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Abstract. We give a construction leading to new geometries from Steiner systems
or arbitrary rank two geometries. Starting with an arbitrary rank two residu-
ally connected geometry Γ, we obtain firm, residually connected, (IP )2 and flag-
transitive geometries only if Γ is a thick linear space, the dual of a thick linear
space or a (4, 3, 4)-gon. This construction is also used to produce a new firm and
residually connected rank six geometry on which the Mathieu group M24 acts flag-
transitively.

1. Introduction

Let S := S(t, k, v) be a Steiner system. We associate to S an incidence structure Γ(S) of
rank t + 1 (see Construction 2 in Section 3).

When t = 2, we define Γ(S) not only for Steiner systems but more generally for an
arbitrary rank two geometry S. In the latter case, we show that if Γ(S) is a firm, residually
connected, (IP )2 and flag-transitive geometry then S is either a linear space or a (4, 3, 4)-gon.

For t > 2, we classify all Steiner systems S = S(t, k, v) such that Γ(S) is a firm, residually
connected, (IP )2 and flag-transitive geometry.

When applied to the well known series of Steiner systems associated to the Mathieu
groups Mi with i = 21, 22, 23 and 24, our construction produces a family of geometries for
the Mathieu groups. The last element of this family is a rank six geometry on which the
Mathieu group M24 acts flag-transitively. It is the first rank six firm, residually connected,
flag-transitive and (IP )2 geometry known for the Mathieu group M24.
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The paper is organised as follows. In Section 2, we give some definitions and fix notation.
In Section 3, we describe our construction. In Section 4, we apply it to Steiner systems
S(2, k, v) and more generally to arbitrary rank two geometries. In Section 5, we look at
Steiner systems S(t, k, v) with 3 ≤ t < k.

Acknowledgements. We would like to thank Francis Buekenhout for many interesting
discussions we had together during the writing of this paper. We also thank Antonio Pasini
who suggested several improvements for this paper.

2. Some definitions and notation

Most of the following ideas arise from [18] (see also [5], Chapter 3 or [16]).
An incidence structure over a finite set I is a triple Γ = (X, t, ∗) where X is a set of

objects, t : X → I is a type function and ∗ is a symmetric incidence relation on X such that
two objects of the same type are incident if and only if they are equal. A flag is a set of
pairwise incident elements of Γ and a chamber is a flag of type I. An incidence structure Γ
is a geometry provided that every flag is contained in a chamber. Moreover, we say that Γ is
firm (resp. thick) provided that every flag of corank 1 is contained in at least two (resp. at
least three) chambers.

The residue of a flag F of Γ is the incidence structure (XF , ∗F , tF ) over the set of types
I\t(F ) where XF is the set of elements of Γ not in F and incident to F . Moreover ∗F and
tF are the restrictions of ∗ and t to XF and I\t(F ). If Γ is a geometry, then obviously
ΓF is also a geometry. A geometry Γ is residually connected provided that every residue of
rank at least two of Γ has a connected incidence graph. Observe that we regard a geometry
as the residue of its empty flag and therefore residual connectedness implies connectedness.
Moreover, when dealing with geometries of rank two, ‘connected’ and ‘residually connected’
mean the same.

Let G ≤ Aut(Γ) be a group of automorphisms of Γ. We say that G acts flag-transitively
on Γ (also that Γ is flag-transitive) provided that G acts transitively on the set of all chambers
of Γ, hence also on the set of all flags of any given type J where J is a subset of I. Moreover,
as in [7], we say that G acts locally 2-transitively on Γ and we write (2T )1 for this provided
that for each flag F of corank 1 of Γ, the stabilizer GF of F in G acts two-transitively on the
residue ΓF . If we do not precise what G is, we assume G = Aut(Γ).

We refer to [5], Chapter 3, for the definition of diagram of a geometry.
We say that a geometry Γ satisfies the intersection property of rank two (IP )2 provided

that every rank two residue of Γ is either a partial linear space or a generalized digon.
If an incidence structure Γ is a firm, residually connected, (IP )2 and flag-transitive

geometry we say that Γ is an A-geometry. The motivation for this notation is that if Γ is an
A-geometry, then it satisfies a series of axioms, namely, it is a geometry, it is firm, residually
connected, (IP )2 and flag-transitive. Therefore A denotes this set of axioms.

Let Γ be a rank two geometry with points and lines and such that every line is incident
to s+1 points and every point is incident to t+1 lines. An antiflag of Γ is a set consisting of
a point p and a line L of Γ such that p and L are not incident in Γ. Given an antiflag (p, L) of
Γ, we denote by α(p, L) the number of points on L collinear with p in the collinearity graph
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of Γ. If for all antiflags (p, L) of Γ, the number α(p, L) is a constant α(6= 0), we say that Γ
is a partial geometry.

3. The construction

Let S(t, k, v) be a Steiner system, i.e. a set Ω of v points, with subsets of k points of Ω called
blocks and such that given any t points of Ω, there is exactly one block containing them.
Obviously, we have t ≤ k ≤ v. Observe that when t = 2, the S(2, k, v) is nothing else but a
linear space where all lines have k points.

We recall the following construction due to Francis Buekenhout to produce a geometry
Γ of rank t.

Construction 1. [2] Take a Steiner system S(t, k, v). Let Γ be an incidence structure of
rank t defined as follows. Elements of type i are the i-sets of points for i = 1, . . . , t − 1.
Elements of type t are the blocks of the S(t, k, v). Incidence is symmetrized inclusion.

It is obvious that for any Steiner system S(t, k, v), the incidence structure obtained using
Construction 1 is a firm and residually connected geometry provided that t < k and v−t+1

k−t+1
≥ 2.

The diagram of Γ is easy to compute. We give it below. The symbol S denotes the Steiner
system S(2, k − t + 1, v − t + 1).

t t t t t t
1 1 1 1 k − t + 1 v−t+1

k−t+1
− 1

c S

Taking the Steiner systems S(5, 6, 12) and S(5, 8, 24), Buekenhout produced, for instance,
geometries for the Mathieu sporadic groups M11, M12, M22, M23 and M24. Their diagrams are
given in Figure 1.

M11 t t t t
1 1 2 3

c Af

M12 t t t t t
1 1 1 2 3

c Af

M22 t t t
1 4 4

c

M23 t t t t
1 1 4 4

c

M24 t t t t t
1 1 1 4 4

c

Figure 1. Buekenhout geometries associated to the Mathieu groups
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We now give a construction to produce an incidence structure of rank t + 1 from a Steiner
system S(t, k, v).

Construction 2. Take a Steiner system S = S(t, k, v) defined on a set Ω of v points. Let
Γ(S) be an incidence structure of rank t + 1 defined as follows.
Elements of type i are the i-sets of points for i = 1, . . . , t − 2. Elements of type t are the
blocks of S. Elements of type t− 1 are ordered pairs consisting of a (t− 1)-set xt−1 of points
together with a (k−t+1)-set xk−t+1 of points such that xt−1∪xk−t+1 is a block of S. Elements
of type t + 1 are the elements of a copy Ω1 of Ω. Incidence is symmetrized inclusion except
for the following elements.

• An element of type t + 1 and an element of type i (with i = 1, . . . , t− 2, t) are incident
if and only if they are disjoint as subsets of the set Ω.

• An element p of type t+1 is incident with an element (xt−1, xk−t+1) of type t−1 if and
only if p ∈ xk−t+1.

• An element B of type t is incident with an element (xt−1, xk−t+1) of type t − 1 if and
only if xt−1 ⊂ B and xk−t+1 ∩B = ∅.

As pointed out by Antonio Pasini, this construction is an enrichment of a construction due
to Thomas Meixner [14].

Lemma 1. Γ(S) is a firm geometry if and only if k ≥ t + 1 and v−t+1
k−t+1

≥ 3.

Proof. Suppose that Γ(S) is a firm geometry. Then there are at least three blocks containing
a set of t− 1 points. Hence v−t+1

k−t+1
≥ 3 and k − t + 1 ≥ 2.

Suppose now that k ≥ t + 1 and v−t+1
k−t+1

≥ 3. We have to check that every flag of Γ(S)
is contained in at least two chambers. Let us first show that every flag is contained in at
least one chamber. Suppose that F is a maximal flag of Γ(S) not contained in a chamber of
Γ(S). Then, F must contain an element p of type t + 1. Therefore the residue of p in Γ(S)
is an incidence structure but not a geometry. Obviously, F\{p} must contain an element of
type 1, say x1. Therefore the residue of {p, x1} in Γ(S) is an incidence structure but not a
geometry. We use the same argument repeatedly to arrive at the conclusion that F must
contain an element of type i for each i = 1, . . . , t−1, t+1. Given such a flag, it determines a
block B of the S(t, k, v). Given a block B in a S(t, k, v) and a set T of t−1 points of B, there
are exactly v−t+1

k−t+1
− 1 blocks B′ such that B ∩ B′ = T . Hence there are v−t+1

k−t+1
− 1 elements of

type t incident to F . By hypothesis, v−t+1
k−t+1

≥ 3 and thus F is not maximal, a contradiction.
It is now easy to see that every flag of corank 1 is contained in at least two chambers and
thus that Γ(S) is a firm geometry. 2

We will see in the next section that residual connectedness does not hold every time.

4. The case where t = 2

In this case, the Steiner system S = S(2, k, v) is a linear space and Γ(S) is an incidence
structure of rank three. Let us deal with the case of an arbitrary rank two geometry and
define our construction for such a geometry.
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4.1. Construction 2 generalized in rank two

Let S be a rank two geometry. We may assume without loss of generality that S = (P ,L,∼)
where P and L denote the points and lines of S, i.e. the elements of one type and the other.
The elements of L are subsets of the point-set P . The incidence relation ∼ is inclusion.
Observe that L is a multiset in the sense that the same subset of the point-set may appear
several times in L.

Construction 3. Let Γ(S) be an incidence structure of rank 3 defined as follows.
Elements of type 1 (resp. 2, 3) are the points (resp. lines, flags of size 2) of S. Incidence is
defined as follows.

• A flag C = (p, L) is incident with a line L′ if and only if L ∩ L′ = p.

• A flag C = (p, L) is incident with a point p′ if and only if p′ ∈ L and p′ 6= p.

• A point p and a line L are incident if and only if p /∈ L.

As Francis Buekenhout mentioned to us, this construction was first used by Van Nypelseer
on projective planes (see [15]). It gave rise to a family of geometries of type Af.Af∗ (see [13])
that is also available in this paper in Section 4.2.

In order to produce a firm geometry with Construction 3, we readily see that S must be
a thick geometry. Hence we now assume that S is thick.

It is natural to ask what are the rank two geometries for which Construction 3 gives an
A-geometry in the sense of Section 2. It is obvious that if we take as S a generalized digon,
the set of elements of type 2 of Γ(S)p is empty for any point p ∈ P . So the incidence structure
we get is not an A-geometry.

The following lemma is obvious.

Lemma 2. If S is a partial linear space and S∗ is its dual, then Γ(S) ∼= Γ(S∗).

Observe that the condition for S to be a partial linear space is needed in Lemma 2. Indeed,
take the Fano plane PG(2, 2). Construct a geometry S of rank two in the following way: the
points of S are the points of PG(2, 2). The lines of S are the lines of PG(2, 2) taken twice.
Incidence is symmetrized inclusion. Obviously, S is a geometry which is not a partial linear
space. In that case, if we take a point p′ and a flag C = (p, L) of S such that p′ ∈ L and
p′ 6= p, we have p′ ∼ C but | p′∗ ∩ p∗ |= 2 and thus p′∗ 6∼ C∗.

We recall that the point-diameter (resp. line-diameter) of S is the length of the longest
path from a point (resp. line) of S to any other element of S in the incidence graph of S.
The gonality is equal to half the girth of the incidence graph of S.

Following roughly [3], we call S a (dp, g, dl)-gon provided that the point-diameter (resp.
gonality, line-diameter) of S is equal to dp (resp. g, dl).

Let us give an example which shows that, given a rank two geometry S, the geometry
Γ(S) is not necessarily residually connected. Take the incidence geometry S consisting of
points and lines of the Desargues configuration. Take a point p and a line L in S such that
p and L are at distance five in the incidence graph of S. In the residue Γ(S)p, the line L is
not incident to any flag. Hence Γ(S) is not a residually connected geometry.

If S is a rank two geometry with points and lines, we define a proper triangle of S to be
a set of three pairwise collinear points of S that is not contained in any line of S. We say
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that an edge {x, y} of the collinearity graph is near a point z if {x, y, z} is a proper triangle
of S. We define property (∆) as follows.

(∆) for every point p of S, the graph S(p) formed by the points collinear with p and the
edges near p is connected.

Lemma 3. Let S be a thick connected rank two geometry and let G ≤ Aut(S).

1. (∆) holds on S and S∗ ⇔ Γ(S) is residually connected ⇒ the gonality (resp. the
point-diameter) of S is at most 3 (resp. 4).

2. If G is flag-transitive on Γ(S) and S is a partial linear space then G is (2T )1 on S.

3. Suppose G is flag-transitive and (2T )1 on S. If Γ(S) is a geometry then S is a partial
linear space.

4. Suppose S is a partial linear space. Then G is flag-transitive on Γ(S) if and only if G
is transitive on the paths of length four of S.

Proof. Left to the reader. 2

Corollary 1. Let S be a thick connected partial linear space and G ≤ Aut(S). Let v be the
number of points of S and s (resp. t) the number of points (resp. lines) incident to a line
(resp. point). If vt(s− 1)(t− 1) does not divide the order of G then G is not flag-transitive
on Γ(S).

Proof. This is an immediate consequence of part 4 of Lemma 3. 2

Theorem 1. Let S be a thick connected partial linear space and let G ≤ Aut(S) be flag-
transitive on S. If Γ(S) is a firm, residually connected and flag-transitive geometry, then G
acts transitively on the paths of length four of S. Moreover, S is either a linear space, the
dual of a linear space or a (4, 3, 4)-gon.

Proof. Part 1 of Lemma 3 restricts the partial linear spaces S to the following ones: (4, 3, 4)-
gons, (3, 3, 4)-gons, (4, 3, 3)-gons and (3, 3, 3)-gons. Part 4 of Lemma 3 finishes the proof.
2

If G is transitive on the paths of length four of S, then obviously, G is (2T )1 on S. The pairs
(S, G) where S is a thick linear space and G is a group that acts flag-transitively and locally
two-transitively on S are given in the following theorem.

Theorem 2. [6] Let Γ be a thick finite linear space of v points. Let G be a group acting
flag-transitively and faithfully on Γ. If Γ is (2T )1 then one of the following occurs:

1. Γ = AG(2, 4), with G = AΓL(1, 16).

2. Γ = PG(n, q), v = qn+1−1
q−1

, PSL(n + 1, q) E G ≤ PΓL(n + 1, q) with n ≥ 2.

3. Γ = PG(3, 2), v = 15 with G ∼= A7.

4. Γ = AG(n, q), v = pd = qn, G = pd : G0 with SL(n, q) E G0, q ≥ 3 and n ≥ 2.

5. Γ is a hermitian unital UH(q), v = q3 + 1, PSU(3, q) E G ≤ PΓU(3, q).
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For the (4, 3, 4)-gons, no classification exists. Examples are known. There is one for PΓL(2, 8)
(see geometry 2 of rank two for PΓL(2, 8) in [7]). There exists another one for PSL(3, 4) due
to Gottschalk (see [9]). The group M22 also has such a geometry (see the supplement of [12]).
Unfortunately, none of these geometries satisfies the necessary condition given by Corollary 1.
There is also a (4, 3, 4)-gon S for the group Alt(9) (see geometry (36) in [4]). It satisfies the
hypotheses of Corollary 1 but Γ(S) is not residually connected. Some partial geometries are
also (4, 3, 4)-gons. In Subsection 4.3, we produce two infinite families of (4, 3, 4)-gons arising
as residues of Γ(AG(2, q)) (where q is a finite field). One of them is a well known family of
partial geometries. We also show that only one (4, 3, 4)-gon out of these two infinite families
gives an A-geometry using Construction 3.

Let us look at the thick linear spaces appearing in Theorem 2.

4.2. Projective planes

Theorem 3. Let S = PG(2, q), q 6= 2. Then Γ(S) is a firm and residually connected
geometry having the following diagram.

t t t
q − 1 q q − 1

q2 + q + 1 (q2 + q + 1)(q + 1) q2 + q + 1

Af Af∗

Moreover, the groups PSL(3, q) ≤ G ≤ PΓL(3, q) act flag-transitively on Γ(S).

Proof. We refer to [13] for the proof of this theorem. 2

4.3. Affine planes

We denote by En an elementary abelian group of order n.

Theorem 4. Let S = AG(2, q), q 6= 2. Then Γ(S) is a firm and residually connected
geometry.
If q = 3, the diagram of Γ(S) is the following.

t t t
1 2 2
9 36 12

4 4 3 4

If q > 3, the diagram of Γ(S) is the following.

t t t
q − 2 q − 1 q − 1
q2 q2(q + 1) q(q + 1)

4 3 4 4 3 4
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Moreover, the groups G = Eq2 : G0, with G0 D SL(2, q) and q > 2 act flag-transitively on
Γ(S). Finally, if q = 4, the group AΓL(1, 16) also acts flag-transitively on Γ(S).

The proof of this theorem uses only elementary combinatorial or group-theoretic arguments.
Hence we leave it to the interested reader.

Theorem 4 produces two infinite families of (4, 3, 4)-gons. We call them Γ(AG(2, q))p

and Γ(AG(2, q))L since they arise as residues of points and lines of Γ(AG(2, q)). In fact,
Γ(AG(2, q))L is the complement of L minus all lines parallel to L in AG(2, q), whereas
Γ(AG(2, q))p is the complement of p minus all lines through p in AG(2, q). Their diagrams
are given below.

Γ(AG(2, q))L t t
q − 2 q − 1
q2 − q q2

4 3 4

Γ(AG(2, q))p t t
q − 1 q − 1
q2 − 1 q2 − 1

4 3 4

One may easily check that the geometries Γ(AG(2, q))p are not partial geometries. Indeed,
in Γ(AG(2, q))p, given a flag C = (p, L) and a line L′ such that C 6∼ L, we have α(C, L′) = q
if L′//L in AG(2, q) and α(C, L′) = q − 1 otherwise.

The geometries Γ(AG(2, q))L are partial geometries such that α = q − 2. They are the
so called duals of Bruck nets of order q − 1 and degree q − 2 (see [8], Section 1.2).

We have Aut(Γ(AG(2, q))p) ∼= Aut(AG(2, q))p and Aut(Γ(AG(2, q))L) ∼= Aut(AG(2, q))L.
It is natural to ask whether Construction 3 gives an A-geometry when applied to these

(4, 3, 4)-gons.

Theorem 5. Let S = Γ(AG(2, q))p. Then Γ(S) is not flag-transitive.

Proof. In AG(2, q), take two lines, say L1 and L2 having a point p2 in common and such that
p ∈ L1 but p /∈ L2. Take a third point p3 on L1 but not on L2. Choose a point p4 on L2

distinct from p2. Denote by L3 the line through p and p4. We have (p2, L1) ∼ L2 ∼ (p4, L3)
in S. Now, there is exactly one line through p4 which has no point in common with L1. The
other lines through p4 have at least one point in common with L1. Hence, the automorphism
group of S cannot act transitively on the paths of length four of S and Lemma 3 yields that
Γ(S) is therefore not flag-transitive. 2

Theorem 6. Let S = Γ(AG(2, q))L with q > 3. Then Γ(S) is firm, residually connected and
flag-transitive if and only if q = 4. In that case, Γ(S) has the following diagram.

t t t
1 1 2
12 48 16

6 4 6

Proof. Left to the reader. 2
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4.4. Projective spaces PG(n, q) with n ≥ 3

Theorem 7. Let S be the linear space obtained by taking the points and lines of a projective
space PG(n, q) (n ≥ 3) over a finite field of characteristic q 6= 2. Incidence is symmetrised
inclusion. Then Γ(S) is not residually connected.

Proof. The residue of a line L in Γ(S) contains all points not on L and all flags consisting
of a point of L and a line through this point. So given a point p not on L, the only points
that are at finite distance of p in Γ(S)L are those in the plane containing p and L. Therefore
Γ(S) is not residually connected. 2

4.5. Affine spaces AG(n, q) with n ≥ 3

Theorem 8. Let S be the linear space obtained by taking the points and lines of an affine
space AG(n, q) (n ≥ 3) over a finite field of characteristic q 6= 2. Incidence is symmetrised
inclusion. Then Γ(S) is not residually connected.

Proof. Similar to the proof of Theorem 7. 2

4.6. Hermitian unitals UH(q)

This is the last case to consider in Theorem 2. Some experiments with Magma [1], permit
to apply Construction 2 to the smallest examples. Figure 2 gives the diagram of Γ(UH(q))
for q ≤ 16. All of them are firm, residually connected, (IP )2 and flag-transitive geometries.

Conjecture 1. Γ(UH(q)) is a firm, residually connected and flag-transitive geometry for all
q > 2.

5. The case where t > 2

In this section, we classify Steiner systems S := S(t, k, v) with t > 2 such that Γ(S) (obtained
by Construction 2) is an A-geometry.

The Property (∗). Let S = S(t, k, v) be a Steiner system. Let Γ1(S) be the rank t geometry
obtained from S using Construction 1. Suppose G := Aut(S) acts flag-transitively on Γ1 and
let C = {x1, x2, . . . , xt} (with t(xi) = i) be a chamber of Γ1. Suppose moreover that GC

acts transitively on the blocks containing xt−1 and distinct from xt. Finally, suppose that the
stabilizer of such a block B in GC acts transitively on the points of B\xt−1. Then we say that
S satisfies property (∗).

Theorem 9. G acts flag-transitively on Γ(S) ⇔ S satisfies Property (∗) above ⇒ G is t-
transitive on the points of S.

Proof. Straightforward. 2

The Steiner systems S := S(t, k, v) with t ≥ 3 such that G ≤ Aut(S) acts t-transitively on
the points of S have been classified by William M. Kantor. We give the classification below.
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Γ(UH(3)) t t t
2 3 7
28 252 63

6 4 6 4 3 4

Γ(UH(4)) t t t
3 4 14
65 1040 208

5 4 6 4 3 4

Γ(UH(5)) t t t
4 1 7
126 3150 525

8 6 8 8 3 8

Γ(UH(7)) t t t
6 7 47
344 16856 2107

6 4 6 4 3 4

Γ(UH(8)) t t t
7 2 20
513 32832 3648

6 4 6 5 3 6

Γ(UH(9)) t t t
8 9 79
730 59130 5913

6 4 6 4 3 4

Γ(UH(11)) t t t
10 3 39
1332 161172 13431

6 4 6 5 3 6

Γ(UH(13)) t t t
12 13 167
2198 371462 26533

6 4 6 4 3 4

Γ(UH(16)) t t t
15 16 254
1028 263206 15482

5 4 6 4 3 4

Figure 2. The geometries Γ(UH(q)) for q ≤ 16
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Theorem 10. [10] Let S = S(t, k, v) with k ≥ t + 1 ≥ 4, and let G ≤ Aut(S) be t-transitive
on the points of S. Then either

1. S consists of the points and planes of AG(d, 2) for some d, and G is 2d : GL(d, 2) or
24 : A7 (and d = 4);

2. the blocks of S are all the images of {∞} ∪ GF (q) under PGL(2, qe), e ≥ 2, and
G D PSL(2, qe); or

3. S is an S(4, 5, 11), S(5, 6, 12), S(3, 6, 22), S(4, 7, 23), or S(5, 8, 24) and G D Mv.

Theorem 10 shows that there are not a lot of S(t, k, v) with 3 ≤ t < k which may satisfy
Property (∗). We look at each of them and determine whether Construction 2 applied to
them gives an A-geometry or not.

Lemma 4. If S is as in 1. of Theorem 10 then Γ(S) is residually connected if and only if
d = 3.

Proof. Take a point p and a plane π containing p in AG(d, 2). The elements in Γ(S)p,π are
the points of AG(2, q) not on π and the flags consisting of a line l of π containing p and a
plane π′ containing l and distinct from π. Take a point p′ in Γ(S)p,π. Then p′ and π are in a
unique subspace H of AG(d, 2).
If d 6= 3, then H is a proper subspace of dimension 3 of AG(d, 2). The only flags of Γ(S)p,π

are contained in H. Hence p′ is not connected to any point p′′ in AG(d, 2)\H and Γ(S) is
not residually connected.
If d = 3, one may easily check that Γ(S) is indeed residually connected. 2

Take the affine space AG(3, 2). Obviously, it may be seen as a S(3, 4, 8). Using Construc-
tion 1, we get a c-extended projective plane, actually a copy of AG(3, 2). It satisfies Property
(∗). Therefore, we apply Construction 2 to S(3, 4, 8) and Γ(S(3, 4, 8)) is a rank four flag-
transitive geometry having the following diagram.

Γ(S(3, 4, 8)) t t
t

t
"

"
"

"
"

b
b

b
b

b

1
8

1
14

2
84

1
8

c

c∗

c∗

Lemma 5. If S is as in 2. of Theorem 10 then Γ(S) is residually connected if and only if
q = 4 and e = 2.

Proof. We have S = S(3, q + 1, qe + 1). For an element p of type 1 of Γ(S), the residue
Γ(S)p is isomorphic to Γ(S(2, q, qe)) and Aut(Γ(S)p) ∼= Gp which is a group of affine type.
Therefore, we can apply the results of Section 3, in particular Theorems 6 and 8 to conclude
that if q 6= 4 or e 6= 2, then Γ(S) is not residually connected. Now, if q = 4 and e = 2, the
residue Γ(S)p is Γ(AG(2, 4)) with AΓL(1, 16). It is residually connected by Theorem 6. 2

One may easily check that the S(3, 5, 17) of Lemma 5 satisfies Property (∗) and therefore,
Γ(S(3, 5, 17)) is a firm, residually connected and flag-transitive geometry. We give its diagram
below.
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Γ(S(3, 5, 17)) t t
t

t
"

"
"

"
"

b
b

b
b

b

2
17

3
68

3
680

1
17

c 4
3

4

4 3 4

Let us now look at the family of Buekenhout geometries we mentioned in Figure 1. Obviously,
those associated to the Steiner systems S(3, 6, 22), S(4, 7, 23) and S(5, 8, 24) satisfy Property
(∗). In Figure 3, we give the geometries Γ(S) obtained for S a Steiner system S(2, 5, 21),
S(3, 6, 22), S(4, 7, 23) and S(5, 8, 24).

Γ(S(2, 5, 21))
[13] t

t

t
"

"
"

"
"

b
b

b
b

b

3
21
24 : A5

3
21
24 : A5

4
105

24 : A4

Af∗

Af∗

Γ(S(3, 6, 22))
[12] t t

t

t
"

"
"

"
"

b
b

b
b

b

3
77
24 : A6

3
22
L3(4)

4
1155

22 · 24 : S3

1
22

L3(4)

c

Af∗

Af∗

Γ(S(4, 7, 23))
[11] t t t

t

t
"

"
"

"
"

b
b

b
b

b

3
253
24 : A7

3
23
M22

4
8855

24 : ((A4 × 3) : 2)

1
253

L3(4) : 2

1
23

M22

c

Af∗

Af∗

Γ(S(5, 8, 24))t t t t
t

t
"

"
"

"
"

b
b

b
b

b

3
759
24 : A8

3
24
M23

4
53130

24 : ((A4 × A4) : 2)

1
2024

L3(4) : S3

1
276

M22 : 2

1
24
M23

c

Af∗

Af∗

Figure 3. Geometries for the Mathieu groups Mi with i = 21, 22, 23 and 24
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All geometries in Figure 3 except the last one are known. The last one is new. It is the
first rank six geometry on which the Mathieu group M24 acts flag-transitively. It has two
non-isomorphic residues of rank five which are extensions of dual affine planes for the groups
M23 and 24 : Alt(8) (see geometries Γ23(4) and Γ8(4) in [17]). Moreover, Construction 2
unifies all geometries appearing in Figure 3.

Observe that the Steiner systems S(5, 6, 12) and S(4, 5, 11) do not satisfy Property (∗).
Hence there is no hope of producing a flag-transitive geometry of rank 5 (resp. 6) for M11

(resp. M12) using Construction 2.
To conclude, we summarize the analysis of the Steiner systems appearing in Theorem 10

in the following theorem.

Theorem 11. Let S = S(t, k, v) with 3 ≤ t < k and let G = Aut(S). The geometry Γ(S)
is a firm, residually connected geometry on which G acts flag-transitively if and only if S is
one of the following.

1. S consists of the points and planes of AG(3, 2) and G is AGL(3, 2);

2. the blocks of S are all the images of {∞}∪GF (4) under PGL(2, 16) and GDPΓL(2, 16);
or

3. S is an S(3, 6, 22), S(4, 7, 23) or S(5, 8, 24) and G D Mv.
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