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Abstract. Spin and Clifford groups as group schemes of semi-regular quadratic
spaces of odd rank over a commutative ring are shown to be smooth and reductive.
Analogously to the hyperbolic case smooth open neighborhoods of unit sections,
called big cells, are constructed and examined. Jordan pairs again play a role
through an imbedding into hyperbolic space whose rank is higher by one. The
property reductive is now proved by constructing maximal tori and their associated
root data explicitly.
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Introduction

Spin groups, attached to quadratic forms via Clifford algebras, are essentially objects as
classical as Clifford algebras themselves and go back to Lipschitz [9]. His natural construction
was refined over time [3], [1], and it is now rather a part of the mathematical folklore that spin
groups as group schemes [4], [5], are smooth and reductive. Missing verification is performed
partly for the case where the basic quadratic forms are hyperbolic [7]; the proof has already
involved lengthy calculation, but combined with nice relations to Jordan pairs [10], [11]. In
fact, by étale descent, [7] has actually covered the case for regular quadratic spaces of even
rank [8]. The aim of the present article is to give an odd rank counterpart for the semi-regular
case. This will complete an expected form of verification.
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It turns out that the job is a natural continuation of [7], with nearly the same format of
arguments. Always we start with a finitely generated projective module M over an arbitrary
commutative base ring k, and follow mostly [7] for notation and conventions. (In fact, here
and in [7] as well, M is preferably supposed faithfully projective, i.e., with rank everywhere
positive since the trivial case M = 0 involves apparent exceptions.) Instead of the hyperbolic
H(M) as the basic quadratic space, we now consider the orthogonal direct sum H(M)⊥〈1〉
with the trivial rank one space. The wanted case is then covered by fppf descents [8, IV,
(3.2)]. It is easy to continue taking the exterior power

∧
(M) as the space of spinors (1.1–1.3),

and we again enlarge the spin group to the special Clifford group equipped with projection
to the special orthogonal group (1.4). Our first goal is to establish their smoothness (1.5),
for which we construct smooth open neighborhoods of unit sections called big cells (1.7–1.9,
2.4). Contrary to [7] we have no longer direct relations to Jordan pairs, but pursuing analogy
to examine the induced group germ structures on big cells as their own interests (2.4–2.10)
retrieves a role of Jordan pairs; an imbedding transports the matters to the case of rank one
higher which is hyperbolic (2.1–2.2). The property reductive is proved simultaneously with
constructing maximal tori in the case where M is free with a base e1, e2, . . . , em (3.2–3.3).
We see also the expected type Bm of the associated root data (3.1).

1. Constructions, smoothness

1.1. An element e. We shall use a specific identification of the Clifford algebra C(H(M)⊥
〈1〉), analogous to the natural C(H(M)) ∼= End(

∧
(M)) for the hyperbolic case but not the

graded tensor product C(H(M))⊗̂kC(〈1〉) itself. An important role is played by the element

e :=

(
1 0
0 −1

)
∈ End(

∧
(M)), (1.1.1)

where the matrix is relative to the decomposition
∧

(M) =
∧+(M)

⊕∧−(M) and act-
ing from the left. We begin by observing some properties. Recall that the identification
C(H(M)) ∼= End(

∧
(M)) describes the universal map as L : M

⊕
M∗ → End(

∧
(M)) send-

ing (x, f) ∈M
⊕

M∗ to lx + df , the sum of the left wedge-product by x and the left interior
product by f (L being denoted V in [7, 3.1]), and that the adjectives even, odd refer to the
‘checker-board’ grading [8] of End(

∧
(M)a). Moreover, we follow [8, p. 195] to call the unique

anti-automorphism of any Clifford algebra extending −Id (resp. Id) of the basic module the
standard (resp. canonical) involution (the ‘standard’ being called ‘main’ in [7]). In our case
C(H(M)) ∼= End(

∧
(M)), the element e has square unit and commutes (resp. anti-commutes)

with even (resp. odd) elements; so the conjugation s 7→ ese by e is just the automorphism
extending −IdM

⊕
M∗ , whence interchanges the standard and canonical involutions. Fur-

thermore one has (lxe + edf )
2 = 〈x, f〉, from which by universality follows a unique algebra

homomorphism

ϕ : End(
∧

(M)) −→ End(
∧

(M)), (1.1.2)

such that ϕ(lx + df ) = lxe + edf ; clearly ϕ preserves the grading also. We claim that ϕ is an
isomorphism with inverse itself. Indeed, since ϕ2(lx + df ) = ϕ((lx − df )e) = (lx + df )eϕ(e)
it suffices to prove ϕ(e) = e, and by localizing there is no harm in assuming M free with
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a base e1, e2, . . . , em. Let (e∗i ) denote the base of M∗ dual to (ei). Decomposing H(M) =
⊥m

i=1H(k ·ei) and endowing each H(k ·ei) with a base ((ei, 0), (0, e∗i )), we consider the element
z ∈ End(

∧
(M)) defined by the formula (2.3.1) in [8, p. 204]; the ingredients zi (resp. bi) being

our l(ei)d(e∗i ) (resp. 1) and constituting z as a polynomial with integral coefficients. An easy
verification proves

z =

(
0 0
0 1

)
∈ End(

∧
(M)), (1.1.3)

while we have ϕ(zi) = ϕ(l(ei))ϕ(d(e∗i )) = l(ei)d(e∗i ) = zi, showing that z is fixed by ϕ. Hence
so is e = 1 − 2z, by (1.1.1), (1.1.3). In fact, it can be checked simultaneously that both
standard and canonical involutions send z to z or 1 − z according as m is even or odd. We
shall record here an immediate consequence:

Both involutions applied to e multiply it with the factor (−1)m, where the rank m is understood
as a locally constant integer-valued function on Spec(k).

1.2. Identification of C(H(M)⊥〈1〉). Let k[w] = k[T ]/(T 2 − 1) denote the quadratic
extension defined by w2 − 1 = 0. We consider k[w] as Z/2Z-graded by k[w]+ := k · 1,
k[w]− := k · w. Whereas k[w] might be regarded as the Clifford algebra C(〈1〉), we forget
this at present and call the unique automorphism of k[w] with w 7→ −w the conjugation.
Moreover, we treat End(

∧
(M))

⊗
k k[w] as a graded k-algebra with the grading induced

from k[w] by tensoring with End(
∧

(M)). Let us consider the linear map

L̃ : M
⊕

M∗⊕ k −→ End(
∧

(M))
⊗

k k[w]

L̃(x, f, t) := (lx + df + te)
⊗

w.

Just as in the construction (1.1.2) of ϕ we see that L̃ composed with the squaring recovers
now the quadratic form of H(M)⊥〈1〉, whence a unique extension

ΦM : C(H(M)⊥〈1〉) −→ End(
∧

(M))
⊗

k k[w]

as an algebra homomorphism. Clearly ΦM preserves the gradings also. In fact,

1.3. Lemma. ΦM is an isomorphism and identifies the standard involution of C(H(M)⊥〈1〉)
with (the canonical involution) ⊗ (the conjugation) if the rank m of M is even, and with
(the standard involution)⊗ 1 if m is odd.

Proof. The latter statement is clear from the observation at the end of (1.1). We prove
the former. Since both members have the same rank (as modules), it suffices to check the
surjectivity. Moreover, the identification made in [8, p. 210] of C(H(M) ∼= End(

∧
(M)))

with the even part C+ ⊂ C of C := C(H(M)⊥〈1〉) yields readily that ΦM |C+ : C+ →
End(

∧
(M)) (⊂ End(

∧
(M))

⊗
k k[w] obviously) equals the isomorphism ϕ constructed in

(1.1.2). Hence we are reduced to proving 1 ⊗ w ∈ im(ΦM). Now let e0 ∈ C denote the
imbedded element (0, 0, 1) ∈ M

⊕
M∗⊕ k ⊂ C, so that ΦM(e0) = e ⊗ w. Localizing

without loss of generality, we again employ the argument in (1.1) to find that the elements
ΦM(x, 0, 0)ΦM(0, f, 0) = (lx ⊗ w)(df ⊗ w) = (lxdf ) ⊗ 1, for x ∈ M , f ∈ M∗, generate a
subalgebra containing z ⊗ 1, cf. (1.1.3), whence an element z̃ ∈ C with ΦM(z̃) = z ⊗ 1. It
follows that 1⊗ w = (e⊗ 1)(e⊗ w) = ΦM((1− 2z̃)e0).
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1.4. The group schemes. In the following, we treat ΦM as an identification and take∧
(M) as the space of spinors. Namely, working in GL(

∧
(M)) we define the special Clifford

group CL+(H(M)⊥〈1〉) to be the normalizer of imbedded M
⊕

M∗⊕ k:

L : M
⊕

M∗⊕ k −→ End(
∧

(M))
L(x, f, t) := lx + df + te,

(1.4.1)

and the spin group Spin(H(M)⊥〈1〉) ⊂ CL+(H(M)⊥〈1〉) to be the kernel of the character
ν given by ν(s) := ss. Here, ? : s 7→ s denotes the involution End(

∧
(M))

∼→ End(
∧

(M))op

locally canonical or standard according as M has rank even or odd, and we call ν again
the spinor character, cf. [7, 3.1]. Moreover, in view of [8, IV, (5.1.1)], we define the spe-
cial orthogonal group SO(H(M)⊥〈1〉) ⊂ GL(M

⊕
M∗⊕ k) to be the kernel of det re-

stricted to the full orthogonal group; an obvious adaptation of [8, IV, (6.3.1)] being read
that the vector representation π, given by sL(ξ)s−1 =: L(π(s) · ξ), is an fppf epimorphism
π : CL+(H(M)⊥〈1〉)→ SO(H(M)⊥〈1〉) with kernel Gmk. The k-groups constructed in this
way are the main objects studied here. From the constructions follows easily (same argument
as in [7, 3.2]) that they are all affine finitely presented k-group schemes. Our ultimate interest
is to prove in addition the properties smooth with connected and reductive fibers. Here, we
shall settle the following result as the first goal:

1.5. Theorem.
(a) The k-groups CL+(H(M)⊥〈1〉), Spin(H(M)⊥〈1〉), and SO(H(M)⊥〈1〉) are all smooth

with connected fibers.

(b) The homomorphisms CL+(H(M)⊥〈1〉) → SO(H(M)⊥〈1〉) and Spin(H(M)⊥〈1〉) →
SO(H(M)⊥〈1〉), both induced by the vector representation, are faithfully flat and finit-
ely presented.

Note that the part (a) implies (b) similarly to [7, 3.8]. In order to prove (a), we shall
proceed analogously to the hyperbolic case [7]. Whereas the proof itself will be completed
in (1.9) below, arguments in the course fit well to further discussions succeeding next. We
begin with the connectedness. The problem being actually same as in [7, 3.3] on the fibers
where H(M)⊥〈1〉 remains non-degenerate, the doubtful part is characteristic two. Over
an algebraically closed field k of characteristic two, the spin group Spin2n+1(k) projects
isomorphically onto SO2n+1(k) and the Clifford group projects onto the latter. Therefore,
only the connectedness of the Clifford group remains to be proved. The same argument as
in [7, 3.3] applies after all, since we have the following

1.6. Lemma. Let k be a perfect field of characteristic two, and (V, q) a regular quadratic
space over k (necessarily of even-dimension). Construct the orthogonal direct sum (V, q)⊥〈1〉
and denote the generator (0, 1) ∈ V

⊕
k of the summand 〈1〉 by e0. Then the products

ξe0 for all non-singular ξ ∈ V
⊕

k form a set of generators for the special Clifford group
CL+((V, q)⊥〈1〉).

Proof. Since k is a field, the vector representation π maps CL+((V, q)⊥〈1〉) onto
SO((V, q)⊥〈1〉) with kernel k∗ and the announced set X clearly contains k∗. Therefore it



H. Ikai: Spin Groups (Odd Rank Case) 381

suffices to see that the image π(X) generates SO((V, q)⊥〈1〉). Now since we are in character-
istic two, a classical argument (cf. §23 (p. 52 ff) of [6]) shows that SO((V, q)⊥〈1〉) stabilizes
the line k · eo ⊂ V

⊕
k and goes to, via extracting (V, V )-entries End(V

⊕
k) → End(V ),

the symplectic group Sp(V, bq) of the associated bilinear form bq. In fact, this yields an iden-
tification SO((V, q)⊥〈1〉) ∼= Sp(V, bq) since the field k is perfect as well. Moreover, an easy
computation shows that, for non-singular ξ = a + t · e0 ∈ V

⊕
k with λ := (q(a) + t2)−1, the

transported element π(ξe0) ∈ Sp(V, bq) is just the transvection τλ,a : x 7→ x + λbq(x, a)a, and
again by the perfectness of k such τλ,a’s exhaust all symplectic transvections. The assertion
now follows from Prop. 4 (p. 10) of [6].

1.7. Open subschemes Ω, Ω1. The situation is now same as in [7, 3.5], and we pro-
ceed analogously to prove the smoothness; thus what we want are smooth open neighbor-
hoods of unit sections. Again the same function χ on W(End(

∧
(M))) is to be considered,

which extracts the End(
∧m(M)) (∼= k)-entries of matrices relative to the decomposition of∧

(M) distinguishing the top-term
∧m(M) [7, 3.5]. Moreover, let χ1 denote the function on

W(End(M
⊕

M∗⊕ k)) extracting the determinants of End(M)-entries. Since both χ and
χ1 have value one at unit sections, their obvious restrictions to our k-groups define principal
open subschemes containing each unit section; among them are, say Ω ⊂ CL+(H(M)⊥〈1〉)
defined by χ, and Ω1 ⊂ SO(H(M)⊥〈1〉) defined by χ1. Our next aim is to prove that they
answer the question. This will be done through cell-decompositions below, which enlarge the
previous ones [7, 3.6, 3.7] for the hyperbolic case.

1.8. Imbedded subgroups. We write M+ := M , M− := M∗ and consider for each
σ = ± a multiplication (u, y) • (u′, y′) := (u + u′ − y ∧ y′, y + y′) in the k-scheme underlying
W(
∧2(Mσ)

⊕
Mσ). It is immediate that • defines a group structure with unit (0, 0) and

inversion (u, y) 7→ (−u,−y). The so obtained k-group is denoted W(
∧2(Mσ)

⊕
Mσ], which

is smooth with unipotent fibers since it is an extension of W(
∧2(Mσ)) by W(Mσ). The

multiplication • anticipates that the earlier defined homomorphism Yσ : W(
∧2(Mσ)) →

GL(
∧

(M)) [7, 3.6.1] is now extended to W(
∧2(Mσ)

⊕
Mσ] as

W(
∧2(M)

⊕
M ]

Y+−→ GL(
∧

(M))
Y−←−W(

∧2(M∗)
⊕

M∗]
Y+(u, y) := Y+(u)(1 + lye) = (1 + lye)Y+(u),
Y−(v, g) := Y−(v)(1 + dge) = (1 + dge)Y−(v).

(1.8.1)

Moreover, a straightforward verification proves these Y± to normalize M
⊕

M∗⊕ k ⊂
End(

∧
(M)) (1.4.1) with

W(
∧2(M)

⊕
M ]

X+−→ GL(M
⊕

M∗⊕ k)
X−←−W(

∧2(M∗)
⊕

M∗]

X+(u, y) :=

 1 u− y ⊗ y 2y
0 1 0
0 −y 1

 , X−(v, g) :=

 1 0 0
v − g ⊗ g 1 2g
−g 0 1

 (1.8.2)

the induced actions, namely to factor through CL+(H(M)⊥〈1〉) with πY± = X±. Needless
to say, matrices in (1.8.2) act from the left and identifications Mσ

⊗
k Mσ ∼= Hom(M−σ, Mσ),

σ = ±, are made so that (x⊗y)(f) = 〈y, f〉x. In fact, Y± takes values in Spin(H(M)⊥〈1〉) =
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ker(ν) (1.4), since both standard and canonical involutions of End(
∧

(M)) have the same
effect on Y+(u) (resp. Y−(v)) and since the involution denoted ? : s 7→ s (1.4) converts 1+ lye
(resp. 1 + dge) to 1− lye (resp. 1− dge), cf. the last observation in (1.1). On the other hand,
the same homomorphism

Y0 : Gmk ×GL(M) −→ GL(
∧

(M))

Y0(t, h) := tdet(h)−1
∧

(h)
(1.8.3)

as in [7, 3.6.3] clearly factors through CL+(H(M)⊥〈1〉) with πY0 = X0pr2, where

X0 : GL(M) −→ GL(M
⊕

M∗⊕ k)

X0(h) :=

 h 0 0
0 h∗−1 0
0 0 1

 ,
(1.8.4)

and since the standard and canonical involutions actually differ only by the conjugation
s 7→ ese, the composite νY0 after all equals the same character ν0 : (t, h) 7→ t2det(h)−1 as in
[7, 3.6.5]; in particular we know that ker(νY0) is a smooth k-group (the assumption faithfully
projective for M being used here). In order to establish the desired smoothness, namely the
part (a) of Theorem 1.5, it suffices therefore to prove the following

1.9. Proposition. The morphisms

Ψ : W(
∧2(M∗)

⊕
M∗]× (Gmk ×GL(M))×W(

∧2(M)
⊕

M ] −→ CL+(H(M)⊥〈1〉)
Ψ((v, g), (t, h), (u, y)) := Y−(v, g)Y0(t, h)Y+(u, y),

Ψ1 : W(
∧2(M∗)

⊕
M∗]×GL(M)×W(

∧2(M)
⊕

M ] −→ SO(H(M)⊥〈1〉)
Ψ1((v, g), h, (u, y)) := X−(v, g)X0(h)X+(u, y)

are open immersions with images Ω, Ω1.

Proof. Calculating the product X−(v, g)X0(h)X+(u, y) =: p shows readily that Ψ1 is mono-
morphic with χ1(p) = det(h). In fact, this yields soon the monomorphicity of Ψ, since
πΨ coincides with Ψ1 modulo pr2 : Gmk × GL(M) → GL(M) and the scalar t equals
χ(Y−(v, g)Y0(t, h)Y+(u, y)), as follows similarly to [7, 3.6.6]. Moreover, such recovery of t
makes the following two statements sufficient to complete our proof:

1◦ any point s in Ω goes to Ω1 by π;

2◦ any point s1 in Ω1 is an image under Ψ1.

Without loss of generality, we may assume s, s1 with value in k, and further the top-wedge∧m(M) trivialized by a base ω; using notation introduced in [7, 1.6].

We prove 1◦. Put t := χ(s) ∈ k∗ and g := −t−1 · ωm−1
− ((s · ω)m−1) ∈M∗, v := t−1 · ωm−2

− ((s ·
ω)m−2) ∈

∧2(M∗), in other words s·ω =: tz with z ∈
∧

(M) expressed so that ω, (−1)mg a ω,
v a ω are the components of top-three degrees; moreover, let h ∗ ∗

b ∗ ∗
f ∗ ∗

 (1.9.1)
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denote the matrix of π(s), namely h ∈ End(M), b ∈ Hom(M, M∗), f ∈ M∗ with sl(x) =
(l(h · x) + d(b(x)) + 〈x, f〉e)s identically in x ∈ M . The last members being operated on ω,
it becomes an easy adaptation of the argument in [7, 3.7] to obtain f = −gh(= −h∗ · g),
b = vh + g ⊗ f . On account of (1.8.2), this converts (1.9.1) to

X−(v, g)

 h ∗ ∗
0 ∗ ∗
0 ∗ ∗

 , (1.9.2)

showing h invertible as claimed.

To prove 2◦, we change notation so that (1.9.1) denotes now s1. So h is invertible by as-
sumption, and from the fact that (1.9.1) transforms an element (h−1 ·x, 0, 0) ∈M

⊕
M∗⊕ k

to (x, b(h−1 · x), 〈x, fh−1〉) and keeps the quadratic form of H(M)⊥〈1〉 invariant follows
〈x, b(h−1 · x)〉 + 〈x, fh−1〉2 = 0 identically in x ∈ M . This says that, if g := −fh−1 ∈ M∗,
the map v := bh−1 + g ⊗ g ∈ Hom(M, M∗) is alternating. Hence we again arrive at (1.9.2),
expressing s1. It remains to convert the latter matrix in (1.9.2) to the form X0(h)X+(u, y).
In fact, we have a more general result as follows (note that it implies det(s′) = α), the ver-
ification of which is straightforward and similar to the argument above to be omitted: If a
matrix s′ of the latter form in (1.9.2) belongs to the full orthogonal group of H(M)⊥〈1〉, it
can be written as diag(1, 1, α)X0(h)X+(u, y) with some α ∈ k, u ∈

∧2(M), y ∈M .

1.10. Calculation of χ(Y+(u, y)Y−(v, g)). Theorem (1.5) being thus established, we
close this section with some incidental observations which anticipate partly the next section.
Again trivializing the top-wedge

∧m(M) = k · ω we call attention to ω acted upon by
Y+(u, y)Y−(v, g). From (1.8.1) follows easily that the degree-m term of Y+(u, y)Y−(v, g) · ω
equals that of Y+(u)Y−(v) · ω − lyY+(u)Y−(v)dg · ω. Extracting the coefficient of ω, which is
χ(Y+(u, y)Y−(v, g)) by definition, is similar to [7, 3.6.7] and yields

χ(Y+(u, y)Y−(v, g)) = δ(u, v)− 〈y ∧ exp(u), g ∧ exp(v)〉, (1.10.1)

where δ(u, v) := 〈exp(u), exp(v)〉 as in [7, 2.3]. Needless to say, (1.10.1) itself is valid
generally, regardless of whether

∧m(M) ∼= k or not. Further the last pairing in (1.10.1)
equals 〈Y−(v)Y+(u) · y, g〉, and supposing (u, v) quasi-invertible with [7, 2.6.1] soon converts
Y−(v)Y+(u) · y to δ(u, v)exp(uv) ∧ y′, where we set

y′ := (1 + uv)−1 · y ∈M, g′ := (1 + vu)−1 · g ∈M∗ (1.10.2)

in general. Since 〈y′, g〉 = 〈y, g′〉, it follows that 〈y ∧ exp(u), g ∧ exp(v)〉 = δ(u, v)〈y′, g〉 =
δ(u, v)〈y, g′〉. This shows

χ(Y+(u, y)Y−(v, g)) = δ(u, v)(1− 〈y′, g〉) = δ(u, v)(1− 〈y, g′〉), (1.10.3)

in view of (1.10.1); the assumption (u, v) quasi-invertible being in practice harmless and
convenient for later calculation. On the other hand, let us imbed M into the direct sum
M
⊕

k and denote the element (0, 1) ∈ M
⊕

k by e; similar conventions apply to M∗ ⊂
M∗⊕ k = M∗⊕ k · e∗ with an identification M∗⊕ k ∼= (M

⊕
k)∗ such that e∗ = pr2 :
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M
⊕

k → k. Then one has exp(u + y ∧ e) = exp(u) ∧ (1 + y ∧ e), exp(v + g ∧ e∗) =
exp(v) ∧ (1 + g ∧ e∗), and it is easy to see that their pairing is just the right-hand side of
(1.10.1). Again using the notation δ we arrive at

χ(Y+(u, y)Y−(v, g)) = δ(u + y ∧ e, v + g ∧ e∗). (1.10.4)

Now (1.10.4) suggests a role played by the Jordan pair (
∧2(M

⊕
k),

∧2(M∗⊕ k)). This
will be exposed in the next section.

2. Imbedding, group germ structure

2.1. An imbedding ι and its Clifford transforms. There exists a morphism H(M)
⊥〈1〉 → H(M

⊕
k) of quadratic modules given by the linear map

ι : M
⊕

M∗⊕ k −→ (M
⊕

k)
⊕

(M∗⊕ k)
ι(x, f, t) := (x + te, f + te∗).

On account of natural identifications (1.1.2), one may describe the induced map C(ι) between
Clifford algebras as the unique homomorphism

C(ι) : End(
∧

(M))
⊗

k k[w] −→ End(
∧

(M
⊕

k)) (2.1.1)

such that C(ι)·((lx+df +te)⊗w) = lx+te+df+te∗ . Furthermore, modulo the obvious inclusion
End(

∧+(M
⊕

k))×End(
∧−(M

⊕
k))→ End(

∧+(M
⊕

k)), the induced map C+(ι) between
even parts is

C+(ι) : End(
∧

(M)) −→ End(
∧+(M

⊕
k))× End(

∧−(M
⊕

k))
C+(ι) · s := C(ι) · (s⊗ 1).

(2.1.2)

Since everything is compatible with scalar extensions, one may consider the matters scheme-
theoretically. We are interested in how C+(ι) transforms the special Clifford group CL+(H(M)
⊥〈1〉). Let us introduce homomorphisms

T+ : W(M) −→ GL(M
⊕

k)

T+(y) :=

(
1 y
0 1

)
,

T− : W(M∗) −→ GL(M
⊕

k)

T−(g) :=

(
1 0
−g 1

)
,

(2.1.3)

T0 : GL(M) −→ GL(M
⊕

k)

T0(h) :=

(
h 0
0 1

)
,

(2.1.4)

where the matrices are relative to the decomposition M
⊕

k and acting from the left.
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2.2. Proposition.
(a) C+(ι) induces a homomorphism

CL+(H(M)⊥〈1〉) −→ CL+(H(M
⊕

k)) (2.2.1)

between special Clifford groups such that

C+(ι) · Y+(u, y) = Y+(u + y ∧ e)Y0(1, T+(y)), (2.2.2)

C+(ι) · Y−(v, g) = Y−(v + g ∧ e∗)Y0(1, T−(g)), (2.2.3)

C+(ι) · Y0(t, h) = Y0(t, T0(h)). (2.2.4)

(b) The induced homomorphism (2.1.1) commutes with the spinor characters; moreover, it
commutes with the functions both denoted χ in (1.7) and in [7, 3.5].

We note that (2.2.1) induces a homomorphism between spin groups also, on account of
(b); in fact between special orthogonal groups as well, since (2.2.1) keeps the imbedded
subgroups Gmk invariant and since (1.5.b), [7, 3.13.b] describe the special orthogonal group as
a faithfully flat and finitely presented quotient of CL+. It will be needless to say that Y+, Y−,
Y0 in the right-hand sides of (2.2.2, 3, 4) should be understood following [7] with its M being
replaced by our M

⊕
k. Moreover, by Remark in [11, p. 31], CL+(H(M

⊕
k)) is generated

as group sheaf by the images of Y+, Y−, Y0; therefore the formulas (2.2.2, 3, 4) are actually
sufficient for establishing part (a), and further for the first part of (b) as well. Now we see from
construction (2.1) that so far as z ∈

∧+(M), z∗ ∈
∧+(M∗) are even, the expressions lz, dz∗ are

invariant under C+(ι), in the sense that one has C+(ι) · lz = l(
∧

(in1) · z) ∈ End(
∧

(M
⊕

k)),
etc.; similarly we have C+(ι) · (lye) = ly(le + de∗), C+(ι) · (dge) = dg(le + de∗). Therefore,
applying C+(ι) to the definitions (1.8.1) soon yields

C+(ι) · Y+(u, y) = Y+(u + y ∧ e)(1 + lyde∗),
C+(ι) · Y−(v, g) = Y−(v + g ∧ e∗)(1 + dgle),

whereas on account of [7, 1.3.2, 3.6.3] with the definition (2.1.3) we have 1 + lyde∗ =
∧

(1 +
y ⊗ e∗) = Y0(1, T+(y)), 1 + dgle =

∧
(1− e⊗ g) = Y0(1, T−(g)). This proves (2.2.2, 3). As for

the remaining (2.2.4) and the last part of (b), they become clear through another description
of C+(ι) below.

2.3. Lemma. C+(ι), constructed in (2.1.2), coincides with the map with components
End(

∧
(M)) → End(

∧+(M
⊕

k)), End(
∧

(M)) → End(
∧−(M

⊕
k)) being the isomor-

phisms of transporting structures through

Θ+ :
∧

(M)
∼−→
∧+(M

⊕
k)

Θ+(z) := z+ + z− ∧ e,
Θ− :

∧
(M)

∼−→
∧−(M

⊕
k)

Θ−(z) := z− + z+ ∧ e
(2.3.1)

(suffixes ± indicating the components relative to the ±-decomposition of the exterior algebra)

Proof. The coincidence of images of lx + df ∈ End(
∧

(M)), for any (x, f) ∈ M
⊕

M∗, is to
be proved. We work in the whole End(

∧
(M

⊕
k)) and relative to the decomposition∧

(M)
⊕∧

(M)
∼−→
∧

(M
⊕

k)
(a, b) 7→ a + b ∧ e
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describe any element of End(
∧

(M
⊕

k)) as two-by-two matrices with entries in End(
∧

(M))
acting from the left. Since (a + b ∧ e)± = a± + b∓ ∧ e = Θ±(a± + b±), and since Θ±((lx +
df ) · (a± + b±)) = (lx + df ) · b± + ((lx + df ) · a±) ∧ e, the transported action of lx + df on∧

(M
⊕

k) is a + b ∧ e 7→ (lx + df ) · b + ((xx + df ) · a) ∧ e. Therefore what we must check
takes of the form

C+(ι) · ((lx + df )⊗ 1) =

(
0 lx + df

lx + df 0

)
. (2.3.2)

Moreover, straightforward calculation shows

lx+te =

(
lx 0
te lx

)
, df+te∗ =

(
df te
0 df

)
,

so that by the characterization of the map C(ι) (2.1.1), we have

C(ι) · ((lx + df + te)⊗ w) =

(
lx + df te

te lx + df

)
. (2.3.3)

We shall prove (2.3.2) by factoring (lx + df )⊗ 1 into ((lx + df )⊗w)(e⊗w)(e⊗ 1); on account
of (2.3.3), it remains to check

C(ι) · (e⊗ 1) =

(
e 0
0 e

)
. (2.3.4)

To see (2.3.4), we may localize to make M =
⊕m

i=1 k · ei free with a base. Let us consider the
previous elements z, zi ∈ End(

∧
(M)) (1.1). Since zi = l(ei)d(e∗i ) by definition, C(ι) · (zi⊗ 1)

has the same expression understood within End((M
⊕

k)). Moreover, since le (= l(e))
anti-commutes with both l(ei) and d(e∗i ), it commutes with C(ι) · (zi ⊗ 1), a fortiori with
C(ι) · (z ⊗ 1). Hence C(ι) · (z ⊗ 1) transforms b ∧ e = lee · b to leze · b = (eze · b) ∧ e, as well
as a ∈

∧
(M) ⊂

∧
(M

⊕
k) to z · a. It follows that

C(ι) · (z ⊗ 1) =

(
z 0
0 eze

)
.

On account of 1− 2z = e, 1− 2eze = e(1− 2z)e = e, we get the desired (2.3.4).

2.4. Big cells. By the big cell of CL+(H(M)⊥〈1〉) (resp. CL+(H(M
⊕

k))), we shall
understand the open subscheme denoted by Ω in (1.7) (resp. in [7, 3.5] with its M being
replaced by our M

⊕
k). A direct consequence of the last statement in (2.2.b) is that the

notion big cell is preserved under the morphism (2.2.1) viewed as a base change. Moreover,
since the right-hand sides of (2.2.2, 3) are commuting products and since the big cell of
CL+(H(M

⊕
k)) is invariant under the multiplications by Y0(1, T+(y)), Y0(1, T−(g)), it fol-

lows ([7, 3.11]) that a product Y+(u, y)Y−(v, g) lies in the big cell of CL+(H(M)⊥〈1〉) if and
only if (u+y∧e, v+g∧e∗) is quasi-invertible in the Jordan pair (

∧2(M
⊕

k),
∧2(M∗⊕ k)).

This fact itself is visible from (1.10.4), however, one would like to proceed further to know
how such Y+(u, y)Y−(v, g) decomposes according to the cell-decomposition (1.9). On account
of [7, 2.6], the job is likely to involve quasi-inverses for the pair (

∧2(M
⊕

k),
∧2(M∗⊕ k))
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decomposed as
∧2(M

⊕
k) ∼=

∧2(M)
⊕

M ,
∧2(M∗⊕ k) ∼=

∧2(M∗)
⊕

M∗. We begin by
introducing various polynomials, in terms of which the desired components will be described.

2.5. The polynomial map ((u, y), (v, g)) 7→ h. For a moment, some notations h, t,
etc. will be specified so that they depend on ((u, y), (v, g)) to represent certain polynomial
or rational maps on (

∧2(M)
⊕

M) × (
∧2(M∗)

⊕
M∗). Possible scalar extensions k → R

should be understood as well, however, apparent and harmless restrictions to k-valued points
will be made tacitly. This being said, we define

h := 1 + uv − u(g)⊗ g + y ⊗ v(y) + (〈y, g〉 − 2)y ⊗ g ∈ End(M) (2.5.1)

for all (u, y) ∈
∧2(M)

⊕
M , (v, g) ∈

∧2(M∗)
⊕

M∗. In the case where (u, v) is quasi-
invertible, i.e., 1 + uv is invertible (see [7, 1.5]), straightforward calculation shows that h
factors as

h = (1 + uv)(1 + y′ ⊗ v(y))(1 + y′′ ⊗ g)
= (1 + y ⊗ g′′)(1− u(g)⊗ g′)(1 + uv),

(2.5.2)

where y′ ∈ M , g′ ∈ M∗ are as in (1.10.2) and now y′′ := −u(g′) + (〈y′, g〉 − 2)y′ ∈ M ,
g′′ := v(y′)+(〈y, g′〉−2)g′ ∈M∗. Besides 〈y′, g〉 = 〈y, g′〉, we have 〈y′, v(y)〉 = 〈y, vu(y)〉 = 0,
〈u(g), g′〉 = 〈uv(g), g〉 = 0 by (1.10.2) with [7, 1.5.5], and using these shows 1 + 〈y′′, g〉 =
(1−〈y′, g〉)2, 1+ 〈y, g′′〉 = (1−〈y, g′〉)2; since det(1+x⊗ f) = 1+ 〈x, f〉 in general [7, 1.3.2],
it follows that

det(h) = det(1 + uv)(1− µ)2 with µ := 〈y′, g〉 = 〈y, g′〉. (2.5.3)

On account of [7, 2.6.2] and of (1.10.3, 4), this amounts to

det(h) = t2 with t := χ(Y+(u, y)Y−(v, g)) = δ(u + y ∧ e, v + g ∧ e∗), (2.5.4)

which now holds for all (u, v) by density. Therefore, that h is invertible is another equivalent
condition to the previous: Y+(u, y)Y−(v, g) is in the big cell ⇔ (u + y ∧ e, v + g ∧ e∗) is
quasi-invertible.

2.6. Rational maps ((u, y), (v, g)) 7→ x, f . Supposing h invertible we set

x := h−1 · (u(g) + (1− 〈y, g〉)y) ∈M,
f := h∗−1 · (− v(y) + (1− 〈y, g〉)g) ∈M∗.

(2.6.1)

If, in addition, (u, v) is quasi-invertible then the scalar 1−µ is invertible by (2.5.3) and again
straightforward verifications using (2.5.2) prove

x = (1− µ)−1 · (u(g′) + y′), f = (1− µ)−1 · (−v(y′) + g′). (2.6.2)

This amounts to h · (u(g′) + y′) = (1 − µ) · (u(g) + (1 − 〈y, g〉)y), etc., however, calculating
each image h · u(g′), h · y′, h∗ · v(y′), h∗ · g′ with the aid of (2.5.2) in fact precedes (2.6.2) and
yields similar relations

h−1 · y = (1− µ)−2 · (y′ + µu(g′)), h∗−1 · g = (1− µ)−2 · (g′ − µv(y′)) (2.6.3)
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as well. Combining (2.6.2) with (2.6.3) shows readily

h−1 · y = (1− µ)−1 · (x− u(g′)), h∗−1 · g = (1− µ)−1 · (f + v(y′)), (2.6.4)

h−1 · y − 〈y, f〉x = (1− µ)−1 · y′, h∗−1 · g − 〈x, g〉f = (1− µ)−1 · g′. (2.6.5)

Moreover, since 〈u(g′) + y′,−v(y) + (1 + 〈y, g〉)g〉 is easily seen to be (1− µ)〈y, g〉, we get

〈x, h∗ · f〉 = 〈h · x, f〉 = 〈y, g〉 (2.6.6)

from (2.6.1) and (2.6.2). Note that (2.6.6) holds for all (u, v) by density.

2.7. Rational maps ((u, y), (v, g)) 7→ U, V . Always supposing h invertible we set

U :=
∧2(h)−1 · (u + uvu + uv(y) ∧ y − u(g) ∧ y) ∈

∧2(M),

V :=
∧2(h∗)−1 · (v + vuv + g ∧ vu(g) + g ∧ v(y)) ∈

∧2(M∗).
(2.7.1)

Recall [7, 1.5] that composites like uvu are taken under identifications
∧2(M)⊂Hom(M∗, M),

etc. Moreover, since
∧2(h)·U = hUh∗,

∧2(h∗)·V = h∗V h by [7, 1.4.6] and since h(x⊗x)h∗ =
(h·x)⊗(h·x), h∗(f⊗f)h = (fh)⊗(fh) obviously, it becomes straightforward after sandwiching
members between h and h∗ to verify

U = (u + y ⊗ y)h∗−1 − x⊗ x = h−1(u− y ⊗ y) + x⊗ x,
V = (v − g ⊗ g)h−1 + f ⊗ f = h∗−1(v + g ⊗ g)− f ⊗ f.

(2.7.2)

In the case where (u, v) is quasi-invertible, we have

h−1(y ⊗ y) = (1− µ)−1 · (x⊗ y − u(g′)⊗ y),
(g ⊗ g)h−1 = (1− µ)−1 · (g ⊗ f + g ⊗ v(y′))

by (2.6.4), while (2.6.2) shows u(f) = x− (1−µ)−1 ·y, v(x) = −f +(1−µ)−1 ·g and x⊗u(f)
(resp. v(x)⊗ f) is equal to the composite −(x⊗ f)u (resp. v(x⊗ f)), whence

x⊗ x = −(x⊗ f)u + (1− µ)−1 · x⊗ y,
f ⊗ f = −v(x⊗ f) + (1− µ)−1 · g ⊗ f.

Therefore (2.7.2) yields

U = (h−1 − x⊗ f)u + (1− µ)−1 · u(g′)⊗ y,
V = v(h−1 − x⊗ f)− (1− µ)−1 · g ⊗ v(y′).

(2.7.3)

Moreover, we use (2.7.2) to calculate U(g) and V (y); on account of (2.6.3), (2.6.2) the result
is U(g) = (1− µ)−1 · u(g′), V (y) = (1− µ)−1 · v(y′), however, we proceed further to

h−1 · y − 〈y, f〉x = −U(g) + x, h∗−1 · g − 〈x, g〉f = V (y) + f, (2.7.4)

with aid of (2.6.2), (2.6.5). Note that (2.7.4) holds for all (u, v) by density.
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2.8. Proposition. Let (u, y) ∈
∧2(M)

⊕
M , (v, g) ∈

∧2(M∗)
⊕

M∗, and put

a := u + y ∧ e ∈
∧2(M

⊕
k), b := v + g ∧ e∗ ∈

∧2(M∗⊕ k). (2.8.1)

For (a, b) to be quasi-invertible in the Jordan pair (
∧2(M

⊕
k),
∧2(M∗⊕ k)), it is necessary

and sufficient that the endomorphism h ∈ End(M) defined in (2.5) is invertible. In that case,
the quasi-inverses are given by

ab = U + (h−1 · y − 〈y, f〉x) ∧ e =
∧2 (T−(g)) · (U + x ∧ e),

ba = V + (h∗−1 · g − 〈x, g〉f) ∧ e∗ =
∧2 (T+(y)∗) · (V + f ∧ e∗),

(2.8.2)

with x ∈ M , f ∈ M∗, U ∈
∧2(M), V ∈

∧2(M∗) defined in (2.6), (2.7), and T± in (2.1);
moreover, the endomorphism 1 + ab ∈ End(M

⊕
k) takes the form

1 + ab = T+(y)−1T−(f)T0(h)T+(x)T−(g)−1. (2.8.3)

Proof. The first statement has been observed in (2.5). The remaining involve with linear
maps intertwining M

⊕
k and M∗⊕ k, e.g.

∧2(M
⊕

k) ⊂ Hom(M∗⊕ k,M
⊕

k), and
similarly to (2.1.3, 4) we shall represent them as two-by-two matrices acting from the left.
An immediate consequence of the rule [7, 1.4.1] is that

a = u + y ∧ e =

(
u y
−y 0

)
, b = v + g ∧ e∗ =

(
v g
−g 0

)
. (2.8.4)

Matrices for U +x∧e, V +f ∧e∗ are similar, and from [7, 1.4.6] with the rules of composition
like gU = −U(g), etc., follow the second equalities in (2.8.2) as a consequence of (2.7.4).
Moreover, 1 + ab is at present supposed invertible and describing ab = (1 + ab)−1a, ba =
b(1 + ab)−1 [7, 1.5]; so the first equalities in (2.8.2) amount to

(1 + ab)−1a =

(
U x′

−x′ 0

)
, b(1 + ab)−1 =

(
V f ′

−f ′ 0

)
, (2.8.5)

where x′ := h−1 · y− 〈y, f〉x, f ′ := h∗−1 · g− 〈x, g〉f . In order to resolve (1 + ab)−1, we begin
by proving (2.8.3). From (2.8.4) follows

1 + ab =

(
1 + uv − y ⊗ g u(g)

v(y) 1− 〈y, g〉

)
,

and its easy modification shows(
1 y
0 1

)
(1 + ab)

(
1 0
−g 1

)
=

(
h u(g) + (1− 〈y, g〉)y

v(y)− (1− 〈y, g〉)g 1− 〈y, g〉

)
.

The last form offers a posteriori motivations for the definitions (2.5.1), (2.6.6), and may be
rewritten in the form

=

(
h h · x

−h∗−1 · f 1− 〈h · x, f〉

)
=

(
1 0
−f 1

)(
h 0
0 1

)(
1 x
0 1

)
.
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Combining these proves (2.8.3), and it becomes now straightforward to invert 1 + ab. Note,
however, that so far as our proof is concerned, (u, v) may be supposed quasi-invertible by
density. In that case (2.6.2) gives 1 + 〈x, g〉 = 1 + 〈y, f〉 = (1 − µ)−1, so we invert the
right-hand side of (2.8.3) by grouping the external two products; through calculation with
(2.6.4) and −〈h−1 · y, g〉+ (1− µ)−2 = (1− µ)−1, cf. (2.6.3), the result is

(1 + ab)−1 =

(
h−1 − x⊗ f −(1− µ)−1 · u(g′)

−(1− µ)−1 · v(y′) (1− µ)−1

)
.

Now the desired (2.8.5) follows as a consequence of (2.7.3), (2.6.5).

2.9. More calculation. Returning to (2.4), we consider the product Y+(u, y)Y−(v, g),
supposed in the big cell of CL+(H(M)⊥〈1〉), and to be decomposed along the cell-decomposi-
tion (1.9). Its image in CL+(H(M

⊕
k)) under C+(ι) equals

C+(ι) · (Y+(u, y)Y−(v, g)) =

= Y0(1, T+(y))Y+(a)Y−(b)Y0(1, T−(g)) (by (2.2.2, 3), (2.8.1))

= Y0(1, T+(y))Y−(ba)Y0(t, 1 + ab)Y+(ab)Y0(1, T−(g)) (by [7, 2.6.1])

with t as in (2.5.4), while on account of commutation relations Y0(1, T+(y))Y−(ba) = Y0(1,
T+(y))Y−(V +f∧e∗), Y+(ab)Y0(1, T−(g)) = Y0(1, T−(g))Y+(U +x∧e), as follows from [7, 3.11]
with (2.8.2), and of a consequence Y0(1, T+(y))Y0(t, 1 + ab)Y0(1, T−(g)) = Y0(1, T−(f))Y0(t,
T0(h))Y0(1, T+(x)) of (2.8.3), we may proceed further to

= Y−(V + f ∧ e∗)Y0(1, T−(f))Y0(t, T0(h))Y0(1, T+(x))Y+(U + x ∧ e)

= C+(ι) · (Y−(V, f)Y0(t, h)Y+(U, x)).

Since C+(ι) is a monomorphism, this gives the desired decomposition. We close this section
by summarizing the results in

2.10. Theorem. The following conditions on a pair (u, y) ∈
∧2(M)

⊕
M , (v, g) ∈

∧2(M∗)⊕
M∗ are equivalent:

(i) Y+(u, y)Y−(v, g) lies in the open subscheme Ω ⊂ CL+(H(M)⊥〈1〉) (see (1.7));

(ii) (u+y∧e, v+g∧e∗) is quasi-invertible in the Jordan pair (
∧2(M

⊕
k),
∧2(M∗⊕ k));

(iii) the endomorphism h ∈ End(M) (see (2.5)) is invertible.

In fact, the scalars χ(Y+(u, y)Y−(v, g)) and δ(u + y ∧ e, v + g ∧ e∗) are equal, say to t, and
one has det(h) = t2. Furthermore under these equivalent conditions, one has

Y+(u, y)Y−(v, g) = Y−(V, f)Y0(t, h)Y+(U, x) (2.10.1)

with x ∈M , f ∈M∗, U ∈
∧2(M), V ∈

∧2(M∗) being defined in (2.6), (2.7).



H. Ikai: Spin Groups (Odd Rank Case) 391

3. Root data, reductivity

3.1. A root datum R and its variants. The property reductive is still waiting for
establishment. We shall subsume it to constructing déploiements [4], and turn attention for
a moment to root data. Let X denote the same Z-module as in [7, 4.1], which is free of rank
m + 1 with a base:

X = Zε0 ⊕ Zε1 ⊕ Zε2 ⊕ · · · ⊕ Zεm (3.1.1)

and dual to X∨ =
⊕m

i=0 Zε∨i with the pairing denoted 〈 , 〉 : X × X∨ → Z, 〈εi, ε
∨
j 〉 = δij

(Kronecker’s delta). Now let Φ ⊂ X denote the subset consisting of 2m2-elements

αij := εi − εj, αji := −εi + εj,
βij := εi + εj, βji := −εi − εj,
βi := εi, β−i := −εi,

(3.1.2)

where 1 ≤ i < j ≤ m, and ?∨ : Φ
∼→ Φ∨ ⊂ X∨ the bijection such that

α∨ij := ε∨i − ε∨j , α∨ji := −ε∨i + ε∨j ,
β∨ij := ε∨0 + ε∨i + ε∨j , β∨ji := −ε∨0 − ε∨i − ε∨j ,
β∨i := ε∨0 + 2ε∨i , β∨−i := −ε∨0 − 2ε∨i .

(3.1.3)

A straightforward verification proves that the so modified quadruple

R := (X, Φ, X∨, Φ∨) (3.1.4)

is a reduced root datum, and that the m roots

εi − εi+1 (1 ≤ i ≤ m− 1) and εm(= βm) (3.1.5)

(understood as the singleton εm when m = 1) form a system of simple roots. In particular, R
is of type Bm (:= A1 when m = 1). Analogously to the Dm-case [7, 4.2] we need the variants
ss(R) → R → scon(R) induced by R, and their constructions [4, XXI, 6.5, 6.6] soon show
that the previous description [7, 4.2] goes without any changes at the level of underlying
modules and linear maps. A change has occurred in the definition of (co)roots, but within
mere reinterpretations of notations. Among them are the fundamental weights ($i)1≤i≤m,
which we now understand relative to the simple roots (3.1.5); then easy verification shows
$i = ε1 + · · ·+ εi (1 ≤ i ≤ m− 1) and $m = (ε1 + · · ·+ εm)/2 (the same formulas as in §4.5
(VI) (p. 203) of [2, Ch. V]), and modifies the description [7, 4.2.3] of the map f : X → X̃
(=
⊕m

i=1 Z$i, the weight lattice) underlying R→ scon(R) to

f

(
m∑

i=0

ξiεi

)
=

m−1∑
i=1

(ξi − ξi−1)$i + (ξ0 + 2ξm)$m. (3.1.6)

In fact, ss(R) is also replaceable by ad(R), the adjoint datum, since the Z-module de-
noted X1(=

⊕m
i=1 Zεi) in [7, 4.2.4] coincides with our root lattice Q; recall that ad(R) =

(Q, Φ, P∨, Φ∨) with P∨ the coweight lattice, which is by definition the Z-submodule dual to Q
of the Q-extension Q∨

Q of the coroot lattice Q∨ ⊂ X∨. Since m elements ε?
i := 1

2
ε∨0 +ε∨i ∈ Q∨

Q
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form a base of P∨ and redescribe the coroots (3.1.3) as ±ε?
i ± ε?

j , ±2ε?
i , one may con-

firm now an expected feature of ad(R) being dual to the simply connected data of type
Cm. So we prefer ad(R) to ss(R) in the following, but reserve the notation X1 and write
ad(R) = (X1, Φ, P∨, Φ∨) alternatively, in order to remember certain resemblances with the
Dm-case [7].

3.2. Déploiements. Let us return to the group side. We suppose the k-module M free
with a base

e = (e1, e2, · · · , em) (3.2.1)

(the previous notation e := (0, 1) ∈M
⊕

k will not be used in sequel). We denote by Dk(X),
etc. the diagonalizable k-tori associated to X, etc., and follow [7, 4.3] to construct inclusions

ηe : Dk(X) −→ Gmk ×GL(M)
ηe(s) := (s(ε0),

∑m
i=1 s(εi)ei ⊗ e∗i ),

η1
e : Dk(X1) −→ GL(M)

η1
e(s1) :=

∑m
i=1 s1(εi)ei ⊗ e∗i .

(3.2.2)

Moreover, ηe composed with Dk(f) : Dk(X̃)→ Dk(X), cf. (3.1.6), is denoted by η̃e and soon
described in terms of our fundamental weights as

η̃e : Dk(X̃) −→ Gmk ×GL(M)
η̃e(s̃) := (s̃($m), he(s̃)) ,

(3.2.3)

where he(s̃) := s̃(2$m)(= s̃($m)2) if m = 1 and

he(s̃) := s̃($1)e1 ⊗ e∗1 +
m−1∑
i=2

s̃($i −$i−1)ei ⊗ e∗i + s̃(2$m −$m−1)em ⊗ e∗m

if m ≥ 2. Note that he, η̃e, as well as ηe, η1
e , are actually the same maps as in [7, 4.3] with

the appearance of he changed by the manner of setting ($i). Composing ηe, η1
e , η̃e with Y0

or X0 thus yields inclusions

De := Y0 ◦ ηe : Dk(X) −→ CL+(H(M)⊥〈1〉),
D1

e := X0 ◦ η1
e : Dk(X1) −→ SO(H(M)⊥〈1〉),

D̃e := Y0 ◦ η̃e : Dk(X̃) −→ Spin(H(M)⊥〈1〉).
(3.2.4)

After obvious modifications, the commutative diagram (4.3.6) in [7] yields now a similar one
for our group schemes. With these setups, we have

3.3. Theorem.
(a) The k-group schemes G := CL+(H(M)⊥〈1〉),

G1 := SO(H(M)⊥〈1〉), and G̃ := Spin(H(M)⊥〈1〉) are all reductive.

(b) In the case where M is free with a base e = (e1, . . . , em), the image T := im(De)
(resp. T1 := im(D1

e), T̃ := im(D̃e)) is a maximal torus of G (resp. G1, G̃) and the set
Φ ⊂ X (resp. Φ ⊂ X1, f(Φ) ⊂ X̃) is the root system of G (resp. G1, G̃) relative to T
(resp. T1, T̃ ), in the sense of [4, XIX, 3.6].
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(c) The datum consisting of the subtorus T (resp. T1, T̃ ) equipped with the isomorphism
De (resp. D1

e , D̃e), and the root system Φ (resp. Φ, f(Φ)) above, is a déploiement of G
(resp. G1, G̃) relative to T (resp. T1, T̃ ), in the sense of [4, XXII, 1.13]. Further the
corresponding root datum is equal to R (resp. ad(R), scon(R)).

(d) The homomorphisms G̃
incl.→ G

π→ G1 are compatible with these déploiements and corre-
spond to the canonical morphisms ad(R)→ R→ scon(R) of root data.

In order to prove the part (a), we shall verify the criterion (iii) in Proposition 1.12 of [4, XIX];
this gives the maximalities of tori as well, and in fact has been so used in the hyperbolic case
[7]. Therefore in the whole proof of our theorem the same format of reasoning as [7] applies.
Let us proceed along [7, 4.4–4.6] mutatis mutandis. The first step has no difficulty, where
the Lie algebras g := Lie(G), etc. are decomposed under Dk(X), etc. and yield an expected
appearance of roots; all root spaces being isomorphic to k, and the fixed parts g0, etc. equaling
t := Lie(T ), etc. A non-trivial step is involved with root subgroups. In particular, we need
a counterpart of [7, 4.5] for the roots β±i, which serves the Weyl elements required in the
criterion [4, XIX, Prop. 1.12 (iii)] on the one side, and relates the coroots to our groups on the
other side. This will be done as follows: Introducing an index ρ with 2m values ±1, · · · ,±m,
we define homomorphisms

qρ : Gak −→ CL+(H(M)⊥〈1〉)(= G)
qi(λ) := Y+(0, λei) = 1 + λl(ei)e,

q−i(λ) := Y−(0,−λe∗i ) = 1 + λd(e∗i )e,
(3.3.1)

where the index i takes values 1, . . . ,m. By construction qρ is monomorphic and normalized
by T ∼= Dk(X) with multiplier βρ; moreover, it factors through Spin(H(M)⊥〈1〉) = G̃ and,
together with the composite q1

ρ := π ◦ qρ with the vector representation, furnishes the wanted
root subgroups. Let us consider a morphism

Bρ : Gak ×Dk(X)×Gak −→ G
Bρ(λ, s, µ) := q−ρ(λ)De(s)qρ(µ),

(3.3.2)

which is monomorphic by construction and by (1.9). In addition we consider its obvious
modifications B1

ρ : Gak × Dk(X1) × Gak → G1 (with q±ρ, De replaced by q1
±ρ, D1

e), B̃ρ :

Gak ×Dk(X̃) ×Gak → G̃ (with De replaced by D̃e). The lemma below is then the desired
counterpart of [7, 4.5]. Since the concluding arguments in [7, 4.6] are adapted to our case
obviously, this yields an actual finish of our proof.

3.4. Lemma.
(a) For a product qρ(λ)q−ρ(µ) to lie in the image of the morphism Bρ, it is necessary and

sufficient that the scalar 1 + λµ is invertible. In that case, one has

qρ(λ)q−ρ(µ) = Bρ

(
µ

1+λµ
, β∨ρ (1 + λµ), λ

1+λµ

)
. (3.4.1)

Furthermore similar statements hold for the q1
ρ, B

1
ρ’s and the qρ, B̃ρ’s.
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(b) The k-valued point qρ(1)q−ρ(−1)qρ(1) of CL+(H(M)⊥〈1〉) normalizes both im(De) and
im(D̃e), and induces on Dk(X) (resp. on Dk(X̃)) the automorphism corresponding
to the symmetry x 7→ x − 〈x, β∨ρ 〉βρ in X (resp. a similar one corresponding to a

symmetry in X̃). Similar statements hold for the k-valued point q1
ρ(1)q

1
−ρ(−1)q1

ρ(1) of
SO(H(M)⊥〈1〉), which normalizes im(D1

e).

Proof. As had been mentioned in [7, 4.5], the part (b) is a formal consequence of formulas
of the type (3.4.1). Moreover, taking inverses with B−i(λ, s, µ) = Bi(−µ, s−1,−λ)−1, etc. re-
duces the part (a) to the case where ρ = i positive, and it is needless to say that the scalar
λ, µ may be supposed in k harmlessly. Now let

y := λei ∈M, g := −µe∗i ∈M∗, (3.4.2)

so that qi(λ) = Y+(0, y), q−i(µ) = Y−(0, g) by (3.3.1). A special case of (2.10), applied to the
pair ((0, y), (0, g)), yields the following statement:

For Y+(0, y)Y−(0, g)(= qi(λ)q−i(µ)) to lie in Ω, it is necessary and sufficient that the scalar
t := 1− 〈y, g〉, cf. (1.10.3), is invertible; in that case one has

Y+(0, y)Y−(0, g) = Y−(0, t−1g)Y0(t, h)Y+(0, t−1y), (3.4.3)

where h := 1 + (〈y, g〉 − 2)y ⊗ g ∈ End(M), cf. (2.5.1).

Since 〈y, g〉 = −λµ by (3.4.2), we have t = 1 + λµ; moreover, it follows that

h = 1 + (λµ + 2)λµei ⊗ e∗i
= 1 + (t2 − 1)ei ⊗ e∗i =

∑
κ 6=i eκ ⊗ e∗κ + t2 · ei ⊗ e∗i .

This reads (t, h)=ηe(β
∨
i (t)) by the definitions (3.1.3) and (3.2.2), whence Y0(t, h)=De(β

∨
i (t))

by (3.2.4). Therefore (3.4.3) is actually same as (3.4.1), and the Ω above may be shrunk to
im(Bi). So modified statement remains valid clearly when (Y±, Y0, q±i, ηe, De, Bi) (resp. (ηe,
De, Bi)) is replaced by (X±, X0, q

1
±i, η

1
e , D

1
e , B

1
i ) (resp. (η̃e, D̃e, B̃i)). This completes the proof.
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