Beitrage zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 46 (2005), No. 1, 321-349.

About a Determinant of Rectangular 2 X n
Matrix and its Geometric Interpretation

Mirko Radié

University of Rijeka, Faculty of Philosophy, Department of Mathematics
51000 Rijeka, Omladinska 14, Croatia

Abstract. A determinant of rectangular 2 x n matrix is considered. Some of its
properties in connection with geometric interpretation are stated in this paper.

MSC 2000: 51E12, 51MO4
Keywords: determinant, polygon, similarity, pseudosimilarity

1. Introduction

In [2] the following definition of a determinant of rectangular matrix is given: The determinant
of a m x n matrix A with columns A;,..., A, and m < n, is the sum

> (1) A, Ay (1.1)

1<j1<j2<-+<jm<n

where r=14---4+m, s=J1 4+ + Jm-

This determinant is a skew-symmetric multilinear functional with respect to the rows
and therefore has many well-known standard properties, for example, the general Laplace’s
expansion along rows.

Here are some examples.

Example 1. Let [ay, as, az] be a 1 X 3 matrix. Then by (1.1) we have

|a, az, as| = (—1)"'ay + (1) Pas + (=1)"Paz = a1 — ax + as.
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Example 2. Let a1 9293 10 4 2 x 3 matrix. Then
by by b3
ay Az az| o \(1+2)+(1+2) |31 G2 _1\(142)+(143) |41 a3
by by by Y b b TV by by
4 (_1)(1+2)+(2+3) az az| _ |41 a4z _|G1 dag)|az a4
by b3 by by by bs||by bs|’

Using Laplace’s expansion along first row we have

a; ag das

= a1(—1)"ba, bs| + ax(—1)"2|by, bs| + az(—1)"2|by, by
by by bs

= albg — a2b1 — (a1b3 — agbl) + (lgbg — a3b2.

Of course, |b;, b;| = b; — b; by definition given by (1.1).
In this paper we shall consider in more detail the special case of the determinant given
by (1.1) for m = 2:

a‘l a2 ... an

bl bQ bn

a; aj

_ 1\ 1424(i+y)
=2 Y bi b

1<i<j<n

(1.2)

In this case, as will be seen, the determinant may serve as an elegant tool for some problems
concerning polygons in a plane. For convenience in the following expression we shall call it
generalized determinant or g-determinant.

2. Some properties of the g-determinant and their geometric interpretation

Our aim in this section is to prove in a simple way some important properties of g-determinant
given by (1.2) in connection with its geometric interpretation.

First about notation which will be used.

Let Ay - -+ A, be a polygon in the plane R? and let A;(z;,¥;),7 = 1,... ,n. Then g-determinant

’Il ’IZ « e . x’n
Yy Y2 - Un

will also be written in each of the following two ways:
det(Al, C >An)7 ’Al, . ,An’

Also let us remark that every g-determinant

al a2 o« .. a/’)"L
by by --- b,
will be often briefly written as |A;, ... , A,|, where Ay, ..., A, are columns of the correspond-

ing matrix.
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Now we shall consider the following g-determinant

a; az az a4 as

by by by by by
or shorter written |A;y, Ay, As, Ay, As|. According to (1.2) for n =5 we can write
| Ay, Aoy Az, Ay, As| = |Ar, Ao| — |Ar, As| + |Ar, Agl — | Ay, A5 +
|Ag, Ag| — |As, Ay| + |Ag, As| +
+|A37A4| - |A37A5| +
+ |Ay, As|
or

| Ay, Ao, As, Ay, As| = | A1, Ao — As + Ay — As| +
|Ag, As — Ay + As| +

| Az, Ay — As| + (21)
| Ay, As).
Let us remark that, for example, it holds
|A1, Ay — Az + Ay — As| = |Ay, Ag| — | Ay, As| + | Ay, Ay] — | Ay, As.
Now we can state the following theorem.
Theorem 1. Let |Ay,... , Ay| be a 2 x n matriz with n > 2. Then
|A1, Aoy AL = AL Ay — As+ Ay — -+ (1D)A, | +
| Ay, A — Ay + -+ (1) 1A, + (2.2)

Proof. Follows directly from the definition given by (1.2). For example, if n = 5, then holds
(2.1). O

Here let us remark that using this theorem can be easily seen that for g-determinant of 2 x n
matrix holds Laplace’s expansion along row. So, using equality (2.1) it is easy to see that

ap Qg a3 G4 Qas ay, Qg — a3+ a4 — as Gz, a3 — G4+ Q5

by by bs by b5 by, by —bs+by—bs by, b3 — by + bs
az, a4 — Qs G4, 0as
s, ba—bs| T |bs, b

= ay(by — b3 + by — bs) — az(by — bg + by — bs)
+a3(61 — bg + b4 - b5> - a4(b1 - bg + b3 - b5)
+a5(b1 — b2 + bg — b4>
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Theorem 2. [t holds
|A1, Ay A, Anl = AL Agy oo A | H (DA — As 4+ -+ (1) AL, Al (2.3)
Proof. 1t is easy to see that

‘A17A27A3’ = ‘A15A2| - ‘Al - A27A3’7

|A1aA27A37A4| = |AlaA27A3| + |A1 - AZ + A37A4’a

| Ay, Ay, As, Ay, As| = |Ay, Ag, Ag, Ay — |A1 — Ay + A — Ay, As

and so on. O

Remark 1. For convenience in the following we shall suppose that a considered polygon is
positively oriented, that is, numeration of its vertices is such that corresponding determinant
is not negative.

Theorem 3. Let A, --- A, be a polygon in R%. Then

2 area of AlAn: ‘A1—|—A2,A2+A3,... 7An,1+An,An+A1‘.

Proof. 1t is well known that
2 area of Al N An = ‘Al,AQ‘ + ‘AQ,Ag’ + -+ ’An,bATA —+ |An,A1|
Thus, we have to prove that

‘A1+A27A2+A37"' 7An—1+An7An+A1‘ =

2.4
Ay, Ag| + |Ag, Ag| + -+ [ Ay 1, An| + [ An, Ay (2.4)

The proof will use the method of mathematical induction.
First we have that Theorem 3 holds for n = 3, that is

| A1 + Ao, Ag + Ag, Az + Ay| = |Ay, Ag| + |Ag, As| + | A3, A4

Supposing that (2.4) holds for a given n > 3 and using Theorem 2 (where now are not
columns Aj, As,... but A; + Ay, Ay + Az, ...) we can write

|A1+A27A2+A37"’ 7A’n—1+An7An+A1|
- |A1 + AQ,AQ + Ag, e 7An71 + An‘ + (-1)”’141 + (-1)”14”,14” —|— A1|
=|A;+ As, Ag+ As, ... A+ A+ (1) AL, Al + |As, Ay, (2.5)
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|A1 + Ag, Ao + As, ... A1+ An, A + Anst, Anr + A4
=|A; + Ao, Ao+ Az, ... A + Ap| + A + Ansr, Anr + A4
+ (1) AL+ (=1)"Ap, Ay + Appr — Angr — Al
=|A1+ Ay, Ag+ Az, .. LA+ Anl + [An, Apa| + A, Ar| + |An, Ad
+ (=1)"[Ar, An| — [An, A4
=|A; + A, Ay + Az, . A+ AL+ (1) AL A + A, Al
+ |AnvAn+1| + |An+17A1| - ’AmAl,;

from which according to (2.5) and (2.4) it follows that

|Ay + Ao, Ao+ As, ... A+ Anir, An + Al =
| Ay, Ag| + |Ag, As| 4+ -+ - 4+ | A, A | + [ A, A4 U

Here is one more way of proving of Therorem 3 using method of mathematical induction. It
may be interesting that induction from n to n 4+ 1 may be as follows:

|A17A2| + |A27A3| +--+ |An—1aAn| + |An7A1| + |A17An| + |An7An+1| + |An+17A1| ==
|Ar +Ag, A+ As, o A+ A A+ A A+ AL A+ Apr, A + Al = (2.6)
|Ay + Ao, Ao + As, .o At + Any A + Ansr, A + A4

since
‘Al + AQ, A2 + Ag, e ,AP,Q —|— Apfh Ap,1 —|— Ap| =
= A+ Ag, A+ Agy o AL o+ Ay | (1P AL Ay A+ A (2.7)

and reducing both sides of (2.6) to
= |A1 + A27A2 + A3a s 7ATL—1 +An‘

The relation (2.7) follows directly from the given definition of g-determinant and may be
interesting in itself.

In connection with Theorem 3 we shall also point out the following relations. First, using
relation (2.1), we can write

| Ay + Ag, Ag + Ag, Az + Ay, As + Ar| = [A1 + Az, Ay — Ay
+ |Ag + As, Az + A

+[As + Ay, Ay — A

+ | Ay + As, As + A

= |A1, Aa| + |Ag, As| + | As, As| + |Ag, A5| + |As, A4l
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In the same way can be seen that

|A1 4+ Ao, Ag + Az, oo J AL+ Ap A + Ayl = AL+ Ao, Ay + A
+ | Ay + Az, A — J A,
+|As + Ay, Ay + JA|
+ Ao+ Apq, An1 — A4
+ A1+ A Ay + Ay
= |Ay, Ag| + |Ag, As| + -+ -+ |An_1, Anl + | An, A4l

where j = 1 if n is even and —1 if n is odd, that is, j = (—1)".

Now we shall state some of the corollaries of Theorem 3.
Corollary 3.1. Let By, ..., B, be given by

A+ A Ay + A A, + A
:%,BF%,...,BF%.

By
Then
4|Bl7827 cee 7Bn‘ = |A17A2| + |A27A3‘ +eot ‘AnaAl‘

Proof. The g-determinant given by (1.2) has the property that for every two numbers a and
b it holds

ary -+ axy,
byr -+ byn

‘rl .o .. x/n/

=ab .
yl “ .. yn

OJ

Corollary 3.2. Let A;--- A, be a polygon in the Gauss plane and let zy, ... |z, be complex

numbers corresponding respectively to the vertices Ay, ..., A,. Then
2areaOfA1'--An:_fl+f2 %2"’%3 fn+€1
21Z1+29 Zo+2Z3 -+ Zn+ 2

Proof. We shall use the property of g-determinant that its value is unchanged if a multiple
of one row is added to the other row. Thus, we can write

Ty 4+ T+ (Y1 ty2) 0 Tt T+ (Yo + Y1)
r1+x—ilyr +y2) 0 T+ a1 —i(Yn + Y1)
:2x1+x2+i(y1+y2) e X+ 2 (Y + Y1)
0 —i(y1 +y2) 0 — i(Yn +41)
o ’ 1+ T2 T, + T
=iyt ye) e =iy )
_9 T1+x92 - In+$1.
Yy1+y2 o Unt U 0
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Definition 1. Let A, --- A, and B; --- B, be polygons in R? such that

_Aj A+ Ay
_ . 7

B; j=1,....n (2.8)

Then the polygon By --- B, is said to be k-inscribed to the polygon Ay --- A, and the polygon
Ay -+ A, is said to be k-outscribed to the polygon By --- B,.

For example, let A; A5 A3 be a triangle in the plane R? and let the triangle A?)AQQ)A? be
defined by

AP = A — Ay + As, AP = Ay — Ag+ Ay, A = Ay — Ay + A, (2.9)
Then the triangle AgQ)Ag)AgZ) is 2-outscribed to the triangle A; A A3 since

AP 4 AP =24, AP + AD =24, AP 4+ AP =24,

Generally, let A; --- A, be a polygon in R?, where n is odd. Then the polygon A§2) AP
defined by
n—1
AP =N (1Y Ay, i=1,. 0 (2.10)
=0

is 2-outscribed to the polygon A; --- A,. (Of course, indices ¢ + j are calculated modulo n.)
It is easy to see that the system

Z1+Z2:2A1, Z2+23:2A2,...,Zn+21:214n

if n is odd, has the unique solution Z; = AZ@), i =1,...,n, where AZ@) is given by (2.10).
Thus, the polygon AEQ) AP given by (2.10) is the unique one which is 2-outscribed to the
polygon A;---A,.

It may be interesting that points AZ@), t=1,...,n, can be easily constructed. For exam-
ple, if n = 5 then point A§2> can be constructed as shown in Figure 2.1. The quadrilaterals

A1 AyA3S and SA4A5A§2) are parallelograms. Let us remark that from
S=A —Ay+ Ay, S=A— As+ A?

follows A = Ay — Ay + A3 — Ay + As.
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A’ A,

Figure 2.1

The point Ag) can be constructed such that A; be midpoint of AgQ)Agz), the point A;(f) can
be constructed such that A; be midpoint of Agz)A:(f), and so on.

If n = 7, the point A?) can be constructed as shown in Figure 2.2. The quadrilaterals
A1A3A3S,, S1A4A5S,, S2A6A7A§2) are parallelograms. It follows that Agz) =A; — Ay + Az —
Ay + As — Ag + A

Figure 2.2

Theorem 4. Let A, --- A, be a polygon in R? and let n be an odd integer. Then
area of AP . AP =2|A; ... A, (2.11)
where AEQ), i=1,...,n, are given by (2.10).

Proof. Follows from Theorem 3 since Al@) + Agl =2A;,i=1,... ,n. O
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Theorem 5. Let A, --- A, be a polygon in R?* with even n and let
A+ A3+ F A 1 =4+ A+ -+ A,

or

> (DA =0. (2.12)

i=1
Then there are infinitely many polygons which are 2-outscribed to the polygon Ay --- A, and
all of them have the same area given by

area of Zy -+ Z, =2|Ay,... , A, (2.13)

where Zy - -+ Z, is any arbitrary polygon which is 2-outscribed to the polygon Ay --- A,.
In the case when (2.12) is not fulfilled, then there is no polygon which is 2-outscribed to
the polygon Ay --- A,.

Proof. We shall first consider the case when n = 4. If

A+ A A+ A
Al—A2+A3—A4:O or 1_;_ 3: 2—; 4,

then quadrilateral A;AsA3A4 is a parallelogram. It is easy to see that in this case the
following system

Zy+ Zy =2A1, Zy+ Zs=2Ay, Zs+ Zy=2A3, Zy+ 2y =24,

has infinitely many solutions. Namely, we can write

Z2 :2A1 - Zh
Z3 :2A2 — ZQ = 2A2 — 2A1 + Zl,
Zy=2Ay — Zy =24y — 245 + 24, — 7, (2.14)

where Z; may be chosen arbitrarily in R?.
Let us remark that from (2.14), since Z; + Z; = 2Ay, it follows

2A4—2A3+2A2—2A1:O or Al—A2+A3—A4:0.

Generally, let A; --- A, be a polygon in R? with even n and let (2.12) be fulfilled. Then the
system

Zl—I—ZQZQ/ll, ZQ+23:2A2, e, Zn+le2An
has infinitely many solutions since for every Z; in R? there are Zs, Zs, ... , Z, given by
Zy =2A, — Zy,

Zg :2A2 - 2A1 + Zl7
Z4 :2A3 - 2142 -+ 2A1 - Zl;

Zp =2Ap_1 —2A, o+ =249+ 2A, — Z;.
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Let us remark that from the last equation, since Z,, + Z; = 2A4,,, it follows that
2An - 2An71 + 2An72 — e+ 2A2 - Al = 0

Also, it is clear that, if (2.12) is not fulfilled, then there are no Z; and Z,, such that Z,+ 7, =
24,,.

Concerning area of 7 --- Z,,, we can write

2areaof Zy--+Z, = |Z1+ Zo, 2o+ Zs,... , Zy+ Z4|
- ’2141,2142,... 72An’7

from which follows (2.13) O

In connection with even n let us point out the following.
In order to obtain a polygon A; - - - A,, which can be 2-outscribed, we can take an arbitrary
polygon Ay, ..., A, 1 in R? but then A, must be chosen so that holds (2.12). It may be

interesting that such obtained A, is equal to A§2), where A?) is the first vertex of the polygon
AgQ) = ~A£2_)1 which is 2-outscribed to the polygon Ay --- A,_1. So, for example, the hexagon
Ay A5A§2) shown in Figure 2.1 can be 2-outscribed since

Al — Ay + Az — Ay + A — AP = 0.

The same holds for octagon A; - - -A7A§2) shown in Figure 2.2 since

7

S (=)A= AP

i=1

Also let us remark that for any given polygon A; --- A, in R? with even n it holds

n

D (1) (A + Aiy) = 0.
i=1
Thus, the polygon B - - B, where B; = A; + A;y1, i = 1,... ,n, can be 2-outscribed.
Here are some examples.

Example 1. Let A;A; A3A4 be a quadrilateral shown in Figure 2.3 and let B; = %, 1=
1,2,3,4. Then for every point Z; in R? there are Z,, Zs, Z4 such that % = B;,i =
1,2,3,4.
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Figure 2.3

Every quadrilateral 7, 75757, which is 2-outscribed to the quadrilateral B; By B3B,4 has area
equal to the area of the quadrilateral A; A3 A3A,. Thus, it holds

2 area of 21Z22324 = ’Al + A27 AQ + Ag, Ag + A4, A4 + A1’
4|Bl7827B37B4’

or
area of Z1Z2Z3Z4 = 2’BlBngB4’.

Here let us remark that it is (by definition of area of an oriented polygon which has intersecting
sides)

|A1 + AQ, A2 + Ag, Ag + A4, A4 -+ A1’ = 2 area of ASAQA;; — 2 area of ASA4A1

Example 2. Let A;--- Ag be a hexagon shown in Figure 2.4 and let B; = %, 1=

1,...,6. Then for every point Z; in R? there are Z,, ..., Zs such that % =B, 1=
1,...,6.

Figure 2.4
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For every hexagon Z; - - - Zg which is 2-outscribed to the hexagon B - - - Bg it holds
area of Zy---Zg =2|By, ..., Bgl.

Example 3. A polygon A;A;A3A, with Ay = Az will be 2-outscribed if A;—As+A3—A4 =0,
that is, if A} = A4. (See Figure 2.5.) For every point Z; in R? there is a polygon Z,Z»Z37,
which is 2-outscribed to the polygon By ByB3B,, where B; = %, 1=1,2,3,4.

/Z"\1 ///°Zs
A, B, A, B, B _-7 :
4 - N
A4 B3 A3 // - - B3 N / 2
B, B, Zf \Zz
Figure 2.5
Of course, here we have
|Ay + Ag, Ay + A3, Az + Ay, Ay + Ay| = Ay, Ag| + |Ag, As| + |As, Ag| + [Ag, Ay

|Aq, As| + |Ag, As| + |Ag, Ar| + |Ar, Ar] = 0.

In this connection let us remark that triangles B 2573 and ByZ,Z, are congruent and oppo-
sitely oriented.

Example 4. Let A;A3A3A, be a quadrilateral such that A; = Az (Figure 2.6). Then

2 area of AjAA3A; = |A1+ Ay, Ay + Ag, A + Ay, Ay + A4
= [Ay, Aof + [As, As| + [As, Aul + [As, Ad
= [Aq, Ag| + |Ag, Ayl + Ay, Ay
= 2 area of AA;A5A,.

A -
Figure 2.6
In connection with the case when n is even and holds (2.12), the following question arises:

If Zy---Z, is a polygon which is 2-outscribed to the polygon A;--- A, is there a polygon
which is 2-outscribed to the polygon Z; --- Z,7 It is not difficult to show that there is only
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one polygon 7 --- Z, which is 2-outscribed to the polygon A;--- A, and has the property
that there is a polygon which is 2-outscribed to the polygon Z; - -- Z,,.

We begin with a quadrilateral A;A;A3A, which is a parallelogram, that is, A; — Ay +
As — A, = 0. Since

ZQ = 2A1_Z17
s = 24y — Ty =2Ay— 24, + 74,
Z4 - 2A3—Z3:2A3—2A2—|—2A1—Zl:2A4—Zl,

the condition Z; — Zy + Z3 — Z, = 0 will be satisfied only if

3A; —2A,+ A
gz, =t s (2.15)
2
Thus, Z; is uniquely determined by A;, Ay, A3. We get
Ay —2A3+ A
Z, = 34, : 3+ 4’
3A3 —2A4+ A
7y — 3 2 4+ L
Ay —2A1+ A
Z, = 3A4 - 1+ 2

According to relation (2.13) we have
area of Z1Z22324 = 2’141, AQ, Ag, A4‘
Using Theorem 2 we can write
’A17A27A37A4| - |A17A27A3‘+|A1_A2+A37A4|
= |A1,A2,A3‘ (Since A4:A1 —A2+A3)
= |Ay, Ag| — AL, As| + |Ag, As
|A17A2| + |A27A3‘ + ‘A37A1|
= 2 area of AAlAQAg.

Thus, area of 7, 7,737, = 2 area of parallellogram A; Ay A3A4. The parallelogram 7, 75757,
is shown in Figure 2.7.

Figure 2.7
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In the same way we find that for hexagon A, - - - Ag, where 320 (—1)?A; = 0, will be satisfied
S (=1)'Z; = 0 only if

_ 5A; —4Ay + 345 —2A4 + As

- 3 :

Generally, if A; --- A, is a polygon with even n and (2.12) is satisfied, then Y  (—=1)'Z; =0
only if

Z1

n

7y =

2

Example 5. Let A; - - - Ag be a hexagon such that Z?:1(_1>i14i = 0. Then for every hexagon
Zy - -+ Zg which is 2-outscribed to the hexagon A; --- Ag it holds
area of Z;---Zs = 4 area of pentagon A;A;A3A4A5
—4 area of pentagon A;A3As;AxA,.

The vertex Ag can be omitted since Ag = S°0_, (—1)"*' A,;. The proof is as follows. Since, by

Theorem 5, area of Z; -+ Zg = 2| Ay, ... , Ag|, we can write
|A1, ... Agl = JA1, ... As| 4+ |A1 — Ay + A3 — Ay + As, Agl
= |Ay,..., As

= |Aq, Ag| — |Ay, As| + AL, Ayl — [As, As|
+|Ag, As| — |Ag, As| + | Az, A5
+[Asz, Ag| — |As, As|
+| Ay, As|

= |Ay, Ao| + |Ag, As| + |As, Ag| + | Ay, As| + |As, Ay

—([A1, As| + [As, As| + [As5, As| + |As, Au| + [Ag, As]).

Figure 2.8

Example 6. Let A;---Ag be an octagon such that Zle(—l)iAi = 0. Then for every
octagon Zj - -- Zg which is 2-outscribed to the octagon A --- Ag it holds
area of Z;---Zy = 4 area of heptagon A; Ay A3A4A5AgA;
—4 area of heptagon A1A3A5A7A2A4A6
+4 area of heptagon A; A4A;A3AgA>As.
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Figure 2.9

The proof is in the same way as that in Example 5.

Theorem 6. Let A --- A, be a polygon in R? and let n be an odd integer. Then

n n—1
2041, Aul =D AL (1) Ayl (2.16)
j=1 i=1

Proof. Follows directly from the definition given by (1.2). O

Corollary 6.1. If n is odd, then for every point X in R? it holds
A1+ X, ... A+ X = Ay, ..., Anl (2.17)

Proof. By Theorem 6 it holds
204+ X, . A+ X = AL+ X A — A+ — A+

But

since

(Ag—As+--—A)+(As— A+ —A)+- -+ (A — A+ —A4,1)=0.
Here let us remark that (2.17) can also be proved using Laplace’s expansion. So, for example,
we can write (since y —y+y —y = 0)
a+x ax+x a3+ ags+x a5+
bi+y baty b3ty baty bs+y
(a1 + 2)(by — b + by — bs) — (ag + x)(by — b3 + by — bs) +
(a3 + x)(by — by + by — bs) — (ag + ) (by — by — by — b5) +
(a5 + x)(by — by + b — by) =

ap+x ax+x a3+ a4+ as+zx|
b1 bg b3 b4 b5 B

—bl(ag — as + ay — CL5) -+ bg(CLl — as -+ ay — CL5) — bg(al — Qo + ay — CL5)
+b4(a1 —az+as — (15) — b5(a1 —as +as — a4) =

ay Gz asz a4 Qs

by by b3 by bs|’ O
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Theorem 7. Let A, --- A, be a polygon in R* and let n be an even integer. Then for any
point X in R? it holds

Ar 4+ X, Ag+ X, oo Ap + X| = |Ar, Ay, A (2.18)
only if > (=1)'A; = 0.
Proof. First it is clear that for any point P in R? it holds
|A1, Aoy A Pl = A1, Ay AL+ AL — A+ — Ay, P
and that will be
A1, Ao,y Ay Pl = A1, Ag,y L A, (2.19)

only if Ay — Ay +---—A,=0.
Now, by Corollary 6.1 (since n + 1 is odd), taking X = —P, we can write

|Ay,... A, P = |Ai+(=P),... A, +(=P),P - P|
= |A 4+ (=P),..., A, + (—P)]

or, since (2.19) holds,
|Ar, ... A = A+ (=P),... A, + (—P)|.
Putting X = —P we get (2.18). O
Corollary 7.1. [t holds
A1+ A+ X, .. A+ A+ X = A1+ A, LA+ A,
where Y ¢ (—=1)*A; = 0 need not be fulfilled. (Only n must be even.)

Proof. It holds >~7 | (=1)"(A4; + A1) = 0. O
Theorem 8. Let A;--- A, be a polygon in R* with even n and let Y i (—1)*4; = 0. Then
|A1, ..o Anl = AL Al

Proof. 1t holds
|Ay, o A = AL A AL — At A Al = A A
since Ay — Ay +---+ A, 1 =A,. O

Corollary 8.1. Let Ay --- A, be a polygon as stated in Theorem 8. Then the area of every
polygon which is 2-outscribed to the polygon Ay --- A, is given by 2|Aq, ..., A,_1].
For example, if A1AsAsAy is a parallelogram, then

‘A15A27A37A4’ = ‘A17A27A3’ .
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Theorem 9. Let A; --- A, be a polygon in R* with even n and let Y i (—=1)*4; = 0. Then
A, AL = AL Akl Ak, -, Anls (2.20)
where k may be any integer such that 1 < k < n.
Proof. 1t holds
|Aq, AL = A, Akl Ak, - A A,

where
A=Y (-4 ) (-1)'A.
i=1 i=k+1
But, if > [ (—1)"A4; = 0, then A = 0. O

For example, if A;A;A3A, is a parallelogram, then
|A1, Ag, As, Ay| = | Ay, Ao| + | As, Ayl
Let us remark that by Theorem 8 it holds
|A1, Az, Ag, Ayl = [Ay, Ay, As|
and that

|A, Ag, As| = [Aq, Ao — Ay, As| + [ Ay, As
= A, Ao+ | — Ay + Ay, Ag]
= |Ay, Ao + |As — Ay, As| (since — Ay + Ay = A3 — Ay)
|Ay, Ag| + | = Ay, Ag| = |Ar, As| + A3, Ayl

Theorem 10. Let A, --- A, be a polygon in R? with odd n. Then
[A1, .o Anl = A, A Aoyl S A (2.21)
Proof. First it is clear that
0, Ay, ..., Ay = A1, ..., Ay, 0l = Ay, ..., Ay

since
0,A1,..., A, = [0,A1 — As+ -+ A, |+ A1, ..., Ayl
|A1, ... AL 0l = A, A+ AL — Ao+ + A0
Now, using Corollary 6.1, taking X = —A,,, we can write
Ay, .. LA = AL —An As— A, Ao — A Ay — Ay

= |A1_AnaA2_Ana“- 7An—1_An|
== ‘O,Al—An,AQ—An,... ,Anfl—An|,

from which, adding A,, to each column in |0, A; —A,,, As—A,,, ..., A,_1—A,| we get (2.21). O
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Corollary 10.1. Ifn is odd then for each i € {1,... ,n} holds (cyclic)
|Aiy o AL A A = A AL
Theorem 11. Let A; --- A, be a polygon in R* with even n and lety ;. (—1)"A; = 0. Then
Ay, AL = A Ary e A
Proof. By Theorem 7, taking X = —A,,, we can write
|Ar, ... AL = A1 — A, A — A AL — Ay
and so on as in the proof of Theorem 10. O

Theorem 12. Let A, --- A, be a polygon in R?* with odd n and let k be an integer such that
1<k<n. Then

k+1 n+k—1 n—k+1 2n—k—1

k n—=k
DTADY A Y AI=D AL A D> AL (2.22)
=1 1=2 i=n =1 1=2 i=n

Proof. Follows from Corollary 6.1 and Corollary 10.1. Namely, if we add X = =" | A, to
each column of the g-determinant on the left of (2.22) we shall get the g-determinant on the
right side. U

For example, if £ = 2, we can write

5 5
|A1+A2,...,A5+A1’ - ’A1+A2—ZA“,A5+A1—ZA,L|
=1 =1
| —(As+ Ay + As), ..., —(As+ As + Ay)|

= A1+ Ay + As,. .. A5+ AL+ Al
So, for pentagon we have the following equalities:

‘A1—|—A2,... ,A5+A1’:‘A1+A2+A3,... ,A5+A1—|—A2’,
|Ar, .. As| = [AL+ As + As+ Ay, As + AL+ Ag + Asl

In this connection let us remark that (since m = 2) it holds

—ay, ..., —ap ai, ..., Gy
‘—bl, U S [ P W
Corollary 12.1. Let By ---B,, and C, ---C,, be polygons in R* such that
jk—1
Bj = ZA“jzl,,n
=j
j+n—k—1
Cj = Z Ai,jzl,...,n.
i=j

Then the area of the 2-outscribed polygon to the polygon Bi --- B, is equal to the area of the
2-outscribed polygon to the polygon Cy ---C,.

Proof. Clear from Theorem 4. O



M. Radié: About a Determinant of Rectangular 2 x n Matrix and its ... 339

3. Some generalizations of similarity in the set of the polygons in a plane; pseu-
dosimilarities

First about notation which will be used. For convenience in the following we shall, instead
of the plane R? use the Gauss plane. So, if z,...,2, are given complex numbers, then
by z1---z, will be denoted the polygon whose vertices correspond to the complex numbers
21, .., 2p (in this order).

Let A=ay---a,, B="b---b, be given polygons in Gauss plane. Then will be written

A(dir ~)B
if there are complex numbers « # 0,  such that
(Ij:Oébj—Fﬁ, j:1, ,n.

(One says: A is directly similar to B.)
Ifaj =abj+ 03, j=1,...,n, then will be written A(ind ~)B.

For a given polygon A = a; - - - a,, the polygon Ker®™A = b, - - - b, so-called k-kernel of
A, is defined by

aj + @1+t g
k Y

b = j=1,...,n. (3.1)

If there exists a unique polygon whose k-kernel is the polygon A, let it be denoted by A% =

agk), . ,a,(@k). For example, if A = ajasas, then A® = a?)ag)aéz), where

a§2) = ay — az + as, a§2) = az —az + ay, aff) = a3 — a1 + as. (3:2)

(It is easy to show that for a given polygon A = a; ---a, there exists polygon A*) and is
unique iff GCD(k,n) = 1.)

Sometimes it is convenient to write (ay, ... ,a,) instead of a; - - - a,. So, the polygon given
by (3.2) can be written as

((Zl — Q9 + as, a2 — as + ap,az — ap —+ CLQ).
We commence with triangle. The following theorem can be easily proved.
Theorem 13. Two triangles A = ajasaz, B = bibobs are directly similar iff

ay ag as

b b b =0 (3.3)

Proof. First let us suppose that A(dir ~)B, that is, there are a # 0 and [ such that
bi = aa; + ﬂ, 1= 1, 2, 3. (34)

We have to prove that in this case holds (3.3). The proof is easy. Namely, we can use
Corollary 6.1, taking X = (0, —f3), and write

a; az as

by by bs

aq (05} as o
aa; + 03 aay+ 0 aaz+ 5|

a az as
aa; CGag Qaas
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Conversely, if (3.3) is fulfilled, we can write

0_a1 a9 a3_a1—a3 a9 — 4g 0 . a; —az ag —as
by by bg|  |bi—b3 by—bs O by —bs by —bs
= (a1 — ag)(bg - b3) - ((12 — ag)(bl - b3)
Putting
by —bs by — s
o = —_=
a; — as ag — asg
we get
b1 = aaq + bg — Qas, bQ = aay + b3 — as
or
by = aay + f, by = aax + 3, by = aaz + f,
where = by — aag. (So, b3 = aag + (.) Theorem 13 is proved. O

In the same way it can be proved that two triangles A = ayasa3 and B = b1bybs are oppositely
similar iff

ap az as

by by b3

= 0. (3.5)

Now we shall define some relations between polygons in the Gauss plane. With P we shall
denote the set of all polygons in the Gauss plane, and by P, will be denoted the set of all
polygons in the Gauss plane which have even number of vertices. The set P\P, will be
shorter written as P;.

We may proceed in two ways.

First way: Let Ry and Ry be binary relations defined in P; and P, respectively, such that
holds:
IfA=ay---a, and B =0b;---b, are polygons in Py, then

al a2 DY an

ARIE <~ bl bg . bn

Butif A=a;---a, and B =0by---b, are polygons in P,, then

ap+ay as+az --- a,+aq

AR>B
_R2_<:> bl+b2 bg+b3 bn+b1

=0.

Second way: Let R be the binary relation defined in P such that holds: If A =a; ---a, and
B =10by---b, are polygons in P, then

a1+a2, CL2+CL3, LI apn + a1

ARB <= 1) by o b4 by

= 0. (3.6)
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As can be seen, the second way has an advantage in relation to the first since (3.6) can be
used for even n and odd n. In this connection let us remark that Theorem 7 can be used

since for even n
- fa; + a;41 0
—1)¢ = )
> (525) - o)
So, we shall proceed in the second way. The relation R in the following will be given by (3.6).
First it is easy to see that R is reflexive and symmetric relation, but is not transitive.

Also it is clear that this relation contains the relation “direct similarity” in the set P since

a’1+a2 s Tty a’n+al —
alag +az) +26 , -+, ala,+a1)+20

a; + ag y T ap + a;

alay +as) , -+, alag+a)| 0

So the relation R is a generalization of the relation “direct similarity” in the set P. We shall
investigate it in more detail. The following definition will be used.

Definition 2. Let Ry be the binary relation defined in Py such that holds: If A = ay---ay,
and B = by - - - b, are polygons in Py then ARsB iff there are numbers a # 0, (3, v so that

by = aa;+06,i=1,3,... , n—1 (3.7)
by = aa;+7v, j=2,4,...,n (3.8)

where may be B =~ but it is not necessary.

From (3.7) and (3.8) it follows that R, is an equivalence relation in P,. This relation is a
subrelation of the relation R. The proof is as that for “direct similarity”.

Theorem 14. Let A=ay---a, and B = by ---b, be any given polygon in Py. Then
Ker(2)A(dir N)Ker(2)§ <~ AR,B.
Proof. As already said, Rs is an equivalence relation in P,. From (3.7) and (3.8) follows that
bi+bii=ala;+aq1)+ 08+, i=1,...,n
which means that Ker®® A(dir ~)Ker®® B

That also Ker(z)A(dir N)Ker@)ﬁ —> AR, B it can be seen that from

bj+bj+1:0é(aj+aj+1)+(5, ]:1’ ,n

it follows
bi —aay =bs —aaz = =b,_1 — Qly_1,
by — aay = by — aay = --- = b, — aa,,
where can be put
bl—OéCll:bg—&agz"':bnfl—Ck&nflzﬁ
by —aas = by —aag =---=0b, —aa, = .

Theorem 14 is proved. O
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An important property of the relation R given by (3.6) will be stated by the following theorem.

Theorem 15. Let A = ay---a, and B = by ---b, be polygons in P such that for every Z
for which BRZ be also ARZ. Then ApB, where p is the union of the relation Ry in Py and
the relation “direct similaritiy” (dir ~) in P;.
The converse is also true, namely, if ApB then for every Z for which BRZ is also ARZ.
Briefly expressed: (VZ € P : ARZ < ZRB) <— ApB.

Proof. First it is clear from Theorem 3 that the equation

T1+ T2, To+ T3, -, TptX _
Y1+Y2, Y2+Ys, -y YntWn
can be written as
X1 T2 T2 I3 Tp X1 -0 (3'9)
Yyr Y2 Y2 Y3 Yn Y1

or

(Y2 — Yn) + 22(Ys — Y1) + -+ Ton1(Un — Yn—2) + Tu(Y1 — Yn-1) = 0.
Now let Z = z; - - - z, be any polygon in P such that ZRB, that is

21+ 22, Z2+23, -, Znt21 —0
bi+by, by+bs, oo, by+bi|
or
Zl(bg — bn) + ZQ(bg — bl) + -+ anl(bn - bnfg) + Zn(b1 — bnfl) =0. (310)

We have to find the condition that ARZ be also valid. For this purpose we shall use the fact
that every polygon Z which satisfies the condition ZRB must be in the general solution of
the equation (3.10) which may be expressed as

Z1 by — b1 0 0
Z9 0 b1 — bn—l :
| o ) + Qo . + ’
: : : b1 — b1
Zn bn - b2 bl - b3 bn72 - bn

Using the above equations in z; ---z, we have to find the condition that for all complex
numbers aq, ... ,q,_1 is also valid ARZ, that is

CLl(ZQ - Zn) + CL2(23 - Zl) +F an—l(zn - Zn—?) + an(zl - Zn) =0
or

ai[—aq (b, — ba) — ag(by — bp—1) + an—1(by, — b2) + an(by — by—1)]
+asar(by — bp—1) — az(by — b3) — ag(br — bp—1) + an—1(b1 — b3)]

+Oén_1[—CL1 (bn_g — bn) + an—Q(bl - bn—l) + an—l(bn—2 - bn) - an(bl - bn—l)] =0.
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The required condition we shall obtain by equalizing the expressions in the square brackets
with zero. From these equations it follows

az —an, az —ap ap — Qp—2 A1 — Gp—1

by — by  bs—0b1  by—bus  bi—byq

(3.11)

If the common value of the above fractions is denoted by «a, we have the following equalities

a; — Oébl = az — Oébg,
a9 — Oébg = Q4 — Oéb4,

Ap_o — ab,_o = a, — ab,,.

Hence, if n is odd, it follows

ap —aby =a3—abs=---=a, —ab, =
as —aby =a4 —aby =+ = a,_1 — ab,_1.
But, if n is even, then
ap —aby=az—aby=---=a, 1 —ab,1 = [,
ay —aby =a4 —aby=---=a, —ab, =,

where may not be 3 = ~.
It can be easily seen that the converse is also true, namely, inspection of the proof shows
that it also works in the other direction. Theorem 15 is proved. 0

So we have that R D p D Ry. The relation R may be called direct weak pseudosimilarity in
P, and the relation p may be called direct strong pseudosimilarity in P.
Concerning geometrical interpretation of the relation R we have the following theorem.

Theorem 16. Let a; and b; in (3.6) be given by a; = x; +iy;, b =u; +iv;, j=1,... n,
and let the polygons Cy---C,, Dy---D,, Ey---E,, Fi---F, be given by

Cj(j,u5), Di(ys,05), Ej(s,05), Fi(y,u5), j =1, ..
Then ARB iff

area of C---C,, = area of Dy---D,,
area of Ky ---FE, = area of F;---F,.

Proof. According to (2.4), the equality

(11+CL2, CL2+6L3, ety an—i—al _
bi +ba, by +b3, -, b+ b
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can be written as

a; as o Aas Qa aq
+ + " =0
by by by b b, b
or
n . .
Tj T Wi Tjpr T Wik _
. : :
= Uj + 105, Ujp1 + 10541
from which follows
n n
Z L Tyrr) Y5 Ve ) Z Yjs Yj+1 T L1} _ g
Y )
=\ Uit Uiy Ui+l “=1 N\ Uit Yjs Vj+1
since
Tj+ Y5, iy W] | T Tit| _ |Ys Ui LY Vi Tj, Tjq1
Uj 105, Ujp1 + Wit Ujy Ujy1]|  |Vj, Ujtl Ujy Ujp1| |Vj, Ujtl
Theorem 16 is proved. 0J

Here are some examples which may be interesting in itself.

Example 1. Let A = a; - - - ag be any given hexagon in Py and let the hexagons B = by - - - bg
and C = ¢; - - - ¢g be defined by

bi:ai—i—ul,i:l,S,S, bi:ai+u2,i:2,4,6
ci:ai+v1,i:1,3,5, Ci:ai+U2,i:2,4,6

where uq, us, v1, V2 are any given complex numbers. Then BRyC.
It is clear from Definition 2.
Of course, analogously holds for any polygon a; - - - a, in Ps.

In this connection let us remark that area of B = area of C. It can be seen from Corollary

3.2 since Y0, (—1) (gi 1 g:i 12) = 0 and Theorem 7 can be used.

Example 2. Let A = ajasasa4 be any given quadrilateral in P, which is not a parallelogram,
that is a; — as + ag — ay # 0, and let quadrilateral b;bsb3by be given by

by =ay —az+ay, by =az —as+ay, b3 =ay —a; +ay, by = a; — ax + as.
Then AR,B and area of A = area of B. The proof is easy since
bi=a1 —w, by =ay+w, b3 =a3 —w, by =a4 +w

where w = a; — ay + as — aq.
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Figure 3.1

In this connection let us remark that

biazasay, baasasay, bsasaias, biaiasas

are parallelograms and that a1b; = beay = agbs = byay (see Figure 3.1).

If now, starting from quadrilateral bybsb3bs, the quadrilateral cicaocsey is given by ¢; =
by — bs + by, co = b3 — by + by and so on, and if we so proceed, then every two such obtained
quadrilaterals are in relation R. Also may be interesting that vertices a;, b;, ¢;, ... lie on the
line aibi, 1= 1,273,4.

In the same way can be seen that analogously holds for any polygon a; - - - a,, in Py such
that w = Y1 | (=1)%a; # 0. (The polygon can not be 2-outscribed.) So, b; = a; — w, i =
L,3,...,n—1, bj=a;+w, 1 =2,4,... ,n.

Example 3. Let A = ajazas be any given triangle in P and let B = (ay+as, az+ay, a;+as).
Then, as will be shown, AZRB® | that is

ai 5] as
as + as, as + ap, a + asg

= 0. (3.12)
First let us remark that

A(Q) = (a1 — as + as,as — az + ay, a3 — a; + as), E(z) = (2a9, 2as, 2a,)
since

Ker®A® = (ay,as,a3) = A, Ker®B® = (ag + as,as + ay,a; + ay) = B.

The proof that A® RB? is as follows:

aq (05} as _ a; Qg asg + ay ag as
as +asz, asz+a;, a1+ as az as ap as aj G2
. a; Qg dasg as ap as
ey a3 a - ay az as

_ a; Qg asg . ay as ag —0
az az a az asz a
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since by Corollary 10.1 it holds

a; az as
a2 asz aj

az a; asz
a1 as as

Here let us remark that in this example instead of AP RB® can also be written A®
(dir ~)B®.

Example 4. Let A = ajasazasas be any given pentagon in P and let

B = (ag + as, a3 + a1, a4 + az, a5 + ag, a; + ay),

Q = (ag + aq4,04 + as,05 + Q1,01 + az, a9 + ag).

Then
AP RBA AP RC® BARCA,
that is
ax a as ay as
=0 3.13
CL2+CL5, CL3+CL1, a4—|—a2, CL5+6L3, a1+a4 ’ ( )
as + a4, a4+as, as+ay, a;+as, as+as ’ '
as + as, az+aiy, G4+ as, as+az, a;+ay —0 (3.15)
as + a4, aq4+as, as+a;, ay+as, as -+ as ’ '

The proof that hold (3.13) and (3.14) is in the same way as that in Example 7. The proof
that holds (3.15) is similar. Namely, the determinant in (3.15) can be written as the sum

az as a4 G5 Qi
az a4 as a1 Qg

az as a4 G5 Qi
g a5 aip Gz as

as ap Qo a3 ag
az ag az a; a2

as a; az a3 Qa4
a4 a5 aip G2 as

The sum of the first and the fourth of the above four g-determinants is equal to zero since
(by Corollary 10.1)

as a1 QAo a3 au
as G5 @1 Az ag

aqg a5 aip Gz as
s a3 Az a3 Qa4

a2 az a4 G5 Qi
a3 a4 as a1 as

In the same way can be seen that the sum of the second and the third is equal to zero.

as/\aél a1/\a5
a, a,
a 2-\_/83 a~—a,

Figure 3.2 Figure 3.3
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In connection with the determinants given by (3.13) and (3.14) let us remark that (where —
can be read correspond to):

a; in (3.13) — ag+as, a;in (3.14) — a3 + a4 (Figure 3.2),
as in (3.13) — az+a;, agin (3.14) — a4 + a5 (Figure 3.3),

and so on for a;, j = 3,4,5. (See Figure 3.3. Of course, indices are calculated modulo 5.)

aj:1¥/‘ aj+2

Figure 3.4

In connection with this example it may be interesting that B(dir N)A@), namely, it holds

a2+a5:a(a4—a5+a1—a2+a3)+ﬁ,
az+a; = alas —a; + as — az + ay) +
a4+a2:a(al—a2+a3—a4+a5)+ﬁ
a5+a3204(@2—@3+a4—a5+a1)+5a
a; +ay = alaz — ag + a5 — a; + az) +

where o = —%, 0= %(al +as + asz + ag + as).

But we have not found that in one of the expressions AYRB® AP Rc® BARC®A
can be put (dir ~) instead of R (although at first sight may look like 51m11ar1ty).

Example 5. Let A = ay---a; be any given heptagon in P and let

B = (ay+ ar, a3 + ay, a4 + ag, a5 + as, ag + ay, a7 + as, a1 + ag),
C = (a3 + ag, a4 + a7, a5 + ay, a6 + az, a7 + az, ay + aq, as + as),
D

= (a4 + a5, a5 + ag, a6 + ar, a7 + a1, a1 + az, as + as, as + aq).

Then any two of the heptagons A® B@ @ D@ are in relation R. The proof is in the
same way as that in Example 4.
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a‘+
a__%  a, 3., 9 8.
a, aj
a, a, & = a., a.;
Figure 3.5 Figure 3.6

Here are some remarks concerning expressions A2 RB® AP RC® AP RD®P given by

CL2+CL7, CL3+CL1, CL4+(12, CL5+(13, CL6+CL4, a7+a5, a1+a6 ’
aq a9 as Qg as Qg ay -0 (3 17)
a3+a6, a4+a7, a5+a1, ag + a2, CL7—|-(13, aq +CL4, as + as ’
ai ag as Q4 as Qe az
=0. (3.18)
a4+a5, a5+a6, CL6+CL7, CL7+CL1, (11+CL2 CL2+CL3, (13+CL4

We see that a; in (3.16) — as + ar, ay in (3.17) — ag + ag, a1 in (3.18) — a4 + a5 (Figure
3.5), and so on for a;, j =2,...,7 (see Figure 3.6).
Briefly told, we see that

a; — Qv + Qip7_p, t=1,... ,7Tand k =1,2,3

where k = 1,2, 3 refers to (3.16), (3.17),(3.18) respectively.
In the same way it can be seen that analogously holds for any polygon a; - - - a, in P with
odd n.

Example 6. Let A = a;...ag be any given hexagon in P and let the hexagon B = by - - - bg
be given by

by =az+as, b3=as+a, bs=a+as,
52:&4+(I6, b4:a6+a2, b6:a2—|—a4.
Then ARB and area of A = area of B. The proof is as follows.

Let s = Zle a;. Then b; + b4y = —(a; + a;41) + s, ¢ = 1,...,6. Using Theorem 7
putting X with components 0, —s), we can write
g

a1+a2, cey e 1+ a1
b1+b2, ce b6+b1

a1+a2, ceey ag + a1

= 0.
CL1+(12, R ag + aq
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In this connection the following may be interesting. Namely, if now, starting from the hexagon
by - - - bg, the hexagon ¢ - - - cg is given by ¢; = b3 + b5, co = by + bg and so on, and if we so
proceed, then every two such obtained hexagons are in relation R and have the same area.

In the same way it can be seen that analogously holds for any polygon a; - - - a,, in P with
even n.

Remark 2. In this paper we touch only on some problems where the determinant given by
(1.2) can be useful. Of course, there are many other such problems. But we hope that from
this we have stated here can be seen that this determinant may be an elegant tool in some
considerations concerning polygons.
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