,ε2,ε3,ε4 . Thus we have

Corollary 1. Let τ ∈ Aute Bε1,ε2,ε3,ε4. Then τ either fixes or interchanges the lines

λ−1(p2R) = λ−1(a00R) and λ−1(p5R) = λ−1(a10R).

Lemma 6. Let τ ∈ Aute Bε1,ε2,ε3,ε4. Then the Segre manifold Φ(Bε1,ε2,ε3,ε4) is invariant
under the induced collineation τλ.

Proof. By Theorem 2 the collineation τλ permutes the proper conics H5 ∩ βup , i.e., up ∈ R>0

by Prop. 1. Hence τλ permutes the generating planes βup of Φ(Bε1,ε2,ε3,ε4). By [8, p. 135,
Satz], a Segre manifold S2;1 is uniquely determined by three generating planes γ1, γ2, γ3 with

5 = dim(γ1 ∨ γ2 ∨ γ3) = dim(γi ∨ γk) for all (i, k) ∈ {1, 2, 3}2 and i 6= k. (55)

For the planes β1, β2, β3 used in the proof of Prop. 2 the conditions (55) and 1, 2, 3 ∈ R>0 are
valid. Consequently, β1, β2, β3 as well as τλ(β1), τλ(β2), τλ(β3) uniquely determine the Segre
manifold Φ(Bε1,ε2,ε3,ε4) and thus τλ(Φ(Bε1,ε2,ε3,ε4)) = Φ(Bε1,ε2,ε3,ε4). 2

From (48)–(50), [15, p. 192, (25.36)], Lemma 6, and [15, p. 193, (25.37)] follows that the
collineation τλ is described by10

yjkρ =
1∑

r=0

2∑
s=0

bjrcksxrs, ρ ∈ R \ {0}, bjr, cks ∈ R j = 0, 1, k = 0, 1, 2,

10Note that in [15] a left vector space is used and here a right one.
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and the corresponding (6× 6)-matrix

T :=



b00c00 b00c01 b00c02 b01c00 b01c01 b01c02

b00c10 b00c11 b00c12 b01c10 b01c11 b01c12

b00c20 b00c21 b00c22 b01c20 b01c21 b01c22

b10c00 b10c01 b10c02 b11c00 b11c01 b11c02

b10c10 b10c11 b10c12 b11c10 b11c11 b11c12

b10c20 b10c21 b10c22 b11c20 b11c21 b11c22


(56)

is the Kronecker product of the (2 × 2)-matrix (bjr) and the (3 × 3)-matrix (cks) therefore
holds |T | = |(bjr)|3|(cks)|2 6= 0 and consequently

|(bjr)| 6= 0 and |(cks)| 6= 0. (57)

According to Corollary 1 we have the alternatives

Case A : τλ(a00R) = a00R and τλ(a10R) = a10R

Case B : τλ(a00R) = a10R and τλ(a10R) = a00R.

Case A. From (56) we read off the following ten conditions:

k1 := b00c10 = 0, k2 := b00c20 = 0, k3 := b10c00 = 0, k4 := b10c10 = 0, k5 := b10c20 = 0,

k6 := b01c00 = 0, k7 := b01c10 = 0, k8 := b01c20 = 0, k9 := b11c10 = 0, k10 := b11c20 = 0.
(58)

Because of k1 we get the ramification

Subcase A.A: b00 = 0 Subcase A.B: b00 6= 0 and c10 = 0.

Subcase A.A: By (57) we have b01b10 6= 0, consequently, b01 6= 0 and b10 6= 0, hence k3, k4, k5

imply c00 = c10 = c20 = 0. This contradicts |(cks)| 6= 0 from (57).

Subcase A.B: From k2 we deduce c20 = 0. Now (57) yields c00(c11c22−c12c21) 6= 0, i.e., c00 6= 0.
Hence k3 and k6 imply b10 = b01 = 0. Thus we have k1 = · · · = k10 = 0.

From (58) and (57) follows necessarily:

b01 = b10 = c10 = c20 = 0 and (59)

b00 6= 0, b11 6= 0, c00 6= 0, c11c22 − c12c21 6= 0. (60)

Conversely, we verify easily that (59), (60) is also sufficient for τλ(aj 0R) = aj 0R, j = 0, 1.

Case B. Analogously to Case A we get the subsequent necessary and sufficient conditions:

b00 = b11 = c10 = c20 = 0 and (61)

b01 6= 0, b10 6= 0, c00 6= 0, c11c22 − c12c21 6= 0. (62)
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Further conditions for the matrix T , cf. (56), we deduce from the fact τλ(H5) = H5. With
(3) and (45) we get:

H5 =
{
xR ∈ P5 | x =

∑1
j=0

∑2
k=0 ajkxjk and

(
x01 + (−1− ε1) x12

)(
(1− ε1) x12 − x01

)
+(

(1 + ε2) x02 + x11

)(
(−1 + ε2) x02 − x11

)
+

(
x00 + ε4x02

)(
x10 − ε3x12

)
= 0

}
. (63)

The point K(t, u, v, w) :=(
a00ε1(−ε4u− ε4w + 2ε2) + a01ε2(−t + ε1t− v − ε1v) + a02ε1(u + w)+

a10ε2(−ε3t− 2 ε1tv − 2 ε1uw − ε3v) + a11ε1(−u + ε2u− w − ε2w) + a12ε2(−t− v)
)
R (64)

belongs to H5 for all (t, u, v, w) ∈ R4, roughly spoken, (64) is a parametric representation

of H5. Hence τλ(H5) = H5 implies τλ

(
K(t, u, v, w)

)
∈ H5 for all (t, u, v, w) ∈ R4. With

the help of a computer and via (56), (64) we calculate the doubly indexed coordinates of

τλ

(
K(t, u, v, w)

)
and these coordinates have to satisfy the equation from (63). Thus we get

a polynomial11

p(t, u, v, w) := t2v2
(
4 ε2

1ε
2
2(−b2

01c
2
10 − b2

11c
2
20 + b2

11c
2
20ε

2
1 + · · ·)

)
+ · · · (65)

which has to vanish for all (t, u, v, w) ∈ R4. Consequently, we have to compare coefficients.
The coefficient of p(t, u, v, w) at tiujvkw` will be denoted by Cp(t

i, uj, vk, w`).
In the subsequent we write down only those coefficients of p(t, u, v, w) that are essential for

the progress of the determination of Aut e(Bε1,...,ε4). Nevertheless, we roughly sketch the strategy
how to find these essential stations. It is useful to make a routine which yields the non-vanishing
coefficients decomposed into factors. In order to maintain control it is advisable to collect at the one
hand the vanishing bik’s and cik’s in a list and on the other hand the non-vanishing bik’s and cik’s
in another list. Note that vanishing and non-vanishing bik’s and cik’s are of the same significance
for the conclusions.

Continuation of Case A. Now
Cp(t

0, u1, v0, w0) = 2 ε2
1ε2 (1− ε2) b00b11 c00 (ε3c21 − c01) = 0 and

Cp(t
0, u1, v1, w1) = 2 ε1ε

2
2 (1 + ε1) b00b11 c00 (ε4c21 + c01) = 0.

Because of ε1ε2 6= 0 according to the title of this section, (−1 + ε2) 6= 0 and (1 + ε1) 6= 0 by
(37), and b00b11 c00 6= 0 by (60) we have (ε3c21 − c01) = 0 and (ε4c21 + c01) = 0. For ε4 6= −ε3

these two equations yield
c01 = c21 = 0. (66)

For the rest of the discussion of Case A and Case B
we exclude the case with ε4 = −ε3. (67)

| cik|
(59),(66)

= c00c11c22 6= 0 ⇒ c11 6= 0 and c22 6= 0. (68)

11Since this polynomial is rather voluminous, it is commendable to refrain from displaying it completely
on the screen. It suffices to display certain coefficients.
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Now Cp(t
0, u2, v0, w1) = 2ε2

1ε2b00b11c00(ε4c00 − c02 − ε4c22) = 0,
and Cp(t

1, u0, v0, w0) = −2ε1ε
2
2b00b11c00(ε3c00 + c02 − ε3c22) = 0, and (67) yield

c22 = c00 and c02 = 0. (69)

Thus we have
Cp(t

1, u1, v0, w0) = 2ε1ε2c11c12

(
(1− ε1)b

2
00 + (−1 + ε2)b

2
11

)
= 0 and

Cp(t
1, u0, v0, w1) = −2ε1ε2c11c12

(
(−1 + ε1)b

2
00 + (1 + ε2)b

2
11

)
= 0 and, consequently, the

alternatives

Subcase A.1:
(
(1− ε1)b

2
00 + (−1 + ε2)b

2
11

)
= 0 and

(
(−1 + ε1)b

2
00 + (1 + ε2)b

2
11

)
= 0

Subcase A.2: c12 = 0.

Subcase A.1: By adding the two conditions we get 2ε2b
2
11 = 0, a contradiction to ε2 6= 0 and

(60).

Subcase A.2:

Cp(t
0, u0, v0, w2) = ε2

1 (1 + ε2) (b00c00 − b11c11 )
(
b00c00 (−1 + ε2) + b11c11 (1 + ε2)

)
= 0

Subsubcase A.2.1: c11 = c00b00b
−1
11 ⇒ Cp(t

0, u1, v0, w1) = 4ε2
1ε

2
2b00c

2
00(b00 − b11 ) = 0 ⇒ b11 =

b00 ∧ c11 = c00. Now T = diag(b00c00, b00c00, b00c00, b00c00, b00c00, b00c00), i.e., τλ is the identity.

Subsubcase A.2.2: c11 =b00c00(1−ε2)
(
b11(1+ε2)

)−1

. Now Cp(t
0, u2, v0, w0)=8b2

00c
2
00ε

2
1ε

2
2(−1+

ε2)(1 + ε2)
−2 never vanishes.

With the exception of the extra case ε4 = −ε3 the discussion of Case A is completed now; as
only result we get the identity.

Continuation of Case B. From Cp(t
0, u1, v0, w0) = Cp(t

0, u1, v1, w1) = 0 and ε4 6= −ε3 by

(67) we deduce c01 = c21 = 0. Thus | cik|
(61)
= c00c11c22 6= 0 ⇒ c11 6= 0 and c22 6= 0. Now:

Cp(t
0, u2, v0, w1) = Cp(t

1, u0, v0, w0) = 0 ⇒ ε4c00 + ε3c22 − c02 = ε3c00 + ε4c22 + c02 = 0 ⇒
c22 = −c00 and c02 = (ε4 − ε3)c00. Hence we get:

Cp(t
0, u0, v1, w1) = −2ε1ε2c11c12

(
(1 + ε2)b

2
01 + (−1 − ε1)b

2
10

)
= 0 and Cp(t

0, u1, v1, w0) =

2ε1ε2c11c12

(
(−1+ ε2)b

2
01 +(1+ ε1)b

2
10

)
= 0. As the alternative

(
(1+ ε2)b

2
01 +(−1− ε1)b

2
10

)
=(

(−1+ ε2)b
2
01 +(1+ ε1)b

2
10

)
= 0 yields the contradiction 2ε2b

2
01 = 0, compare (62), so c12 = 0

must hold. Now Cp(t
0, u0, v0, w2) = −ε2

1

(
(1 + ε2)b01c11 + (−1 + ε1)b10c00

)(
(1 + ε2)b01c11 +

(−1− ε1)b10c00

)
= 0 leads to the ramification:

Subcase B.1: c11 = (1− ε1)H with H := b10c00

(
(1 + ε2)b01

)−1

. (70)

Subcase B.2: c11 = (1 + ε1)H.

Subcase B.1: Now Cp(t
0, u2, v0, w0) = 4b2

10c
2
00ε

2
1ε2(−1 + ε1)(1 + ε2)

−2︸ ︷︷ ︸
6=0

(ε1 + ε2) = 0 implies

ε2 = −ε1. Thus Cp(t
0, u1, v0, w1) = −4ε4

1b10c
2
00(b01 − b10) = 0 ⇒ b10 = b01

(70)⇒ c11 = c00,
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whereby p(t, u, v, w) becomes the zero polynomial. We substitute all found conditions in (56)
and see that we may assume b01c00 = 1. Thus τλ is described by:

y00ρ = x10 + (ε4 − ε3)x12, y01ρ = x11, y02ρ = −x12,

y10ρ = x00 + (ε4 − ε3)x02, y11ρ = x01, y12ρ = −x02. (71)

Using (45) with ε2 = −ε1 we return to the basis {p0, . . . ,p5} and get:

(p0p0 + · · ·+ p5p5)R
τλ7−→

(
p0p4 + p1p3 + p2(−p5) + p3p1 + p4p0 + p5(−p2)

)
R,

wherefrom we read off that is τλ involutoric. The collineation τλ of PG(5, R) is induced by
the polarity τ of PG(3, R) with

(b0a0 + · · ·+b3a3)R
τ7−→ {xR ∈ PG(3, R) | x =

3∑
k=0

bkxk and a0x0 + a2x1 + a1x2− a3x3 = 0}.

(72)
Subcase B.2: Cp(t

0, u2, v0, w0) = 4b2
10c

2
00ε

2
1ε2(1 + ε1)(1 + ε2)

−2︸ ︷︷ ︸
6=0

(ε1 − ε2) = 0 ⇒ ε2 = ε1.

Finally, Cp(t
0, u1, v0, w1) = 0 ⇒ b10 = b01 ⇒ c11 = c00, which makes p(t, u, v, w) to the zero

polynomial. Also in this case τλ is described by (71). Using (45) with ε2 = ε1 we return to
the basis {p0, . . . ,p5} and get:

(p0p0 + · · ·+ p5p5)R
τλ7−→

(
p0p1 + p1p0 + p2p5 + p3p4 + p4p3 + p5p2)

)
R,

i.e., τλ is involutoric, too, and τλ is induced by the polarity τ with

(b0a0 + · · ·+b3a3)R
τ7−→ {xR ∈ PG(3, R) | x =

3∑
k=0

bkxk and a3x0− a1x1 + a2x2 + a0x3 = 0}.

(73)

With the exception of the extra case ε4 = −ε3 the discussion of Case B is completed now;
only in two special cases we get a non-trivial automorphism: for ε2 = −ε1 the polarity (72)
and for ε2 = ε1 the polarity (73).

We sum up in

Theorem 3. Assume |εj| < 10−4 (j = 1, 2, 3, 4), ε1ε2 6= 0, and ε4 6= −ε3. If ε2 6= ± ε1,
then the spread Bε1,ε2,ε3,ε4 from Theorem 1 is hyperrigid. If ε2 = −ε1 or ε2 = ε1, then
Bε1,ε2,ε3,ε4 is rigid, but not hyperrigid, and Aut e Bε1,ε2,ε3,ε4 consists of two elements, namely
the identity and polarity from (72) or (73), respectively.

6. The translation planes represented by the spreads Bε1,ε2,ε3,ε4 with ε1ε2 6= 0

Theorem 4. Assume |εj| < 10−4 (j = 1, 2, 3, 4), ε1ε2 6= 0, and ε4 6= −ε3. Let P(Bε1,ε2,ε3,ε4)
be the (projective) translation plane represented by the spread Bε1,ε2,ε3,ε4 of Theorem 1. Then:

A) P(Bε1,ε2,ε3,ε4) is a rigid 4-dimensional translation plane.
B) The full collineation group of P(Bε1,ε2,ε3,ε4) is 5-dimensional.
C) P(Bε1,ε2,ε3,ε4) is not Bol.
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Proof. A) By Theorem 1, Bε1,ε2,ε3,ε4 is a topological spread and, by definition, a topological
spread represents a 4-dimensional translation plane. For the rigidity compare Theorem 3.

B) Use [2, Satz 2].

C) See [26, Section 9, pp. 336–337]. 2

7. The spreads Bε1,0,ε3,0 with ε1ε3 6= 0

By Remark 13, d ∩ e = {p′′4R} and dim(c ∨ d ∨ e) = 4; moreover,

v′ resp. vp = dim
(∨

ξ | ξ ∈ (Bε1,...,ε4)
′ resp. (Bε1,...,ε4)

p
)

= dim(c ∨ d ∨ e) = 4;

according to [27, (10) and Table 1], the spreads Bε1,0,ε3,0 are symplectic.

Lemma 7. A symplectic spread S of PG(3, R) is not hyperrigid.

Proof. Let G be a linear complex of lines with S ⊂ G. By [23, p. 151, Rem. 4.1.3], G
must be general. For the null polarity γ associated with G holds: γ(x) = x for all x ∈ G.
Consequently, γ(S) = S. 2

In order to get a simple description of the point set Φ(Bε1,0,ε3,0) we use the basis

{c00, c01, c02, c10, c11, c12} with

c00 = p2, c01 = p0 − p3, c02 = p1,

c10 = p5, c11 = p1 − p4, c12 = −p0(1 + ε1) + p3(1− ε1)− p5ε3 (74)

such that (19), (21), (30), and (74) imply:

Cw = (c00 + c10w)R, Dw = (c01 + c11w)R, Ew = (c11 + c12w)R for all w ∈ R ∪ {∞} (75)

and

Φ(Bε1,0,ε3,0) = {(c00 + c01u + c10w + c11(uw + v) + c12vw)R | (u, v, w) ∈ (R∪ {∞})3}. (76)

Immediately we see:
Φ(Bε1,0,ε3,0) ⊆ C1 ∩ C2 where (77)

C1 := {zR ∈ P5 | z =
1∑

j=0

2∑
k=0

cjkzjk and z02 = 0} and (78)

C2 := {zR ∈ P5 | z2
00z12 − z00z10z11 + z01z

2
10 = 0}. (79)

Next we sharpen (77).

Proposition 4. In the plane d ∨ e = {zR ∈ P5 | z02 = z00 = z10 = 0} ⊂ C2 the line set
{Dw ∨ Ew | w ∈ R ∪ {∞}} envelops the conic

k := {zR ∈ P5 | z02 = z00 = z10 = z2
11 − 4z01z12 = 0} =

{(c01 + c11 · 2t + c12 · t2)R | t ∈ R ∪ {∞}}. (80)
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Those points of d ∨ e which are interior points of k form the set

Int(k) := {zR ∈ P5 | z02 = z00 = z10 and z2
11 − 4z01z12 < 0} (81)

and following equality is valid:

(C1 ∩ C2) \ Int(k) = Φ(Bε1,0,ε3,0). (82)

Proof. The point Y = (y00, . . . , y12)R ∈ C1 ∩ C2 belongs to the plane βw = Cw ∨ Dw ∨ Ew

if, and only if, the (4× 5)-matrix

K :=


1 0 w 0 0

0 1 0 w 0

0 0 0 1 w

y00 y01 y10 y11 y12


is of rank 3, i.e., iff the determinants of all (4× 4)-submatrices of K vanish:

G1(w) := −w
(
y01 w2 − y11w + y12

)
= 0, G2(w) := −w2 (y00 w − y10 ) = 0,

G3(w) := y01 w2−y11w+y12 = 0, G4(w) := w (y00 w − y10 ) = 0, G5(w) := y00 w−y10 = 0.

We consider G5(w) = 0.
If y00 6= 0, then we get: w = y10y

−1
00 . Now Gj(y10y

−1
00 ) = 0 for j = 2, 4, 5 and

G1(y10y
−1
00 ) = G3(y10y

−1
00 ) = 0 ⇔ y2

00y12 − y00y10y11 + y01y
2
10 = 0

(79)⇔ Y ∈ C2.

Hence there exists w ∈ R, namely w = y10y
−1
00 , such that Y ∈ βw, i.e., Y ∈ Φ(Bε1,0,ε3,0).

If y00 = 0, then Y ∈ C2
(79)⇒ y01y

2
10 = 0.

Case y01 = 0: Now Y = (0, 0, 0, y10, y11, y12)R belongs to the plane c10R ∨ c11R ∨ c12R
(75)
=

C∞ ∨ D∞ ∨ E∞
(9)
= β∞, i.e., Y ∈ Φ(Bε1,0,ε3,0).

Case y10 = 0: Now Y = (0, y01, 0, 0, y11, y12)R belongs to the plane c01R∨c11R∨c12R
(75)
= d∨e.

We consider G3(w) and G1(w). There exists a w ∈ R such that Y ∈ βw if, and only if, the
discriminant of G3(w) is not negative, in symbols: y2

11 − 4y01y12 ≥ 0. 2

Thus we have: λ(Bε1,0,ε3,0)
(15)
=

⋃ (
ξ ∩ H5 | ξ ∈ Bε1,0,ε3,0

)
=

Φ(Bε1,0,ε3,0) ∩ H5
(82)
= (C1 ∩ C2 ∩ H5) \ (Int(k) ∩ H5).

Hence we compute Int(k) ∩ H5. With

H5 = {zR ∈ P5 | z00 z10 − z00 z12 ε3− z2
01 + 2 z01 z12 − z02 z11 − z2

11 + z2
12(−1 + ε2

1) = 0} (83)

and (80) we see that the determination of H5∩ k is equivalent to the solution of the equation

f(t) :=
(
−1 + ε2

1

)︸ ︷︷ ︸
<0

t4 − 2 t2 − 1 = 0
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in the unknown t. As f(t) < −1 for all t ∈ R and c12R 6∈ H5 (t = ∞), so H5 ∩ k = ∅. This
and (c01 + c11 · ε1 + c12)R ∈ Int(k) ∩ H5 imply

Int(k) ∩ H5 = (d ∨ e) ∩ H5 =

{zR ∈ P5 | z02 = z00 = z10 = −z2
01 + 2z01z12 − z2

11 + z2
12(−1 + ε2

1) = 0}. (84)

We sum up in

Theorem 5. Assume |εj| < 10−4, j = 1, 3, and ε1ε3 6= 0. Consider the general linear
complex

C1 := λ−1({pR ∈ P5 | p1 + p4 = 0}) (85)

of lines and the cubic complex

C2 := λ−1
(
{pR ∈ P5 | − 4ε2

1p
2
2(p0 + p3) + 4ε2

1(−ε3p0 − ε3p3 + 2ε1p5)p2p4+(
p0(−1 + ε1) + p3(−1− ε1)

)
(−ε3p0 − ε3p3 + 2ε1p5)

2 = 0}
)

(86)

of lines. The algebraic line congruence C1 ∩ C2 contains the proper regulus

Rd∨ e := λ−1({pR ∈ P5 | p1 + p4 = p2 = ε3p0 + ε3p3 − 2ε1p5 = 0}). (87)

The line set (C1∩C2)\Rd∨ e coincides with the symplectic spread Bε1,0,ε3,0 which 12 admits the
asymplecticly complemented regulization Λε1,0,ε3,0 described in Section 4. The spread Bε1,0,ε3,0

is not hyperrigid.

8. Algebraic spreads of PG(3, R) are topological

Lemma 8. Let S be an algebric spread of PG(3, R). Then S is topological, i.e., S represents
a topological translation plane, and S is also a dual spread.

Proof. The algebraic spread S is described by a finite number of algebraic forms fk : Π5 → R,
k = 1, . . . , N , in the Plücker coordinates p0, . . . , p5; recall that Π5 is the projective space on
R4 ∧ R4. The forms fk and the quadratic form h5 : Π5 → R are continuous mappings from
the compact space Π5, cf. [30, 64.3, p. 351], into R. Hence λ(S) is the intersection of the
zero-sets f−1

1 (0), . . . , f−1
N (0) and h−1

5 (0). By [11, p. 327], each of these zero-sets is closed and,
consequently, λ(S) and H5 are closed. According to [11, Theorem 1.4(3), p. 224], λ(S) and H5

are compact subspaces of the compact space Π5. As the Klein mapping λ : L = G3,1 → H5 is
a homeomorphism, cf. [29, Theorem 2.2.(d), p. 19], so S is a compact subset of the compact
set L = G3,1, cf. [30, 64.3, p. 351]. With [17, Prop. 1.26, p. 22] follows that S represents a
topological translation plane. By [7], each topological spread of PG(3, R) is a dual spread.2

I would like to express my thanks to H. Havlicek (Vienna) for valuable suggestions in the
preparation of this article, to the referee for crucial improvement proposals, and to G. Lu-
nardon (Naples) for his friendly support.

12Note that we did not answer the question whether Bε1,0,ε3,0 is algebraic or not.
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