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Abstract. We investigate and visualize the manifold M of planes that intersect
six straight lines of real projective three space in points of a conic section. It is
dual to the apex-locus of the cones of second order that have six given tangents.
In general M is algebraic of dimension two and class eight. It has 30 single and
six double lines. We consider special cases, derive an algebraic equation of the
manifold and give an efficient algorithm for the computation of solution planes.

1. Introduction

Line geometry of projective three space is a well-established but still active field of geo-
metric research. Right now the time seems to be right for tackling previously impossible
computational problems of line space by merging profound theoretical knowledge with the
computational power of modern computer algebra systems. An introduction and detailed
overview of recent developments can be found in [5]. The present paper is a contribution to
this area. It deals with conic sections that intersect six fixed straight lines of real projective
three space P 3.

The history of this problem dates back to the 19th century when A. Cayley and L. Cre-
mona tried to determine ruled surfaces of degree four to six straight lines of a linear complex
(compare the references in [4]). These surfaces carry a one parameter set of conic sections
that are solutions to our problem. Cayley and Cremona could prove the existence of a finite
number of solution surfaces but were unable to provide further details concerning, e.g., the
number of solutions or algorithms for their computation.

In [9] the author deals with surfaces of conic sections that carry planar families of curves
that induce projective relations between any two surface conics (families of cross ratios). He
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gives an example of a special class of surfaces with five straight lines that lie in a degenerate
line complex whose axis is contained in the surface. Every surface of that kind yields a one
parameter manifold of solution conics for this special line configuration.

As our problem is of projective nature, it can be dualized. The dual task consists of finding
the quadratic cones to six given tangents. Recently, related questions have been considered in
Euclidean settings: Cylinders of revolution to three, four or five tangents rose some interest
among Canadian and Austrian geometers but did not result in publications. Cylinders and
cones on a certain number of points are the topic of several papers ([3, 6, 7, 10, 11, 13, 14]).
The projective task of finding the cones of second order to six points comes much closer to
our topic. It has already been solved in the 19th century ([2, 12]).

In case of cones of revolution or quadratic cones in general, the apex locus got special
attention. With respect to our problem this means that we will have to investigate the dual
apex locus, i.e., the set M of all planes that carry a solution conic. It is a manifold in
dual space P 3? and deserves interest not only from the theoretical point of view: The direct
computation of solution conics (e.g., with the help of conic coordinates as presented in [1])
is quite hard while it is elementary to find the solution conic in a given plane of M .

We will start our investigation with the characterization of those line configurations that
yield a three parameter variety of solution planes (Section 2). They turn out to be trivial
and will be excluded from further considerations. Then we recall the well-known theorem of
Pascal that, together with a result of [8], will be the main tool for all further considerations.
In Section 3 we present an algorithm for deriving an algebraic equation of M . It is a little
bit lengthy, but it poses no problems to current computer algebra systems. Subsequently,
we investigate the Pascal curves of pencils of planes, we prove that M is of class eight and
characterize all straight lines on M for the general case. This will result in an algorithm
for the efficient computation of all solution planes in Section 7. Its most costly step is the
solution of an algebraic equation of degree four.

2. Prerequisites

Let S0, . . . , S5 be six straight lines in real projective three space P 3. They will be referred to
as base lines. Our aim is to determine those regular or singular conic sections that intersect all
base lines. Any such conic will be called a solution conic. In general it is uniquely determined
by its carrier plane. Therefore any such plane will be called a solution plane.

Whenever we perform algebraic calculations, we will embed P 3 in complex projective
three space P 3(C) without explicitly mentioning this. Any results are to be understood
“in the sense of algebraic geometry”, i.e., admitting complex solutions and counting the
respective multiplicities.

2.1. Klein map, Plücker quadric and reguli

When dealing with straight lines of projective three space P 3 it is often useful to transfer
them to the points of the Plücker quadric M4

2 ⊂ P 5 via the Klein map γ (see [5], p. 133 ff). If
a straight line L is spanned by two points with homogeneous coordinates (a0, a1, a2, a3) and
(b0, b1, b2, b3), its Klein image has coordinates (l01, l02, l03, l23, l31, l12) where lij = aibj − biaj.
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Figure 1: A degenerate regulus.

The line coordinates satisfy the defining relation x0x3+x1x4+x2x5 = 0 of the Plücker quadric
M4

2 .
The interpretation of straight lines as points of M4

2 allows the investigation of line space
by methods of projective point geometry and, since its introduction in the 19th century, has
been exploited in numerous ways. We will use it for defining the notion of a regulus.

Commonly, a regulus R is defined as the set of lines that intersect three pairwise skew
lines R0, R1, R2. It corresponds to a non-tangential planar section of M4

2 , i.e., a regular conic
on the Plücker quadric. Its adjoint regulus R̃ is the set of lines that intersect the elements
of R. It corresponds to the conjugate intersection of M4

2 .
For our purposes it will be useful to extend this notion of a regulus to degenerate cases

as well. If one or two pairs of the straight lines R0, R1 and R2 intersect, there still exists a
one parameter set of common intersection lines. It consists of two pencils of lines so that the
vertex of one lies in the supporting plane of the other (Figure 1). We will call this set of lines
a degenerate regulus. It corresponds to a tangential planar intersection of M4

2 (a degenerate
conic on the Plücker quadric) and equals its adjoint regulus. When we talk of a regulus, we
will usually refer to this extended concept.

A plane containing an element of a regulus will be called a tangent plane. The union
of all points on elements of a regulus is called its carrier quadric. It is singular in case of a
degenerate regulus. Note that any three lines R0, R1 and R2 determine a unique regulus as
long as they are not concurrent or coplanar.

2.2. Trivial configurations

A generic plane ε intersects the base lines Si in six points si that in general do not lie on
a conic section. There are several ways of seeing that this “conic restriction” defines an
algebraic manifold M of solution planes that will usually be of dimension two (compare, e.g.,
Section 3). However, there are base line configurations where all planes in P 3 are solution
planes:

Theorem 1. The manifold M of solution planes is of dimension three iff the base lines have
a common carrier quadric or if at least four of them are coplanar.

Proof. Due to the algebraic character of the problem, a three parameter variety of solution
planes implies that all planes of P 3 are solution planes. Clearly, this is the case for the
two configurations mentioned in the theorem. We have to show that there are no further
possibilities.
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We assume that no four base lines are coplanar. It is an elementary task to see that there
exist two skew base lines Si and Sj. They and a further base line Sk span a regulus R. Now
we have to distinguish two cases:

If Sk does not intersect both base lines Si and Sj, there exist infinitely many elements of
R that intersect Si, Sj and Sk in three pairwise different points. Therefore, the intersection
points of infinitely many tangent planes of R with the remaining base lines must be collinear
as well. This is not possible, if they are concurrent or coplanar. Consequently, they have a
well-defined carrier quadric that is identical to the carrier quadric of Si, Sj and Sk.

If Sk intersects both Si and Sj and if we cannot find a base line Sk′ not exhibiting this
behavior, the base lines are necessarily the edges of a tetrahedron. However, since there exist
coplanar base line triples, a generic plane contains exactly three collinear intersection points
with base lines and is no solution plane.

Configurations with a three parameter manifold of solution planes are of little geometric
interest. We will therefore exclude them from our further considerations. I.e., we will assume
that the base lines have no common carrier quadric and that no four of them are coplanar.

2.3. Pascal’s theorem

A conic section C ⊂ P 3 is uniquely determined by five pairwise different coplanar points
a0, . . . , a4. In order to test whether a sixth point a5 is contained in C one can use Pascal’s
theorem (B. Pascal, 1639). It states that the six points a0, . . . , a5 lie on a conic section iff
the three Pascal points

p1 = (a0 ∧ a1) ∩ (a3 ∧ a4), p2 = (a1 ∧ a2) ∩ (a4 ∧ a5), p3 = (a2 ∧ a3) ∩ (a5 ∧ a0)

are collinear.1 If this is the case, their connecting line is called the Pascal axis of a0, . . . , a5

(Figure 2). Note that Pascal points and Pascal axis depend on the point sequence rather
then the point set. An index permutation of a0, . . . , a5 leads to different Pascal points and a
different Pascal axis. For later reference, we state a simple lemma:

Lemma 1. Two Pascal points coincide iff two base line triples (ai, ai+1, ai+2) and (ai+3, ai+4,
ai+5), respectively, are collinear.2

Pascal’s theorem is a good tool for characterizing solution planes. If the Pascal points of
the intersection points si of a plane ε with the base lines Si are well-defined we call them
the Pascal points of ε. Otherwise (if ε contains a base line, an intersection line of four base
lines Si, Si+1, Si+3 and Si+4 or a possible intersection point of two subsequent base lines) its
Pascal points are undefined. If this is the case, ε contains a solution conic anyway and we
may state:

A plane is solution plane iff its Pascal points are either collinear or undefined.

1The wedge symbol ‘∧’ denotes the span of two projective subspaces.
2Here and in the following indices that are out of range have to be read modulo six.
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Figure 2: The theorem of Pascal.

3. The algebraic equation of M

Now we want to derive an algebraic equation of M . It will characterize the collinearity of
a plane’s Pascal points in terms of homogeneous plane coordinates Ru = R(u0, u1, u2, u3).

3

Later in Section 7 we will propose a method for computing solution planes that only requires
solving an algebraic equation of degree four. It will be based on considerations of this section
and Section 5.

For the computation with mixed point, line and plane coordinates, an affine interpretation
of P 3 is useful. We define a plane at infinity x0 = 0 and use the notations

xR = (x0,x)R, Ru = R(u0,u) and gR = (g,g)R

for homogeneous point, plane and line coordinates. In this equation, x0 and u0 are scalars
while x, u, g and g are vectors of dimension three.

The connecting line of two points (p0,p)R and (q0,q)R, the intersection point of a line
(l, l)R and a plane R(u0,u) and the intersection point of two concurrent lines (l, l)R and
(k,k)R are obtained as

(p0,p)R ∧ (q0,q)R = (p0q− q0p,p× q)R, (1)

(l, l)R ∩ R(u0,u) = (ul,−u0l + u× l)R, (2)

(l, l)R ∩ (k,k)R = (lk, l× k)R. (3)

These formulae fail, if the span or intersection is not properly defined. Additionally, for-
mula (3) cannot be used if l and k are linearly dependent (compare [5], p. 137 ff).

With the help of (1), (2) and (3) it is not difficult to compute the Pascal points p0, p1

and p2 of a plane in terms of the plane coordinates Ru. In order to test the Pascal points
for collinearity, we can compute the coordinate determinant D = D(u) of p0, p1, p2 and an
arbitrary fourth point p3. The roots of D(u) = 0 indicate either collinearity of the Pascal
points p0, p1 and p2 of a plane or incidence with p3. Thus, we can derive an algebraic equation
that describes all points of M in the following way:

3Our notation follows the conventions of [5] where a plane with coordinate vector u is denoted by Ru. The
‘R’-symbol reminds us that u is determined up to non-zero scalar factors. Points will be denoted by symbols
of the shape pR and can be distinguished from plane symbols by the position of the R.
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Step 1: Compute the Pascal points p0, p1, p2 of an indeterminate plane ε = Ru by means
of formulae (1), (2) and (3). Their coordinates are homogeneous polynomials of
degree four in u.

Step 2: Choose an arbitrary point p3 = p3R and compute the coordinate determinant D(u)
of p0, p1, p2 and p3. It is a homogeneous polynomial of degree twelve in u.

Step 3: The equation D(u) = 0 describes not only the solution planes but also the addi-
tional bundle of planes through p3. Thus, M is also described by the algebraic
equation E(u) := D(u)/(p3 · uT) = 0 of degree eleven.

The last step eliminates a bundle of “virtual” solution planes that comes from our collinearity
test for the Pascal points. But there exist further unwanted roots of D(u): The computation of
the Pascal points fails for all planes of the bundle u0 = 0 since, in this case, the connecting line
Tij of the intersection points Si∩ε and Sj∩ε has line coordinates (tij, tij) where Si = (si, si)R
and tij = det(u, si, sj)u. Thus, all vectors tij are proportional and the intersection formula (3)
produces zero vectors. As a result, u3

0 is a factor of E(u) and we can further simplify the
equation of M :
Step 4: Set F (u) := u−3

0 E(u). This eliminates a bundle of virtual solution planes of multi-
plicity three. The resulting equation F (u) = 0 of M is of degree eight.

In Section 5 we will see that M is of class eight. Thus, the degree of F (u) cannot be
further reduced.4 The algorithm’s computational details are not difficult and may be left to
a computer algebra system. We have implemented it on average PC hardware and obtain
both, numeric and symbolic results within a few seconds.

A dual image of M is displayed on the left-hand side of Figure 3. It has been produced
by identifying plane coordinates Ru with point coordinates uR. This surface is an example of
the generic case. The special case depicted on the right-hand side is explained on page 443.

4. The Pascal curves of a pencil of planes

The results of this section will be used in Section 5 for the investigation of straight lines on
M . However, they are interesting in their own right as well. In contrast to the preceding
section we will henceforth (until Section 7) use synthetic reasoning. Thereby, we will make
the additional assumption that no three base lines are coplanar or concurrent. We will refer to
this as regularity condition. It ensures that any three base lines define a (possibly degenerate)
regulus.5

Consider a pencil of planes E. Due to our regularity condition, the three Pascal points
pi = pi(ε) of almost all planes ε ∈ E are well-defined. The closure of the union of all Pascal
points pi is a curve Ci ⊂ P 3 that will be called the i-th Pascal curve of E.

Theorem 2. In general the Pascal curves of a pencil of planes are twisted cubics.

4This means that possible factors of F (u) are not the result of a specific computation technique but have
a geometric meaning.

5In most cases it is sufficient to require the existence of a certain number of non-coplanar and non-
concurrent base line triples. However, in order to simplify things and to avoid too many cases we will not
stay as general as possible. A few results for the excluded cases will be presented in Section 8.1.
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Figure 3: Two dual images of M : The left image shows a generic case, while the surface on
the right has a special property: The horizontal line in the center of the image is a triple line
(compare Section 6).

Proof. Consider the pencil of planes E with axis E. The planes of E induce a projective
relation between any two base lines Si and Sj. In general (i.e., if Si, Sj and E are pairwise
skew) this projectivity generates a quadric Qi,j through E. The Pascal curve Ci is now
contained in the intersection Qi,i+1 ∩Qi+2,i+3 which consist of E and a cubic remainder.

From the proof of Theorem 2 we may draw conclusions for the non-generic case as well.
The Pascal curve C0 is not cubic if Q0,1 or Q3,4 are not regular quadrics or if their intersection
contains a straight line besides E. A discussion of both possibilities yields the following result:

Theorem 3. The Pascal curve Ci of a pencil of planes with axis E is a conic iff either the
base lines Si and Si+1 or Si+3 and Si+4 are concurrent, if E intersects one of these lines
or one of the straight lines that intersect Si, Si+1, Si+3 and Si+4. The Pascal curve Ci is a
straight line, iff two of these incidences come together.

To complete the picture, we mention that the Pascal curve Ci consists of a single point only
iff E intersects three base lines Si, Si+1, Si+3 (or Si, Si+1, Si+4). In this case we will speak
of a degenerate Pascal curve.

The points of the Pascal curve Ci of a pencil of planes E are related to the planes of E in
a natural way. A rational parameter representation Re(s) = Re0 +sRe1 of E induces rational
parameterizations Ci . . . ciR(s) of the Pascal curves so that ciR(s) ∈ Re(s). Since each plane
of E corresponds to exactly one point of Ci, the Pascal curve must intersect the axis E of E
in exactly two (possible coinciding or complex) points. The situation for conic sections and
straight lines is similar (compare Figure 4) and we get:

Theorem 4. If the Pascal curve Ci of a pencil of planes E is not degenerate, it intersects
the axis of E in δ − 1 points where δ ∈ {1, 2, 3} is the degree of Ci.
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Figure 4: A Pascal curve of degree δ intersects the pencil axis in δ − 1 points.

5. The class of M

In this section we will show that M is of class eight. This has already been indicated (but
not proved!) by the computations in Section 3. Here, we will use a more geometric approach
that will turn out to be very useful. We begin with the following crucial lemma. Its proof
(together with further clarifications concerning certain notions) is given in [8].

Lemma 2. Let D0, . . . , Dg be rational curves in real projective n-space P n. The degree of Di

be δi. The curves D0, . . . , Dg be in projective relation such that they generate a one parameter
set G of subspaces U(s) ⊂ P n of generic dimension g. Then the class γ of G and the (finite)
numbers νi of subspaces U(s) of dimension g− i are linked via the equation γ +

∑
iνi =

∑
δi.

Theorem 5. The manifold M of solution planes is of class eight.

Proof. We have to show that a generic test line E ∈ P 3 is incident with eight solution planes.
In order to do this, we consider the pencil of planes E with axes E. The class of M equals
the number of collinear Pascal points in the planes of E.

At first, we assume that no two base lines Si and Si+1 intersect. Theorem 3 and the
generic position of E guarantee, that the Pascal curves of E are twisted cubics. At the end
of Section 4 we saw that the Pascal curves are projectively related by the planes of E. Thus,
Lemma 2 may be applied to them with g = 2, Di = Ci, G = E and, consequently, γ = 1
and

∑
δi = 9. Since coinciding triples are not possible because of Lemma 1 and the assumed

general position of E, we have νi = 0 for i > 1. This results in ν1 = 8 collinear triples of
Pascal points. Consequently, the class of M is eight.

Now we assume that exactly one pair of base lines Si and Si+1 is concurrent. In this case
Ci is of degree two. Using the same arguments as above, we obtain ν1 = 7 collinear triples
of Pascal points. Since the bundle of planes through Si ∩ Si+1 is an irreducible part of M ,
the total class is eight as well. Further intersection points of consecutive base lines lead to
further bundles of planes as irreducible parts of M but do not change the total class.

6. Straight lines in M

In this section we will investigate straight lines in M . A line L is said to be contained in M
if all planes of the pencil with axis L are contained in M . This is just the dual of a straight
line being contained in a two-dimensional manifold of P 3. It is not difficult to find straight
lines in M . The base lines are obvious candidates. In fact, we even have

Theorem 6. The base lines are double lines of M .
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Proof. Let E be a straight line concurrent with the base line Si. The two Pascal curves Ci

and Ci+2 of the pencil of planes E through E are conic sections. Following the ideas of the
proof of Theorem 5 we see that there exist six solution planes besides E ∧ Si in E. Hence,
E ∧ Si counts twice and Si is of multiplicity two.

An intersection line L of at least four base lines is contained in M as well. The planes of the
pencil L through L contain singular solution conics. In general, there exist 30 lines of that
type (two for each of the 15 base line quartupels). If four base lines lie in a regulus, there
exist infinitely many. From Theorem 3 it follows that L is a single line in general and a triple
line iff it intersects all six base lines. Figure 3 displays an example of the latter case.

In general there exist no further straight lines on M . Before proving this we introduce a
few useful notions: The regularity condition on page 440 guarantees that any three base lines
Si, Sj, Sk lie on a unique regulus Ri,j,k. We will call it a base line regulus. Its adjoint regulus
R̃i,j,k will be called adjoint base line regulus. If {i, j, k} and {̄i, j̄, k̄} are disjoint subsets of
{0, . . . , 5}, the base line reguli Ri,j,k and Rī,j̄,k̄ are called complementary, Ri,j,k and R̃ī,j̄,k̄ are
called adjoint complementary.

Theorem 7. In general M contains six double lines (the base lines) and 30 single lines (the
intersection lines of four base lines).

Proof. Consider a straight line L that is contained in M . If it intersects exactly three base
lines Si, Sj and Sk or is element of Ri,j,k, it must be contained in the complementary or
adjoint complementary base line regulus of Ri,j,k. In general this is not possible since the
intersection of two complementary or adjoint complementary base line reguli does not contain
straight lines. Therefore, there exist exactly two tangent planes of Ri,j,k through L. They
must be tangent to the complementary base line regulus as well which, again, is impossible
in the general case.

This proof shows that straight lines on M different from those mentioned in Theorem 7 might
be possible for special base line configurations. In particular, we can say that the straight
line L lies in M if it is contained in

• the bundle of lines through an intersection point of two base lines,

• two complementary base line reguli or

• a base line regulus and its adjoint complementary regulus.
Our usual argument (using Lemma 2) shows that L is of generic multiplicity one in any of
these cases. The question whether there exist base line configurations with further straight
lines on M remains open. At any rate, the tangent planes to any two complementary base
line reguli must be identical. We conjecture that this is not possible.

7. Computation of solution planes

Having learned more about the structure of the manifold M we are ready for the effective
computation of solution planes. The algorithm of Section 3 and Theorem 5 provide the
theoretical background for our strategy. The latter guarantees that every straight line E that
is concurrent with two base lines Si and Sj contains exactly four solution planes differentfrom
E ∧ Si and E ∧ Sj. For their computation it is sufficient to solve an algebraic equation of
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degree four. As M is of dimension two, the union of these planes contains all planes of M
(or at least a non-trivial component if M is reducible). We propose the following steps:
Step 1: Choose a straight line E that intersects two skew base lines Si and Sj.

Step 2: For k = 0, . . . , 5 define Rek = E ∧ Sk and parameterize the pencil of planes e
through E according to ε(s) = Re(s) = Rei + sRej.

Step 3: Insert the plane coordinates of ε(s) in the algebraic equation of F (u) = 0 of M .
The result will be a polynomial F (s) of degree six with 0 as zero of multiplicity
two (i.e., the two tailing coefficients vanish).

Step 4: Divide F (s) by s2 and solve the resulting algebraic equation of degree four. Its
four roots lead to the solution planes in e.

This algorithm can still be optimized: Firstly, we can replace any polynomial division by index
shifts if we choose p3 = R(1, 0, 0, 0) in Step 2 of the algorithm in Section 3. The polynomial
D(u) will then have the factor u4

0. Secondly, it might not be necessary to compute the
algebraic equation of M . In this case, we can perform all steps of the algorithm in Section 3
directly with the plane coordinates of ε(s).

The computation of solution planes simplifies if two base lines intersect or four base lines
have a common carrier quadric. In this case the bundle of planes through the intersection
point or the set of tangent planes of the quadric are components of M . The class of the
remaining part reduces by one or two, respectively. An example is depicted on the right
hand-side of Figure 5. It shows the dual image of the manifold of solution planes to the six
straight lines

S0 = (0, 1, 1, 0,−5, 5)R, S1 = (0,−1, 1, 0, 5, 5)R, S2 = (−1, 0, 1,−5, 0, 5)R,

S3 = (1, 0, 1,−5, 0, 5)R, S4 = (1, 0, 0, 0, 8, 0)R, S5 = (0, 1, 0, 0, 8, 0)R.

It is easy to verify that the base line quadruples (S0, S1, S2, S3), (S0, S3, S4, S5) and (S1, S2, S4,
S5), respectively, lie on reguli. Therefore, M is the union of four dual quadrics.

8. Final remarks

8.1. Special cases

From Section 4 onwards we have assumed that no three base lines are coplanar or concur-
rent. At the same time, we have mentioned that we could prove most results with weaker
assumptions. Actually, the generic case is even more complicated and, without going into
detail, we can summarize a few results for the neglected special cases:

1. If three base lines (say S0, S1 and S2) are coplanar, the manifold M of solution planes
consists of six bundles of planes and a dual quadric (possible degenerate). The bundles
have vertices S0 ∩ S1, S1 ∩ S2, S2 ∩ S0 and Si ∩ σ where σ is the carrier plane of S0,
S1 and S2 and i ∈ {3, 4, 5}. The quadric is defined by the base lines S3, S4 and S5. If
more than three base lines are coplanar or if S3, S4 and S5 have a common supporting
plane, all planes of P 3 are solution planes.

2. If two base lines (say S0 and S1) intersect in a common point x, the bundle of planes
p through x is an irreducible part of M . If a third base line (say S2) is incident with
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Figure 5: If four base lines are concurrent, M splits in a bundle of planes of multiplicity four
and a remaining part of class four that is visualized in the left image. The right hand side
displays an example with three quadruples of base lines that lie on quadrics. In this case M
consists of four dual quadrics.

x, one would expect that the multiplicity of p is higher than one. In fact, it is not
difficult to see (compare Section 6) that p is of multiplicity two in general. Similarly,
four base lines through x raise the multiplicity of p to four, five concurrent base lines
to six and six concurrent base lines to eight (i.e., M consists of a bundle of planes with
multiplicity eight).

In Figure 5 we depict an example of with four concurrent base lines. The manifold of solution
planes consists of a bundle of planes of multiplicity four and a quartic remainder.

8.2. Future research

We have investigated the manifold of planes that intersect six given lines in points of a
conic section. The presented algorithms can be used for their efficient computation. Open
questions of interest concern solution conics with additional constraints. We mention a few
examples:

1. Any two solution conics that are projectively related via the base lines lead to solutions
of Cayley’s and Cremona’s problem (Section 1). According to [4], p. 246, this is only
possible, if the base lines belong to a linear line complex. So this case deserves special
attention. As a first step towards the solution, one may investigate the two parameter
manifold of conics that are projectively related by five given lines.

2. The algebraic equation F (u) of M can be used to determine the solution planes in a
bundle or, dually, to find the cones of second order to six tangents with vertex in a
given plane ω. In an appropriate affine interpretation, these solution cones are cylinders.
Thus, we can compute those cylinders of second order that are tangent to six given lines.
In general there exists a one parameter variety of solution cylinders.
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3. Additionally one may want to impose Euclidean constraints on the solution conics or
cones. There should be a finite number of circles that intersect six given lines or a finite
number of cylinders of revolution to six given tangents. Removing one base line will
lead to one parameter sets of circles and cylinders of revolution.

4. Finally, one can increase the number of base lines. Eight base lines will, in general,
result in a finite number n of solution conics. From Theorem 5 we obtain the upper
boundary 83 = 512 for n but, actually, it might be smaller.

So far, we do not know whether our results will help answering at least some of these questions
(especially the Cayley-Cremona problem). The computational effort seems to be rather high
but perhaps a closer investigation of M or similar manifolds will yield further results.
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[10] Strobel, U.: Über die Drehkegel durch vier Punkte. Sbr. d. österr. Akad. Wiss. 198
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