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1. Introduction

After Grothendieck’s proof that every vector bundle on P1 decomposes as a direct sum of line
bundles, Atiyah’s groundbreaking paper of 1957 provided an answer to the next case: On
elliptic curves there are more vector bundles in the sense that nontrivial extensions appear.
However, when turning to special bundles, for example stable or indecomposable, it turns
out that, in many cases, there is a unique one once rank and determinant are fixed.

In perspective, this means that moduli spaces of stable bundles with prescribed numerical
values (including the determinant) are empty or contain a single point. This is in contrast
to P1 where those moduli spaces are empty when bundles of rank 2 or higher are considered.

We will show another way to obtain Atiyah’s results. The methods we use are standard by
now, namely semistability of sheaves and the Fourier-Mukai transform. However, they allow
rather short proofs of many important results. Note that facts about vector bundles on elliptic
curves have always been a basic pillar for the study of (moduli spaces of) vector bundles on
elliptic fibrations, see for example [5], [13], [6], [3]. There, the Fourier-Mukai transform has
been put to good use and in some sense we are reversing the historical development here.
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After finishing this paper we learnt that Polishchuk has given a proof of Proposition 4
using the Fourier transform with the Poincaré bundle in Chapter 14 of his book [12].

2. Notation

Let E be an elliptic curve with fixed basepoint p0 ∈ E over an algebraically closed field of
characteristic 0 (except where noted, the characteristic is actually arbitrary). Then we can
identify E and its Jacobian of degree 0 line bundles Ê := Pic0(E) via E → Ê, x 7→ OE(x−p0).
We will write ta : E → E, p 7→ p+ a for the group law on E in order to distinguish between
addition of points and of divisors. The choice of p0 also allows defining the normalized
Poincaré line bundle on E×E by P := OE×E(∆−E×p0−p0×E), i.e. P|E×{x} ∼= OE(x−p0)
and P|{p0}×E

∼= OE.

Fourier-Mukai transforms

We denote by D(E) the derived category Db(CohE) of complexes of quasi-coherent sheaves
on E with bounded coherent cohomology. See [9] or [8] for details. A complex K• will be
enumerated as · · · → K−1 → K0 → K1 → · · · , and, as usual, we denote by K•[n] the
complex K• shifted n places to the left. D(E) will always be considered as a triangulated
category. To avoid confusion with sheaf cohomology, we will denote the n-th homology of
K• by hn(K•). If all homology vanishes except hn(K•), we will say that K• is concentrated
in degree n.

The Poincaré bundle now defines a functor as follows:

FMP : D(E) → D(E), F 7→ p2∗(P ⊗ p∗1F ).

Consider this functor as a correspondence on the derived level. (Here, all functors are derived
without further notice. However, in the formula above only p2∗ is a non-exact functor and
we will write R0p2∗ for the usual direct image functor.) The facts known from the algebra
of correspondences are valid (see Chapter 16 of [7]). As is customary by now, a functor like
the above (with an arbitrary object, a so-called kernel, of D(E × E) instead of P) is called
a Fourier-Mukai transform if it gives rise to an equivalence FMP of triangulated categories.
Mukai showed in [11] that Poincaré bundles actually give equivalences on all Abelian varieties.
He also proved an involution property valid for principal polarized Abelian varieties which
in our case reads as

FMP ◦ FMP = (−1)∗[−1].

All results concerning FMP that we use in this article are rather easy to obtain because
of the simple form of P . For example, the involution property can be shown like this: the
composition FMP◦FMP has as kernel p13∗(p

∗
12P⊗p∗23P) =: p13∗K. Using cohomology and base

change together with the definition of P , we see R1p13∗K⊗k(a, b) = H1(E,OE(a+ b−2p0)).
This already shows that R1p13∗K is a line bundle supported on ∆′ := {(x,−x) : x ∈ E}
because H1(OE(a+b−2p0) 6= 0⇐⇒OE(a+b−2p0) is trivial⇐⇒ a = −b in the group law of
E. Furthermore, R0p13∗K = 0 (and hence p13∗K = R1p13∗K[−1] is concentrated in degree 1)
which follows, for instance, from computing ch(p13∗K) using Grothendieck-Riemann-Roch.
Finally, we note FMP(OE) = k(p0)[−1] and FMP(k(p0)) = OE and so the line bundle on ∆′
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mentioned above is trivial. Altogether we obtain FM2
P = FMO∆′ [−1] = (−1)∗[−1]. This also

proves that FMP is an equivalence.
The classical version of the transform defined above is the ring endomorphism of the even

cohomology ring

FMch(P) : H0(E)⊕H2(E) → H0(E)⊕H2(E), α 7→ p2∗(ch(P).p∗1(α)),

which is usually called a correspondence on E.
Any choice of kernel in D(E ×E) which we continue to call P then gives a commutative

diagram:

D(E) //

FMP
��

H2∗(E)

FMch(P)

��
D(E) // H2∗(E)

Here1 the map D(E) → H2∗(E) sends a complex F • to
∑

i(−1)ich(F i). Similar and com-
patible transforms exist on the K-group K(E) and on the Chow ring CH(E). In the sequel
will denote the fundamental classes of the curve and a point by [E] and by [pt], respectively.
All calculations could just as well take place in the Chow ring.

The Chern character of the Poincaré bundle in H∗(E × E) is readily read off from the
definition as

ch(P) = 1 + [∆]− [E × pt]− [pt× E]− [pt× pt]

(using N∆/E×E = OE for [∆]2 = deg(c1(N∆/E×E)) = 0) and hence FMch(P)(r[E] + d[pt]) =
p2∗(r[E × E] + r[∆]− r[E × p0]− r[p0 × E]− [p0 × p0] + d[pt× E]) = d[E]− r[pt].

We reiterate that FMch(P) is the automorphism

FMch(P) =

(
0 1

−1 0

)
: H2∗(E) → H2∗(E), r[E] + d[pt] 7→ d[E]− r[pt].

Semistable sheaves

The facts we need concerning semistable sheaves are the following. See e.g. [14] or [10] for
details. Note that semistable sheaves are automatically torsion free, hence vector bundles in
our setting.

• The slope of a coherent sheaf F is µ(F ) := deg(F )/rk(F ). The sheaf F is called
semistable if no subsheaf has a slope greater than µ(F ). Equivalently, F is semistable
if there is no quotient of F whose slope is smaller than µ(F ). F is called stable if there
is no proper subsheaf whose slope is greater or equal than µ(F ).

• A sheaf F , which is not semistable, contains a unique semistable sheaf F ′ of maximal
slope, the so-called maximal destabilizing subsheaf. It is determined by µ(U) ≤ µ(F ′)
for all U ⊆ F and µ(U) = µ(F ′) =⇒ U ⊆ F ′.

1However, note that for varieties X with nontrivial tangent bundle the correct definition is∑
i(−1)ich(F i)

√
tdX .
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• There are no nontrivial morphisms F → G if F and G are semistable with µ(F ) > µ(G).
Similarly, any nonzero morphism F → G between stable sheaves with µ(F ) = µ(G) is
an isomorphism.

• If, in a short exact sequence of coherent sheaves, two sheaves are semistable of the same
slope µ, then the third is also semistable with slope µ. This means that the category
of semistable sheaves with fixed slope is closed under kernels, cokernels and extensions.
In particular, it is Abelian.

3. The stable case: rank and degree coprime

Lemma 1. Let F be a locally free sheaf of rank r and degree d. Then we have the implications
(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) with

(i) F is stable,

(ii) F is simple,

(iii) F is indecomposable,

(iv) F is semistable.

If moreover r and d are coprime, then we also have (iv) =⇒ (i), so that all four properties
are equivalent.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are valid for arbitrary varieties and sheaves,
as is (iv) =⇒ (i) if (r, d) = 1. So assume now that F is indecomposable. Take the maximal
destabilizing subsheaf F ′ ⊂ F . This would lead to an exact sequence 0 → F ′ → F → F ′′ → 0
with Hom(F ′, F ′′) = 0 because the quotient F ′′ can be filtered by semistable bundles, all of
which have slope smaller than µ(F ′) (by the uniqueness of F ′). But from Serre duality we
infer Ext1(F ′′, F ′) = Hom(F ′, F ′′)∨ = 0. Since F is indecomposable we finally have F ′′ = 0
and F = F ′ is indeed semistable. �

Lemma 2. Let r > 0 and d be integers and L a line bundle of degree d.

a) A stable vector bundle on E with rank r and degree d exists ⇐⇒ (r, d) = 1.

b) If (r, d) = 1, there is a unique stable bundle of rank r and determinant L.

Proof. For a) fix integers r and d with (r, d) = 1. Remember that we have chosen an origin
p0 on E. There is another elliptic curve Ẽ together with a morphism πr : Ẽ → E such that
E = Ẽ/G is a finite quotient of order r, and G ∼= Z/(r) acts without fixed points on Ẽ.
(Either take a line bundle M on E of order r and set Ẽ := Spec(OE ⊕M ⊕ · · · ⊕M r−1), or
else use the unramified covering of E given by a subgroup of π1(E) = Z2 of index r.) The
fiber π−1

r (p0) consists of r points, among which we chose a base point p̃0 for Ẽ. After that,
we can also chose a generator g̃ of π−1

r (p0) (considered as a subgroup of Ẽ).
Now take a line bundle L̃ on Ẽ of degree d, e.g. OẼ(dp̃0). The projection πr : Ẽ → E is a

finite, unramified morphism, and thus V := πr∗L̃ is a sheaf concentrated in degree 0, locally
free of rank r and degree d. It is simple because

HomE(V, V ) = HomE(πr∗L̃, πr∗L̃) = HomẼ(π∗rπr∗L̃, L̃)

= HomẼ(
⊕
g∈G

g∗L̃, L̃) =
⊕
g∈G

H0(L̃⊗ g∗L̃∨) = k
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using that only OẼ has nontrivial sections among line bundles of degree 0. By the lemma,
V is also stable. The other direction of a) will be a consequence of Proposition 4.

For b) we note that by Grothendieck-Riemann-Roch ch(V ) = ch(πr∗L̃) = πr∗ch(L̃) =
πr∗(1Ẽ + D̃) = r · 1E + πr(D̃). Thus, det(V ) = OE(πr(c1(L̃)). To get a stable bundle
with prescribed determinant L ∈ Picd(E), we simply take L̃ to be an r-th root of π∗rL.

Now if V1 and V2 are two stable bundles of same rank r and determinant, then the
homomorphism bundle F := V1 ⊗ V ∨

2 has rank r2 and trivial determinant. By stability, we
have either H0(F ) = H1(F ) = k or H0(F ) = H1(F ) = 0, depending on whether V1

∼= V2 or
not. The claim follows from FMP(F ) = T [−1] where T is a torsion sheaf containing the origin
p0 because then H1(F ) = k. The homological consideration yields ch(FMP(F )) = −r2[pt].
From this and cohomology and basechange, we see that h1(FMP(F )) is nonzero torsion.
Hence, there exists an L1 ∈ Pic0 such that V1 ⊗ L1

∼= V2. On the other hand, h0(FMP(F ))
is the usual push-forward of a bundle, hence torsion free and thus zero. This shows that
FMP(F ) = T [−1] is torsion of length r2 sitting in degree 1. A local computation, given
below, will show that T is actually reduced so that T consists of all r2 torsion points of order
r. Then we have in particular p0 ∈ supp(T ) and thus V1

∼= V2.
Let [L] ∈ Pic0(E) be a point in the support of the torsion sheaf T and choose a parameter

t in [L]. We want to show that T is annihilated by t. Let D = k[ε]/ε2 be the ring of dual
numbers over k and Spec(D) → Pic0(E) be the map corresponding to the ring morphism
which sends t to ε. We consider the restriction L̃ of the Poincare sheaf P to E × Spec(D).
Then there is a nonsplitting short exact sequence 0 → L → L̃ → L → 0. If V1 is stable,
then the short exact sequence 0 → L⊗ V1 → L̃⊗ V1 → L⊗ V1 → 0 does not split either. To
see this, we consider the exact sequence 0 → OE → End(V1 ⊗ L) → End0(V1 ⊗ L) → 0 (this
works in characteristic 0 or if char(k) does not divide r). Since V1⊗L is stable, we conclude
that H0(End0(V1 ⊗ L)) = 0, and eventually that the map H1(OE) → H1(End(V1 ⊗ L)) is
injective. Thus, in other words, Ext1(L,L) → Ext1(L ⊗ V1, L ⊗ V1) is injective. Suppose
now that T is not annhilated by t. Then the map Hom(V2, L̃ ⊗ V1) → Hom(V2, L ⊗ V1) is
surjective. Let ψ : V2

∼−→ L⊗V1 be an isomorphism and ψ̃ : V2 → L̃⊗V1 be its lift. However,
then the image of ψ̃ splits the short exact sequence 0 → L ⊗ V1 → L̃ ⊗ V1 → L ⊗ V1 → 0
which is a contradiction. �

Remark. The assertions of the lemma can be rephrased using the moduli space M(r, d) of
stable vector bundles of rank r and degree d:

a) M(r, d) 6= ∅ ⇐⇒ (r, d) = 1,

b) det : M(r, d)
∼−→ Picd(E) is an isomorphism if (r, d) = 1.

Universal bundles

Proposition 3. Given coprime r and d, there is a universal bundle G on E×E parametrizing
stable bundles of rank r and degree d, i.e. FMG : D(E) → D(E) is an equivalence such that
all FMG(k(p)) are stable of rank r and degree d.

Proof. The above construction of stable bundles can also be described in terms of Fourier-
Mukai transforms. Consider the graph Γ ⊂ Ẽ×E of πr and its structure sheafOΓ ∈ D(Ẽ×E)
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as a kernel. Then we have πr∗ = FMOΓ
. Furthermore, consider next the Poincaré bundle P̃d

of degree d line bundles on Ẽ. We will assume that P̃d is normalized by requiring it to be
symmetric. Then the composition FMOΓ

◦FMP̃d : D(Ẽ) → D(E) takes points (i.e. skyscraper
sheaves k(x̃)) to stable bundles on E with correct rank and degree. However, this map is
overparametrized (and hence the composite kernel is not a universal bundle): two points x̃
and ỹ lead to the same bundle if they are in the same πr-fiber. (Equivalently, two divisors
D and D′ := t∗g̃D of degree d give isomorphic bundles πr∗OẼ(D) ∼= πr∗OẼ(D′).) Thus, it
is necessary to divide out the G-action. This is possible if and only if the composite kernel
K ∈ D(Ẽ × E) (explicitly, K := p13∗(p

∗
12P̃d ⊗ p∗23OΓ)) descends. This in turn means that

there is a G ∈ D(E × E) such that K = (πr × idE)∗G. A necessary and sufficient condition
for this is the existence of a G-linearization on K.

Note that (the generator g̃ of) G ∼= Z/(r) acts on Ẽ×E by translation with g̃ on the first
factor and trivially on the second. We write t := t(g̃,p0) for this translation. A G-linearization

is a set of isomorphisms λg : g∗K ∼−→ K satisfying the obvious compatibility. Because G is
cyclic, it is sufficient and convenient to consider only for the generator. Now

t∗K = K
⇐⇒ FMt∗K = FMK

⇐⇒ πr∗ ◦ FMt∗P̃d = πr∗ ◦ FMP̃d

⇐⇒ πr∗ ◦ t∗g̃ ◦ FMPd ◦ FM−1
Pd = πr∗

⇐⇒ πr∗ ◦ (t−1
g̃ )∗ = πr∗

⇐⇒ πr ◦ t−1
g̃ = πr

and thus K is G-linearizable if and only if πr(g̃) = πr(p̃0) – which is the case by definition.
So, we see that K = (πr × idE)∗G descends and it remains to show that G is a universal

bundle. This follows at once from

FMK(k(x̃)) = p2∗((πr × idE)∗G ⊗ p∗1(k(x̃)))

= p2∗(ι
∗
x̃(πr × idE)∗G)

= p2∗(G|{πr(x̃)}×E)

= FMG(k(πr(x̃)))

with ιx̃ : {x̃} × E ↪→ Ẽ × E.
Thus FMG parametrizes all stable bundles of rank r and degree d like FMK, too. The

difference is that FMG is a universal bundle (that it is a locally free sheaf is clear from the
construction) because FMG(k(x)) and FMG(k(y)) are stable with the same slope but different
determinants Pd

x and Pd
y . A criterion2 of Bridgeland (see [4]) now states that FMG : D(E) →

D(E) is actually an equivalence. �

Remark. The above construction has a connection with the derived McKay correspondence
(see [2] for details). The statement is that for the variety Ẽ with its G-action, there is an

2The criterion states that a functor F : D(E) → D(E) is an equivalence if and only if it is fully faithful
on points, i.e. Exti

E(k(x), k(y)) = Homi
D(E)(F (k(x)), F (k(y))) for all x, y ∈ E. This also holds for general

varieties if the canonical sheaf is trivial.
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equivalence DG(Ẽ) = D(E) (where DG(Ẽ) is the derived category of the Abelian category
of G-linearized sheaves on Ẽ). The construction of G implies that FMK : DG(Ẽ)

∼−→ D(E)
establishes such an equivalence.

4. The general case: arbitrary rank and degree

Here we consider vector bundles of arbitrary rank r and degree d. We denote r̃ := r/(r, d)
and d̃ := d/(r, d). From the results of the previous section we dispose of a universal bundle G
for stable bundles of rank r̃ and degree d̃. Our aim is the following description of semistable
sheaves on E.

Proposition 4. Let S(r, d) be the set of all isomorphism classes of semistable bundles of
rank r and degree d. There is an isomorphism between S(r, d) and the set Torsionlength=(r,d)

of torsion sheaves of length (r, d)

FMG : Torsionlength=(r,d)
∼−→ S(r, d).

Proof. Remember that G was the universal bundle on E × E constructed in Proposition 3.
The Fourier-Mukai transform FMG here is meant in the same direction as there, i.e. taking
points to stable bundles.

First, take an arbitrary torsion sheaf T on E of length (r, d). Then, it is obvious that
FMG(T ) is a locally free sheaf of rank r̃(r, d) = r concentrated in [0]. It has degree d because
of ch(FMG(T )) = FMch(G)(ch(T )) = (r, d)(r̃[E] + d̃[pt]). Finally, it is semistable because all
T can be filtered in a composition series, and hence F is a successive extension of stable
bundles of rank r̃ and degree d̃.

On the other hand, let F be semistable with rank r and degree d. We are looking for a
T with FMG(T ) = F . In order to do this, we will utilize the transform FMG∨ with the dual
of the universal bundle as kernel. We need two facts about this: first, FMG∨ = FM−1

G [−1]
(see the original paper of Mukai, [11] for this) and second, that G∨ is the universal bundle
parametrizing stable bundles on E with rank r̃ and degree −d̃. As a last preliminary, we need
some homological information concerning FMG∨ . The relations FMch(G∨)(r̃[E]+d̃[pt]) = −[pt]
and FMch(G∨)([pt]) = r̃[E] + e[pt] follow from G being universal and locally free of rank r̃.
This allows us to write FMch(G∨) as a matrix (i.e. an automorphism of H0(E,Z)⊕H2(E,Z)),
and analogously for FMch(G)

FMch(G∨) =

(
−d̃ r̃

−1+d̃e
r̃

e

)
, FMch(G) = −FM−1

ch(G∨) =

(
−e r̃
1+d̃e
−r̃

d̃

)
.

Now F has a two-term resolution 0 → A−1 → A0 → F → 0 such that R0p2∗(G∨ ⊗ p∗1A
i) = 0

for both i = 0,−1 using sufficiently antiample twists. Applying FMG∨ to this yields a triangle

which can also be written as FMG∨(F ) = [B−1 β−→ B0] with Bi = FMG∨(Ai) or as an exact
sequence 0 → h0FMG∨(F ) → B−1 → B0 → h1FMG∨(F ) → 0. Note that B−1 and B0 are
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locally free sheaves concentrated in degrees 0 and 1, respectively. We prove first that β is
injective: Assuming the opposite, there is an injection OE(−M) ↪→ ker(β) for some M � 0.

OE(−M) //
� _

��

0

��
B−1 α // // B0

Application of FMG to the complex morphismOE(−M)→B• yields a map γ : FMG(OE(−M))
→ FMG(FMG∨(F )) = F [−1].

By increasing M some more, if necessary, we can assume that FMG(OE(−M)) is con-
centrated in degree 1, i.e. that R0p2∗(G ⊗ p∗1OE(−M)) = 0. Then, γ is a morphism between
bundles sitting in degree 1 and the homological consideration above shows

FMch(G)(ch(OE(−M))) =

(
−e r̃
1+d̃e
−r̃

d

)(
1
−M

)
=

(
−e− r̃M
1+d̃e
−r̃

− d̃M

)
.

Note that FMG(OE(−M)) is simple and hence stable by Lemma 1 becauseOE(−M) is simple.
Thus, the morphism γ is one between stable bundles with slopes

µ(FMG(OE(−M))) =
(1 + d̃e)/r̃ + d̃M

e+ r̃M
=

1

r̃(e+ r̃M)
+
d̃

r̃
>
d̃

r̃
=
d

r
= µ(F )

which is a contradiction for M � 0.
By now we know that β is injective, or, rephrasing the same fact, coker(β)[−1] =

FMG∨(F ) is concentrated in degree 1. The numerical invariants of the cokernel are

ch(FMG∨(F )) = FMch(G∨)(ch(F )) =

(
−d̃ r̃

−1+d̃e
r̃

e

)(
r
d

)
=

(
0

−(r, d)

)
and this proves that T := coker(β) is a torsion sheaf of length (r, d) with FMG(T ) = F , as
claimed. �

Remark. The bijection between torsion sheaves and semistable bundles given by the proposi-
tion also allows the identification of indecomposable objects on both sides. Explicitly, torsion
sheaves of the form k[ε]/εl give rise to indecomposable bundles and vice versa. Especially,
we obtain an equivalence

FMG : E
∼−→ {F ∈ S(r, d) indecomposable}, p 7→ FMG(k(p)[ε]/ε

(r,d)).

In this way, we have reproven Atiyah’s main theorem ([1], II.7).
Note that the equivalence also allows us to describe the endomorphism groups of semi-

stable bundles. Thus, if the torsion sheaf T corresponding to F ∈ S(r, d) has indecomposable
summands T = T1 ⊕ · · · ⊕ Ts, then we have

EndE(F ) = EndE(T ) =
s⊕

i=1

EndE(Ti) =
s⊕

i=1

Ti = T.
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Remark. There is a natural equivalence relation on the set S(r, d), the so-called S-equivalen-
ce. Two semistable bundles V1 and V2 are S-equivalent if the graded objects of their Jordan-
Hölder filtrations are isomorphic: grJH(V1) ∼= grJH(V2).

Stable bundles form one-point equivalence classes. But the presence of properly semista-
ble bundles (which in our setting is equivalent with (r, d) 6= 1) implies that S(r, d) is then
neither reduced nor separated.

The quotient M(r, d) := S(r, d)/S−equivalence is the moduli space of (semistable) bun-
dles of rank r and degree d. Using our description of S(r, d), we can include the moduli space
in our picture:

Torsionlength=r̃
FMG //

S
��

S(r, d)

S
��

Divr
eff

FMG // M(r, d)ss

So we see that M(r, d)ss has the structure of a Pr−1-bundle over E in view of the map
Divr

eff = Symr(E) → Picr(E) whose fibers are complete linear systems. Especially, it is
reduced and separated.

Remark. A particular instance of a universal bundle is the Poincaré bundle P itself. It
corresponds to r = 1, d = 0. We get an equivalence between torsion sheaves of length r and
locally free semistable sheaves of rank r and degree 0:

FMP : Torsionlength=r
∼−→M(r, 0).

Remark. Another description for stable bundles of degree 1 is the bijection

FMP : Pic−r(E)
∼−→M(r, 1).

Taking a line bundle L of degree −r, we see that FMP(L) is concentrated in [1] (there is no
R0 because of the negative degree) and locally free of rank dimH1(L) = r. Furthermore,
writing FMP(L) = F [−1] we see that F is a simple sheaf because FMP is fully faithful as an
equivalence. By Lemma 1 it is also stable.

For the other direction, take an F ∈ M(r, 1). To see that FMP(F ) is a line bundle
of degree r concentrated in [0], note that with F also F∨ and F ⊗ M are stable, for all
M ∈ Pic0(E). Now by cohomology and base change it is enough to show H1(F ) = 0 as
this implies h1FMP(F ) = 0 and then we get rank and degree of FMP(F ) by the homological
computation. But if we had H1(F ) 6= 0, then by Serre duality there is a nontrivial morphism
OE → F∨ between stable sheaves of slopes 0 and −1/r which is impossible.

Finally, we mention the following characterizations of semistable bundles on elliptic
curves.

Lemma 5. Let F be a vector bundle of rank r and degree d on E. Further, let V be a fixed
semistable bundle of rank r2 + r and degree rd + d + 1. Then the following conditions are
equivalent:

(i) F is semistable.
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(ii) There exists a nontrivial sheaf G such that H∗(F ⊗G) = 0.

(iii) The sheaf G in (ii) can be chosen of rank r/(r, d).

(iv) HomE(V, F ) = 0.

Proof. Trivial are iii) =⇒ ii) and i) =⇒ iv) because µ(F ) < µ(V ).

For ii) =⇒ i), assume that F is not semistable and take the maximal destabilizing subsheaf
F ′ ⊂ F . Then F/F ′ is torsion free, hence locally free, and thus F ′ ⊗ G ⊂ F ⊗ G. On the
other hand, we have χ(F ⊗G) = 0 by assumption and χ(F ′ ⊗G) > 0 – which constitutes a
contradiction because χ = deg on elliptic curves.3

i) =⇒ iii): Take G′ to be a stable bundle with µ(G′) = µ(F ). Then, F∨⊗G′ is semistable of
degree 0, and we get FMP(F∨⊗G′) = T [−1] with a torsion sheaf T of length r2/(r, d). Now,
for a line bundle L corresponding to a point outside of T , we have H1(F∨ ⊗ G′ ⊗ L) = 0.
Thus, G := G′ ⊗ L suffices.

iv) =⇒ i): Again, assume that F is not semistable and take a maximal destabilizing subsheaf
D ⊂ F . Now rank and degree of V are chosen in such a way that µ(D) > µ(V ) > µ(F ) always
holds. The assertion now follows from HomE(D,F ) 6= 0 due to D ↪→ F and HomE(V,D) =
H0(D ⊗ V ∨) 6= 0 due to deg(D ⊗ V ∨) > 0 ⇐⇒ µ(D) > µ(V ). �

5. Multiplicative structure in degree 0

Atiyah considered the ring generated by (isomorphism classes of) indecomposable vector
bundles with degree zero, the multiplication being given by the tensor product. Note that
this is a subring of K0(E).

We can approach the products using the following formulae of Mukai:

FMP(A⊗B) = FMP(A) ∗ FMP(B)[1], FMP(A ∗B) = FMP(A)⊗ FMP(B)

where A ∗B := m∗(pr
∗
1A⊗ pr∗2B) and m : E × E → E is the addition.

Denoting by Fr the unique semistable sheaf of rank r and determinant OE, we get Fr ⊗
Fs = FMP(Tr∗Ts) (Tr is the vector space k[ε]/εr sitting only in p0). Thus we have to compute
Tr ∗ Ts. But since everything is concentrated in a point (in an Artinian situation, actually),
we can work in the following setting: Let m : k[x] → k[y1, y2], x 7→ y1 + y2 be the map which
on spectra is the addition map A1×A1 → A1. Then, the k[y1, y2]-module k[y1, y2]/(y

r
1, y

s
2) of

finite length corresponds to Tr�Ts. Now, m∗(k[y1, y2]/(y
r
1, y

s
2)) is just the same k-vector space

considered as a k[x]-module via m. Multiplication with x gives (assume r ≤ s) x ·1 = y1 +y2,
x · y1 = y2

1 + y2, . . . , x · yr−1
1 = yr−1

1 y2. We now change the basis of k[y1, y2]/(y
r
1, y

s
2) from yi

1y
j
2

(i = 0, . . . , r− 1, j = 0, . . . , s− 1) to (y1 + y2)
ayb

2 (with b = 0, . . . , r− 1 assuming that r ≤ s
and a = 0, . . . , r+ s− 1− 2b because (y1 + y2)

ayb
2 6= 0 if and only if there is a k ∈ {0, . . . , a}

with a+ b− s < k < r).

3Condition (ii) of the proposition is a criterion for µ-stability on general varieties, whereas conditions (iii)
and (iv) are peculiar to elliptic curves.



G. Hein, D. Ploog: Fourier-Mukai Transforms and Stable Bundles on Elliptic Curves 433

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

1

y1 y2

y2
1 y1y2 y2

2

y3
1 y2

1y2 y1y
2
2

y4
1 y3

1y2 y2
1y

2
2

y4
1y2 y3

1y
2
2

y4
1y

2
2

An example with r = 5, s = 3.

Hence we arrive at the following formula:

Er ⊗ Es =

min(r,s)⊕
k=1

Er+s+1−2k.

This corresponds to Atiyah’s theorem III.8.
Note that things are different in characteristic p if p < r+s. For example, if char(k) = 2,

we have T2 ∗ T2 = T2 ⊕ T2.
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