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Abstract. The notion of the central projection in spaces of pencils is generalized
and new concepts of projections are introduced. The category of projectivities with
segment subspaces as objects arises. These general projectivities are collineations
given by linear maps.
Properties of pencils of segment subspaces and projections between segments are
investigated. Classical projections of lines onto pencils of hyperplanes are consid-
ered in terms of spaces of pencils as projections of lines onto pencils of segment
subspaces.

Introduction

The paper deals with projections defined (in possibly the most general way) in spaces of
pencils. Let us recall briefly that the space of k-pencils R = Pk(P) is an incidence structure
whose points are all k-dimensional subspaces of a projective space P, and whose lines are
pencils of such subspaces (in the paper we use this definition expressed in the language of
vector subspaces of a vector space V , so Pk(P) ∼= Pk+1(V ), while P ∼= P1(V )). Spaces
of pencils are partial linear spaces (a synthetic characterization of their geometry can be
found, e.g. in [2]). Let us stress that we do not assume that P (or equivalently V ) is finite-
dimensional, though, of course, k is finite (1 ≤ k, k + 1 < dim(P)). Moreover, we do not
assume that Pis pappian.

The following notions: projection (between two subspaces), projective correspondence,
perspectivity, and projectivity play crucial role in the classical projective geometry when it
comes to determine linear collineations, linear correlations or quadrics (cf. e.g. [1, Ch. II.10],
[7], [9, Ch. 4]), as well as in foundations of plane projective geometry (cf. e.g. [15]). Spaces of
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pencils, which are theatrum of our investigations, generalize projective spaces and projections
in spaces of pencils appear as important as they are in projective geometry.

The question is how to define projections.
An arbitrary space of pencils R satisfies both Veblen and Shult (none, one or all) axioms and
therefore there is no difficulty in defining central projections between the lines of R (cf. [14]).
However, the standard definition of a central projection applied to (linear) subspaces X1,X2

of higher dimension of R yields that X1,X2 are contained in some strong subspace (i.e.
subspace where every two points are collinear) of R. Since the intersection of any two distinct
strong subspaces of R is contained in a line, classical central projections are insufficient to
characterize a projective map which moves a strong subspace onto another one. This is the
reason to generalize the standard construction.

Projections considered in the paper are (partial) maps between segment subspaces of R.
In terms of the underlying projective space P a segment subspace [Z, Y ]k is defined to be the
family of all k-subspaces of P which are contained in a fixed subspace Y and contain a fixed
subspace Z. Evidently, this definition generalizes the definition of a pencil. From view of the
geometry of R segment subspaces are exactly these subspaces of R that carry the geometry
of a space of pencils. So, the choice of domains of projections seems natural.

The following general idea characterizes projections: projected subspace X1, its image
X2, and a subspace X3 which contains the “center” Y of the projection are in one pencil, and
through any point on X1 \X2 there is exactly one line which crosses both X2 and Y . To make
this idea a strict definition first we have to precise the notion of a pencil of segment subspaces.
This is done in (2). After that, nearly all the remaining notions related to “projection” can
be defined pretty “automatically” and analogously as it is done in the classical projective
geometry.
We do not know if our notion of a pencil of subspaces and, consequently, the notion of a
projection are the most general in the theory of spaces of pencils. It is however general
enough to produce well known types of projections in the case when we start from a pappian
finite-dimensional projective space P. It is also general enough to characterize collineations
and correlations acting on segment subspaces and determined by linear maps.

In the context of non-pappian and dimension-free projective geometry some techniques
and results commonly used to investigate projections become more or less useless. In partic-
ular, the analytical methods involving coordinates (and matrices) cannot be easily used here.
Similarly, the method involving Plücker coordinates, which in the pappian geometry enables
us to embed the space of pencils Pk(V ) into the projective space P1(

∧k V ) (cf.+[5]) cannot
be applied. What is more, the Fundamental Theorem of Projective Geometry, which states
that a projectivity defined on a line (on a pencil) is uniquely determined by the images of
three points of this line (resp.: of three elements of this pencil), fails in non-pappian geometry
(cf. [3, Ch. I], [5, Ch. I.15], [6]). Therefore, we have chosen as a basic language the lan-
guage of the lattice of subspaces with the dimension function defined on it. This adds some
complexity, but within this more general framework we are able to prove analogues of most
of the classical results. In particular, we can provide a classification of pencils, characterize
linear (“analytically” linear) maps as projectivities (compositions of projections) of various
types, and study perspectivities.

From our perspective projections in the paper are (partial, “locally linear”) point trans-
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formations of some particular partial linear space – a space of pencils. On the other hand our
projections can be viewed as transformations of some families of subspaces of a projective
space P, it is just a matter of taste. From this view one can immediately find connections
with various “generalized projections” considered in the projective geometry (here, in the
case of pappian projective geometry, one can refer to many older and newer works including
[3, 4, 5, 6, 7, 12]).

Perhaps some portion of the theory of our projections could be presented in a more
synthetic way, based on an axiomatic characterization of spaces of pencils, but such an
approach is not so common.

1. Notations and generalities

Let V be a vector space over a not necessarily commutative field F . We write Θ for the
zero subspace of V and Subk(V ) for the set of all k-subspaces of V . If Z, Y are subspaces
of V and Z ⊆ Y , then [Z, Y ], that is, the set of subspaces U such that Z ⊆ U ⊆ Y , is a
segment of the lattice L(V ) of subspaces of V (comp. [8]), and [Z, Y ]k = [Z, Y ] ∩ Subk(V ).
If 0 < k < dimV we write p(H,B) for [H,B]k such that B is a (k+ 1)-subspace of V and H
is a (k − 1)-subspace of B. We call p(H,B) a k-pencil. The family of all k-pencils is Pk(V ),
and the space of pencils Pk(V ) is the structure:

Pk(V ) =
〈
Subk(V ),Pk(V )

〉
.

The space of pencils as defined above, is sometimes called Grassmann space, or more precisely:
a Grassmann space representing (k− 1)-dimensional subspaces of the projective space P1(V )
(cf. [16]).

The fundamental notion used in the paper is a segment subspace of a space of pencils.
Segment subspaces are exactly those subspaces which have the structure of a space of pencils,
that is, they are isomorphic images of a space of pencils (cf. [17]). Strong subspaces, i.e.
those where every two points are collinear, are segments [Z, Y ]k with dimZ = k − 1, or
dimY = k + 1, respectively stars and tops. Every line p extends to the maximal star and
maximal top uniquely (cf. [16]), which we denote by S(p), T (p) respectively.

Let for a moment A = 〈S,L〉 be an arbitrary partial linear space. We write a ∼ b if
points a, b ∈ S are collinear, and a � b if not. A subset X1 of S adheres weakly a subset
X2, in symbols X1 C| X2 or X2 |B X1, iff for any point x1 of X1 there are some points in X2

collinear with x1. To exclude trivial cases, where X1 ⊆ X2, we say that X1 adheres strongly
X2, and write X1 C|B X2, iff X1 \ X2 mutually adheres X2 \ X1.

2. Pencils of segment subspaces

In a projective space a pencil of subspaces is a family of all m-subspaces which share a
(m − 1)-subspace, the vertex, and lie in some (m + 1)-subspace, the base of that pencil. In
the geometry of spaces of pencils the definition gets complex as there are various classes of
subspaces. In the paper we deal with pencils of segment subspaces. An analytical definition
of such pencils is given in (2) and their geometrical characterization in 2.13.
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We adopt the following conventions that ∞− n = ∞, ∞ + n = ∞, and the like for a
finite n. For Z, Y such that Z ⊆ Y we also identify dimY − dimZ with dimY/Z.

The index of a segment subspace X = [Z, Y ]k of Pk(V ) is idx(X ) = k − dimZ, and
co-index is coidx(X ) = dimY − k, in other words, index and co-index of a corresponding
space of pencils Pk−dim Z(Y/Z) (cf. [16]). Geometrically, the index (co-index) is the projective
dimension of a maximal top (star) that lie in X . The pair pdim(X ) = (idxX , coidxX ) is the
pencil (geometrical) dimension of the segment subspace X . We call two segments similar if
they are of the same dimension. Note that segments of Pk(V ) are similar if their vertices
and bases are of equal linear dimensions, and conversely.

A linear subspace Z is said to be a predecessor of a linear subspace Y , in symbols Z ≺ Y ,
iff codimY Z = dimY/Z = 1. We also say that Y is a successor of Z. Sometimes we also
write Z 4 Y when Z ≺ Y or Z = Y . Let us recall one basic lattice theoretical fact valid for
all modular lattices including L(V ).

Fact 2.1. (Grätzer [8, Th. 4, Ch. IV.1]) Let H,U,W,B be linear subspaces of V . If H 4 U
and H ⊆ W , then W 4 U +W . Dually, if U 4 B and W ⊆ B, then U ∩W 4 W .

Subspaces U,W are said to be adjacent if they have a common predecessor or a successor.
For distinct and adjacent U,W the line through U,W is the set

U,W =
{
X ∈ Sub(V ) : U ∩W ≺ X ≺ U +W

}
, (1)

if U = W , then U,W = {U}.
Segment subspaces Xi = [Zi, Yi]k, i = 1, 2, of Pk(V ) are adjacent if their vertices Z1, Z2

are adjacent and bases Y1, Y2 are adjacent. Trivially, adjacent segments are similar. A quasi-
pencil determined by adjacent X1,X2 is the set

X1,X2 =
{
[Z, Y ]k : Z ∈ Z1, Z2, Y ∈ Y1, Y2

}
. (2)

We call a subspace of a space of pencils non-trivial if it contains a line. In the remainder of
the paper we consider non-trivial segment subspaces Xi = [Zi, Yi]k i = 1, 2, 3 in Pk(V ). For
convenience we use the following notation:

Z ′ = Z1 ∩ Z2, Z ′′ = Z1 + Z2, Y ′ = Y1 ∩ Y2, Y ′′ = Y1 + Y2, and

X ′ = X1 ∩ X2 = [Z ′′, Y ′]k, X ′′ = 〈X1,X2〉 = [Z ′, Y ′′]k.

Note that our notation permits to write a set {U} or ∅ as a segment [U, Y ]k (or [Z,U ]k) when
dimU = k or U * Y (Z * U), respectively.

Further investigations are focused on classification of quasi-pencils of segment subspaces.
We begin with two technical facts.

Lemma 2.2. Let U,W1,W2 be points such that W1,W2 ∈ X = [Z, Y ]k, W1 6= W2, and
U ∼ W1,W2. If W1 � W2, then U ∈ X .
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Proof. We have U ∩ W1 6= U ∩ W2, since otherwise U,W1,W2 would lie on some strong
subspace. Note that U ∩Wi ⊆ Y , and hence U = (U ∩W1) + (U ∩W2) ⊆ Y . Similarly,
U +W1 6= U +W2, and thus Z ⊆ (U +W1) ∩ (U +W2) = U .

Lemma 2.3. Let U,W1,W2 be points such that W1,W2 ∈ X = [Z, Y ]k, W1 6= W2, and
U ∼ W1,W2. If W1 ∼ W2, then Z ⊆ U or U ⊆ Y .

Proof. Points U,W1,W2 are coplanar. Hence, either U = (U ∩ W1) + (U ∩ W2) ⊆ Y or
Z ⊆ (U +W1) ∩ (U +W2) = U , as the plane is a top or a star, respectively.

There are three possible ways that two distinct and adjacent segment subspaces Xi may lie
with respect to each other:

(W1) X1 ∩ X2 6= ∅, which is equivalent to Z1, Z2 ⊆ Y1, Y2.

(W2) X1 ∩ X2 = ∅ and either Z1 ⊆ Y2, or Z2 ⊆ Y1.

(W3) None of the above inclusions hold in this case.

Accordingly, we obtain a classification of quasi-pencils determined by suitable pairs of seg-
ment subspaces:

Lemma 2.4. Let X1,X2 be distinct adjacent segment subspaces, and let G = X1,X2.

(i) X1,X2 are of the type (W1) iff Z ′′ ⊆ Y ′ iff Z ′′ ∩ Y ′ = Z ′′ iff Y ′ + Z ′′ = Y ′.

(ii) X1,X2 are of the type (W2) iff Z ′ ≺ Z ′′ ∩ Y ′ ≺ Z ′′ iff Y ′ ≺ Y ′ + Z ′′ ≺ Y ′′.

(iii) X1,X2 are of the type (W3) iff Z ′′ ∩ Y ′ = Z ′ iff Y ′ + Z ′′ = Y ′′.

Proof. Set Z0 = Z ′′ ∩ Y ′ and Y0 = Y ′ + Z ′′.

(i) is evident.

(ii) Assume Z1 ⊆ Y2 and Z2 6⊂ Y1. Then Z1 ⊆ Y ′, so Z1 ⊆ Z0 ⊆ Z ′′ and, by (i), Z0 = Z1.
Analogously we prove that Y2 = Y0.

Assume Z ′ ≺ Z0 ≺ Z ′′, so Z0 ∈ Z1, Z2, consequently, [Z0, Yi]k ∈ G. Note that Z0 =
Z ′′ ∩ Y ′ ⊆ Z ′′ ∩ Yi ⊆ Z ′′ for i = 1, 2. If there were Z ′′ ∩ Yi = Z ′′ for i = 1 and i = 2 we would
have Z ′′ ⊆ Y ′; thus Z0 = Z ′′ ∩ Yi for some i, say: i = 1. Then Z1 ⊆ Y1 and Z1 ⊆ Z ′′ yields
Z1 ⊆ Z0, so Z1 = Z0 and we are through. Similarly, we prove that [Z, Yi]k ∈ G for some i

and all Z ∈ Z1, Z2.

(iii) Since Z ′ ⊆ Z0 ⊆ Z ′′ and Y ′ ⊆ Y0 ⊆ Y ′′, the claim follows by (i) and (ii).

Generally, quasi-pencils of segment subspaces are not transitive, that is, there may be pairs
of distinct elements of a quasi-pencil that span different quasi-pencils. Indeed, if Z1 ⊆ Y2

then for X0 = [Z1, Y2]k we have X0 ∈ X1,X2. But if Z1 6= Z2 then X2 /∈ X1,X0, if Y1 6= Y2 then

X1 /∈ X2,X0. We avoid such cases and distinguish the following subclasses of quasi-pencils:

proper pencil is a quasi-pencil X1,X2 with Z1 = Z2 or Y1 = Y2, i.e. iff Z ′ = Z ′′ or Y ′ = Y ′′.
This condition may be expressed in pure geometrical terms as: X ′ and X ′′ have equal
indexes or co-indexes;
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wafer is a quasi-pencil X1,X2 determined by a pair of type (W3);

pencil means proper pencil or wafer;
projective pencil is a pencil such that X ′′ is (up to an isomorphism) a projective space

(actually it is a star or a top).

Arrangement of elements of a pencil in the lattice as well as geometrical arrangement is
visualized in the following diagrams.

Z ′′ // B // Y ′′

Z3
//

OO

U3
//

OO

Y3

OO

Z ′ //

OO

H //

OO

Y ′

OO

Z1 U1 Y1

Z2

�
�
�

U2 Y2

�
�
�

Z1,Z2

�
�
�

U1,U2 Y1,Y2

�
�
�

Diagram 1 Diagram 2

In some latter propositions we claim that Diagrams 1 and 2 can be suitably completed.
Now, pure geometrical characterization of pencils of segment subspaces can be given.

Proposition 2.5. Let X1,X2 be adjacent segment subspaces of Pk(V ). Either, X ′ 6= ∅ and

X1,X2 is not a proper pencil, or, for every point U1 ∈ X1 \ X2 there is a point U2 ∈ X2 \ X1

collinear with U1 and, consequently, X1 C|B X2.

Proof. Let U1 ∈ X1 \ X2. Since X ′ = [Z ′′, Y ′]k, either Z ′′ * U1, or U1 * Y ′. Assume that
Z ′′ * U1. Then Z1 6= Z2 and by 2.1 U1 ≺ U1 + Z ′′. Since Y2 4 Y ′′ and U1 + Z ′′ ⊆ Y ′′ we
have Y2∩ (U1 +Z ′′) 4 U1 +Z ′′ again by 2.1. Therefore X = [Z2, Y2 ∩ (U1 + Z ′′)]k 6= ∅. Every
element of X belongs to X2 and is collinear with U1. If X ′ = ∅, we are through.

Otherwise Z ′′ ⊆ Y ′. Suppose that X ⊆ X ′. Since however Z ′′ * Z2 and dimZ2 6= k, it

has to be dimY2 ∩ (U1 + Z ′′) = k. In case the pencil X1,X2 is proper we have Y1 = Y2, so
Y2 ∩ (U1 + Z ′′) = Y1 ∩ (U1 + Z ′′) = U1 + Z ′′ which contradicts that U1 ≺ U1 + Z ′′. Hence

either X \ X ′ 6= ∅, or X1,X2 is not a proper pencil.

In case where X ′ 6= ∅ and the quasi-pencil X1,X2 is not proper all points of X2 collinear with
points on X1 \ X2 lie on X ′. Still X1 mutually adheres X2 though.

Proposition 2.6. Let X1,X2 be similar segments of Pk(V ). If X1 C|B X2, then X1,X2 lie
in a strong subspace of Pk(V ) or they are adjacent.

Proof. Assume that there is a linear subspaceD such that 2 ≤ dimD, D ⊆ Y1 andD∩Y2 = Θ.
Consider two cases. First, suppose that there is no U1 ∈ X1 with D ⊆ U1. In such a case
we would have dimZi = k − 1, and because for U1 ∈ X1 with U1 ⊆ Z1 +D there is U2 ∈ X2

collinear with U1, we would find that Z1 = Z2. Then X1,X2 ⊆ [Z1, V ]k, which is a star in
Pk(V ).

Now, take U1 ∈ X1 with D ⊆ U1. In consequence, dimU1 ∩ Y2 ≤ k − 2. On the other
hand, there is U2 ∈ X2 collinear with U1. Since U1∩U2 ⊆ U1∩Y2, we have k−1 ≤ dimU1∩Y2

and contradiction arises. For vertices Z1, Z2 the reasoning is dual.
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In segments that belong to a pencil a vertex determines uniquely the base and conversely.

Lemma 2.7. Let X1,X2 be segments of Pk(V ) such that G = X1,X2 is a pencil.

(i) If Z1 6=Z2, then for every Z3∈Z1, Z2 there is a unique Y3 ∈ Y1, Y2 such that [Z3, Y3]k∈G.

(ii) If Y1 6=Y2, then for every Y3∈Y1, Y2 there is a unique Z3∈Z1, Z2 such that [Z3, Y3]k∈G.

In consequence G is transitive and every two elements of G are of the same type.

Proof. (i) For G a proper pencil the claim is trivial, for a wafer take Y3 = Y ′ + Z3. Suppose
it is not unique. Then Z3 ⊆ Y ′, and hence Z3 ⊆ Z ′′ ∩ Y ′ ⊆ Z ′′. Since Z3 ≺ Z ′′ contradiction
with 2.4(iii) arises.

(ii) The reasoning is the same but we take Z3 = Y3 ∩ Z ′′.

Lemma 2.8. Let segment subspaces X1,X2 determine a quasi-pencil G = X1,X2, and let
p = p(H,B) be a line in Pk(V ).

(i) If p crosses X1, X2 in distinct points, then Z ′ ⊆ H ⊆ Y ′ and Z ′′ ⊆ B ⊆ Y ′′.

(ii) If Z ′ ⊆ H ⊆ Y ′ and Z ′′ ⊆ B ⊆ Y ′′, then p crosses every X ∈ G.

Proof. (i) Straightforward.

(ii) Let X = [Z, Y ]k ∈ G. Then Z + H ⊆ B ∩ Y . Since Z ′ 4 Z and Y 4 Y ′′, we have
dim(Z +H) ≤ k ≤ dim(B ∩ Y ) by 2.1. Thus p ∩ X = [Z +H,B ∩ Y ]k 6= ∅.

Lemma 2.9. Let G be a wafer in Pk(V ) and X1,X2 ∈ G distinct segments. Then

(i) for every point U1 ∈ X1 there is a unique point U2 = (U1 + Z2) ∩ Y2 in X2, collinear
with U1,

(ii) Z ′ ≺ U ∩ Z ′′ ≺ Z ′′ and Y ′ ≺ U + Y ′ ≺ Y ′′ for all U ∈
⋃

G.

Proof. (i) By 2.5 for every point U1 ∈ X1 there is a point U2 ∈ X2 collinear with U1. It is
unique for if not, we would have either Z2 ⊆ U1 ⊆ Y1, or Z1 ⊆ U1 ⊆ Y2, in view of 2.2 and
2.3, which contradicts 2.7.

(ii) Wafers are transitive by 2.7, hence we can assume that U ∈ X1 without loss of generality.
Evidently Z ′ ⊆ U ∩ Z ′′ ⊆ Z ′′, and it suffices to show that U ∩ Z ′′ ≺ Z ′′. By 2.5 there is a
line p = p(H,B) through U that crosses X2. Consequently by 2.8(i) we have Z ′′ ⊆ B. This
together with U ≺ B gives U ∩Z ′′ 4 Z ′′ by 2.1. Note that if Z ′′ ⊆ U then Z2 ⊆ U ∩ Y2 ⊆ Y1

which contradicts 2.7.
One proves Y ′ ≺ U + Y ′ ≺ Y ′′ dually.

This is a crucial feature of wafers, which resemble to some extent nets or reguli (cf. [3, Ch. 10],
in case of classical projective geometry comp. also e.g. [10, 11]). We will give characterization
(ii) from 2.9 in terms of projections later.

Lemma 2.10. Let G be a quasi-pencil in Pk(V ) and X1,X2 ∈ G distinct segments.

(i) If X3 ∈ G and a line p crosses X1,X2, then p crosses X3.

(ii) If X3 ∈ G, then for every U3 ∈ X3 there is a line p through U3 crossing X1,X2.
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(iii) If a line p crosses X1,X2 in distinct points and U3 ∈ p, then there is X3 ∈ G such that
U3 ∈ X3.

Proof. (i) Let Ui ∈ p ∩ Xi for i = 1, 2. If U1 6= U2, we are through by 2.8. Otherwise,
U1 = U2 ∈ X3.

(ii) Let U3 ∈ X3 ∈ G. Since Z3 4 Z ′′ and Y ′ 4 Y3, we have U3 4 U3 + Z ′′ and U3 ∩ Y ′ 4 U3

by 2.1. For this reason we can take H ∈ [Z ′, U3 ∩ Y ′]k−1 and B ∈ [U3 + Z ′′, Y ′′]k+1. The line
p = p(H,B) crosses X1 and X2 by 2.8(ii).

(iii) By 2.8 p = p(H,B), where Z ′ ⊆ H ⊆ Y ′ and Z ′′ ⊆ B ⊆ Y ′′. If Z ′′ * U3, then in
view of 2.1 Z3 := U3 ∩ Z ′′ ≺ Z ′′ since U3 ≺ B. Otherwise we take Z3 := Z1. Analogously,
either Y3 := U3 + Y ′ or Y3 := Y1. In any of these cases X3 := [Z3, Y3]k satisfies required
conditions.

The above lemma is an announcement of geometrical characterization of pencils of segment
subspaces in Pk(V ). Two conditions are critical to that description:

(∗1) if a line p crosses X1 and X2, then p crosses X3,

(∗2) for every U3 ∈ X3 there is a line p through U3 crossing X1,X2 in distinct points.

Lemma 2.10 says that quasi-pencils satisfy (∗1), and (∗2) in a weaker form.

Lemma 2.11. Let X1,X2,X3 be segment subspaces of Pk(V ) such that G = X1,X2 is a
pencil. Then:

(i) If X3 ∈ G, then (∗1) and (∗2) hold.

(ii) If G is not projective, the condition (∗1) implies Z3 ⊆ Z ′′ and Y ′ ⊆ Y3.

(iii) The condition (∗2) implies Z ′ ⊆ Z3 and Y3 ⊆ Y ′′.

Proof. (i) By 2.10, (∗1) holds. It is clear that (∗2) holds for wafers by definition and 2.8.
Therefore we can assume that Z1 = Z2 or Y1 = Y2.

Let U3 ∈ X3. Evidently X1 ∩ X2 ⊆ X3. Hence, if U3 ∈ X1 ∩ X2, then we take any line
p ⊆ X1 through U3, and U1 ∈ p such that U1 6= U3. As U3 ∈ p ∩ X2 we are through.

In case U3 6∈ X1∩X2, by 2.5 we have U1 ∈ X1\X3 collinear with U3. Since X2 ∈ G = X1,X3

by transitivity, the line U1, U3 crosses X2 in some point U2 by (∗1).

(ii) Let B ∈ [Z ′′, Y ′′]k+1. Observe that B 6= Y ′′ as G is not projective. Estimation of
dimensions gives that k − 1 ≤ dim(B ∩ Y ′). Evidently Z ′ ⊆ B, hence there is H ∈ [Z ′, B ∩
Y ′]k−1. According to 2.8(ii) the line p = p(H,B) crosses X1,X2. By (∗1) there is a point
U3 ∈ p∩X3. We have shown that Z3 ⊆

⋂
{B : B ∈ [Z ′′, Y ′′]k+1} = Z ′′. The proof of Y ′ ⊆ Y3

runs dually.

(iii) Let U3 ∈ X3. By (∗2) there is a line p = p(H,B) crossing X1,X2 in distinct points.
Hence by 2.8 Z ′ ⊆ H ⊆ U3. Since U3 is arbitrary we have Z ′ ⊆

⋂
{U3 : U3 ∈ [Z3, Y3]k} = Z3.

The proof of Y3 ⊆ Y ′′ runs dually.

Lemma 2.12. If X1,X2,X3 are segment subspaces of Pk(V ) satisfying (∗1), (∗2) such that

G = X1,X2 is a pencil, then either X3 ∈ G, or G is a projective pencil.
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Proof. Assume that G is a pencil but not projective. In view of 2.11 Z ′ ⊆ Z3 ⊆ Z ′′ and
Y ′ ⊆ Y3 ⊆ Y ′′.

We start with showing that X3 6= X ′. In view of 2.8 every line p = p(H,B) such that
Z ′ ⊆ H ⊆ Y ′ and Z ′′ ⊆ B ⊆ Y ′′ crosses both X1 and X2. In particular we can take p so that
Z ′′ * H, that is, p ∩ Xi * X3−i, i = 1, 2. On the other hand, there is U3 ∈ p ∩ X3 by (∗1). If
X3 = X1 ∩ X2, we would have p ⊆ X1 ∩ X2 as U3 6= Ui and Ui, U3 ∈ p ∩ Xi for i = 1, 2.

Now, assume that X3 = X ′′ and Y ′ 6= Y ′′. Then consider a point U3 ∈ X3 such that
U3 + Y ′ = Y ′′. Such a point exists since dimZ ′ < k − 1. By (∗2) and 2.8 we have a line
p = p(H,B) with Z ′ ⊆ H ⊆ Y ′ and Z ′′ ⊆ B ⊆ Y ′′. Since H ≺ U3 and H ⊆ Y ′, we have
Y ′ 4 U3 + Y ′ = Y ′′ by 2.1, which contradicts with previous assumption. In case Z ′ 6= Z ′′ we
will lead to contradiction dually.

If G is a proper pencil, then X3 = X ′, X3 = X ′′ or X3 ∈ G and we are through by the
above reasoning.

Now, consider the case where G is a wafer. Note that dimZ ′ < k− 1 and dimY ′′ > k+1
give [Z ′, Y ′]k, [Z

′′, Y ′′]k 6= ∅. Let U3 ∈ X3 = [Z ′, Y ′]k. We will show that there is no line
through U3 which crosses X1 and X2 in distinct points. Indeed, if such a line exists, by 2.8
U3 ⊆ U3 + Z ′′ ⊆ B for some B such that Z ′′ ⊆ B ⊆ Y ′′. Hence either U3 + Z ′′ = U3, or
U3 + Z ′′ = B. In the first case Z ′′ ⊆ U3 ⊆ Y ′, which means that X ′ is non-empty and thus
G is not a wafer. In the second case, since U3 ≺ B and U3 ⊆ Y ′, we have Y ′ 4 Y ′ + B =
Y ′ +U3 +Z ′′ = Y ′′ by 2.1. This contradicts that G is a wafer. Dually, we prove the same for
X3 = [Z ′′, Y ′′]k.
Accordingly, if X3 ∩ [Z ′, Y ′]k 6= ∅ or X3 ∩ [Z ′′, Y ′′]k 6= ∅, then X3 does not satisfy (∗2). In
particular, this yields that Z3 6= Z ′, Z ′′ and Y3 6= Y ′, Y ′′.

Theorem 2.13. Let X1,X2 be distinct, similar segment subspaces in Pk(V ).

(i) X1,X2 determine a proper pencil iff X ′ 6= ∅ and idx(X ′) = idx(X ′′) or coidx(X ′) =

coidx(X ′′). In this case X3 ∈ X1,X2 iff X3 is similar to X1 and X ′ ⊆ X3 ⊆ X ′′.

(ii) X1,X2 determine a wafer iff for every U1 ∈ X1 there is a unique U2 ∈ X2 with U1 ∼ U2,
and conversely.

(iii) If X1,X2 is a non-projective pencil, then X3 ∈ X1,X2 iff X3 satisfies (∗1) and (∗2).

Proof. (i) Straightforward by the definition of a proper pencil.

(ii) ⇒ : by 2.9(i).
⇐ : Contrary to the definition of a wafer assume that Z1 ⊆ Y2. Then Z1 ⊆ Y ′. Consider

points U1, U2 such that Z1 ⊆ U1 ⊆ Y ′, U2 ∈ X2, and U1, U2 ∈ p = p(H,B). Observe that
B ⊆ Y2 and all points in [Z2, B]k ⊆ X2 are collinear with U1. In case Z2 ⊆ Y1 we proceed the
same way.

(iii) Immediate by 2.11 and 2.12.

3. Shift projections

In [13] general projections in projective spaces have been introduced. Let X1, X2, C be
subspaces of V such that dimX1 = dimX2, X1 ⊆ C+X2. Then, according to the definition,
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a projection with center C, from subspace X1 onto subspace X2, in symbols >
|
↓
◦

X1
C
X2

, is a map

U 7 (U + C) ∩ X2 for U ⊆ X1. This projection may be considered a composition of two
maps U 7 U + C and U 7 U ∩X2. They are commonly known in lattice theory as shifts,
though they have also their pure geometric nature as meet and join of points, lines, planes
and so on. In this context, shift projections defined by (3) and (4) can be thought of as
analogues of a perspective in a projective geometry. They are technical but very useful tools
in this paper. Another approach to perspectivity determined by the intrinsic geometry of a
space of pencils is discussed in Section 6.

Let us begin with a known fact for modular lattices, slightly reformulated.

Fact 3.1. (Grätzer [8, Th. 2, Ch. IV.1]) If Z ∩ F = Y ∩ F and Z +G = Y +G, then maps
f, g : [Z, Y ] −→ Sub(V ) such that f = U 7 U + F , and g = U 7 U ∩G are bijections.

The maximal segment on which f from 3.1 is a bijection is [Θ, Y ], where Y is a linear
complement of F in V . Dually, the maximal segment for g is [Z, V ], where Z is a linear
complement of G in V . Note that f is always a bijection on [Y ∩ F, Y ] and g on [Z,Z +G].

We define two projections, J-projection

JY,Z : [Z ∩ Y, Y ] −→ [Z,Z + Y ], U 7 U + Z, (3)

and M-projection

MY,Z : [Z,Z + Y ] −→ [Z ∩ Y, Y ], U 7 U ∩ Y. (4)

By 3.1 they are bijections. We use notation JY,Z = |↓
[Z∩Y,Y ]

[Z,Z+Y ]
and MY,Z = |↓

[Z,Z+Y ]

[Z∩Y,Y ]
. Observe

that if Xi = [Zi, Yi], i = 1, 2 and there is a J-projection (M-projection) f = |↓
X1

X2

: X1 −→ X2

then, f = JY1,Z2 (f = MY2,Z1). Note also that f is a lattice isomorphism between X1,X2,

thus, preserves the height (rank) of elements in the lattice X1. Evidently,
(
|↓
X1

X2

)−1

= |↓
X2

X1

.

We use notion J or M-projection with respect to a map f = |↓
[Z1,Y1]

[Z2,Y2]
between two sublattices

of L(V ), as well as to the map f ′ = |↓
[Z1,Y1]k

[Z2,Y2]m
= f

∣∣Subk(V ) between corresponding spaces of

pencils (cf. 3.2).

Lemma 3.2. Let Y1, Z2 be subspaces of V and Z1 = Z2∩Y1, Y2 = Z2+Y1. J-projection JY1,Z2

maps [Z1, Y1]k onto [Z2, Y2]m and M-projection MY1,Z2 maps [Z2, Y2]m onto [Z1, Y1]k, where
k − dimZ1 = m − dimZ2. Moreover, dimY1 − k = dimY2 −m and thus pdim([Z1, Y1]k) =
pdim([Z2, Y2]m).

Proof. Since U∩Z2 = Z1 for every U ∈ X1, we havem=dim(U + Z2) = k + dimZ2 − dimZ1.
Analogously we find that U+Y1 = Y2 for every U ∈ X2, and k = dim(U ∩Y1) = m+dimY1−
dimY2.

Note that if f is a J or M-projection and dm(f) is a line, then rg(f) is also a line. Such
J-projections map lines of Pk(V ) onto lines of Pm(V ), and M-projections act conversely.
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Lemma 3.3. Let X1, X2 be segment subspaces of Pk(V ), Pm(V ) respectively, and let
f : X1 −→ X2 be a J-projection or M-projection. If E1 is a segment subspace such that
E1 ⊆ X1, then f

∣∣E1 is a J-projection or an M-projection, respectively, of E1 onto some seg-
ment subspace E2 ⊆ X2.

Proof. Let Xi = [Zi, Yi]ki
, i = 1, 2. Assume that f = JY1,Z2 and E1 = [Z ′

1, Y
′
1 ]k. We have

Z1 = Z2 ∩Y1, Y2 = Z2 +Y1 and f(U) = U +Z2 for all Y ∈ X1. Accordingly, f maps [Z ′
1, Y

′
1 ]k

onto [Z ′
1+Z2, Y

′
1+Z2]m and f(U) = U+(Z ′

1+Z2) for U ∈ E1. Clearly, Y ′
1+(Z ′

1+Z2) = Y ′
1+Z2,

and Y ′
1 ∩ (Z ′

1 +Z2) = Z ′
1 +(Y ′

1 ∩Z2) = Z ′
1 since Y ′

1 ∩Z2 ⊆ Z1. In result, f
∣∣E1 is a J-projection.

For M-projections the reasoning runs dually.

The straightforward consequence is that every J- and M-projection is a collineation (cf. 3.6).
Next two lemmas give criteria for how to compose J- and M-projections.

Lemma 3.4. If f, g are J-projections, or M-projections, such that dm(g) = rg(f), then gf
is a J-projection or an M-projection respectively.

Proof. Assume that f = |↓
[Z1,Y1]

[Z2,Y2]
and g = |↓

[Z2,Y2]

[Z3,Y3]
. Then, Z1 = Z2 ∩ Y1, Y2 = Z2 + Y1,

Z2 = Z3 ∩ Y2 and Y3 = Z3 + Y2. It is seen that Z1 = Z2 ∩ Y3 and Y3 = Z3 + Y1, which means
that gf = JY1,Z3 .

Note that when f, g are M-projections, then f−1, g−1 are J-projections and dm(f−1) =
rg(g−1). Hence, (gf)−1 is a J and fg an M-projection.

Lemma 3.5. Let X be a segment in Pk(V ), and let l,m be such that l ≤ k ≤ m and there
are subspaces similar to X in Pl(V ) and Pm(V ). Then, there is an M-projection g and a
J-projection f on X such that rg(g), rg(f) are segments in Pl(V ), Pm(V ) respectively.

Proof. We will find g only, as procedure for f is dual. Let X = [Z, Y ]k. Observe that (∗):
k − dimZ ≤ l ≤ k. First, take Q ⊆ Y such that Q + Z = Y and dimQ − l = dimY − k
(cf. 3.2). Such Q exists in view of (∗). Then g is an M-projection U 7 U ∩Q on X , in other
words g = MY ∩Q,Z . Clearly, Z + (Y ∩Q) = Y and Z ∩ (Y ∩Q) = Z ∩Q which means that
g(X ) = [Z ∩Q, Y ∩Q]l.

For convenience we assign to every linear map ϕ : Y1/Z1 −→ Y2/Z2 a map ϕ̃ : [Z1, Y1] −→
[Z2, Y2] such that ϕ̃(U) = W iff ϕ(U/Z1) = W/Z2 for U ∈ [Z1, Y1], W ∈ [Z2, Y2]. In the
context of spaces of pencils ϕ̃k = ϕ̃

∣∣Subk(V ).

Proposition 3.6. Let Y1, Z2 be subspaces of V with Z1 = Z2 ∩ Y1, Y2 = Z2 + Y1.

(i) Shift projections f = |↓
[Z1,Y1]k

[Z2,Y2]m
, g = |↓

[Z2,Y2]m

[Z1,Y1]k
determine collineation between Pr(Y1/Z1)

and Pr(Y2/Z2), where r = k − dimZ1 = m− dimZ2.

(ii) There is a linear bijection ϕ : Y1/Z1 −→ Y2/Z2 with ϕ̃k = f and ϕ̃−1
k = g.

Proof. (i) Immediate consequence of 3.3.

(ii) Assume that Y1 = Z1 ⊕M for some subspace M . Then, it is seen that Z2 ∩M = Θ and
Y2 = Z2 + Y1 = Z2 ⊕M , since Z1 = Y1 ∩ Z2. By 3.2 we have k − dimZ1 = m− dimZ2 =: r.
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In case of f = JY1,Z2 , consider U ∈ [Z1, Y1]k. Then U = Z1 ⊕ N , where N ∈ Subr(M), and
f(U) = Z2 +N as Z1 ⊆ Z2. For g = MY1,Z2 and W ∈ [Z2, Y2]m we find that W = Z2 +N and
g(W ) = Z1 +N , where N ∈ Subr(M). Hence, the map ϕ = v + Z1 7 v + Z2, where v ∈M ,
is a requested linear bijection with f(U) = W iff ϕ(U/Z1) = W/Z2 iff g(W ) = U .

4. Projections between segment subspaces

Usually, in projective geometry, projections are considered maps between lines. In this paper
we deal with more general projections, namely, projections between segment subspaces. In
this section we give geometrical definitions of our two projections: a generalized central
projection (5) and a slide (6). Also their analytical interpretations are given (4.2, 4.6).

According to general theory, a subspace of codimension 1 is a maximal proper subspace.
In case X ,Y are segment subspaces of Pk(V ), and X is not strong, Y is of codimension 1 in
X iff Y ⊆ X and (i) pdimY = pdimX − (0, 1), or (ii) pdimY = pdimX − (1, 0). If X is a
star Y needs to satisfy (i), if X is a top (ii). Note that if G is a proper pencil and X ∈ G,
then X ′ is of codimension 1 in X and X is of codimension 1 in X ′′.

In a partial linear space, we say that subspaces Y1,Y2 are complementary in a subspace
X if Y1 ∩ Y2 = ∅ and 〈Y1,Y2〉 = X .

Lemma 4.1. Let Y1,Y2 be complementary segment subspaces of codimension 1 in a segment
X in Pk(V ).

(i) For every point U1 ∈ Y1 there is a point U2 ∈ Y2 collinear with U1.

(ii) Every line through U1 ∈ Y1 misses Y2 or meets Y2 in a single point.

Proof. (i) Let X = [Z, Y ]k, Yi = [Zi, Yi]k and U1 ∈ Y1. Since Y1,Y2 are complementary of
codimension 1 in X we can assume without loss of generality that Z1 = Z ≺ Z2, Y1 ≺ Y = Y2

and Z2 * Y1. Clearly Z2 * U1 and hence U1 ≺ Z2+U1 by 2.1. We find that Y = [Z2, Z2+U1]k
is non empty, and Y ⊆ Y2 as U1 ⊆ Y = Y2. Every point of Y is adjacent, i.e. collinear, with
U1.

(ii) Assume contrary to our claim that U1, U2, U3 lie on some line q, U1 ∈ Y1 and U2, U3 ∈ Y2

are distinct. Hence q ⊆ Y2 and consequently U1 ∈ Y1 ∩ Y2 = ∅.

Lemma 4.2. Let G = X1,X2 be a proper pencil, X3 ∈ G, X3 6= X1,X2, and Y a subspace of
codimension 1 in X3 such that X ′,Y are complementary in X3.

(i) If Z1 = Z2 = Z then Y = [W,Y3]k, where Z ≺ W ⊆ Y3, and Z = Y ′∩W , Y3 = Y ′+W .

(ii) If Y1 = Y2 = Y then Y = [Z3,W ]k, where Z3 ⊆ W ≺ Y , and Y = Z ′′+W , Z3 = Z ′′∩W .

(iii) For U1 ∈ X1 \ X ′ there is a unique U3 ∈ Y \ X ′ collinear with U1.

(iv) For U1 ∈ X1 there is a unique U2 ∈ X2 collinear with U1, such that a line through
U1, U2 crosses Y. If U1 ∈ X1 \ X ′, then U2 ∈ X2 \ X ′, if U1 ∈ X ′, then U2 = U1.
Moreover, if Z1 = Z2, then U2 = (U1 +W )∩ Y2, if Y1 = Y2, then U2 = (U1 ∩W ) +Z2.

Proof. (i) We have X ′ = [Z, Y ′]k, X3 = [Z, Y3]k. Segments X ′,Y are complementary, hence
Y = [W,Y3]k and Z ≺ W . Since Y ′ ≺ Y3, W ⊆ Y3 and W * Y ′ we find that Y ′ ∩W ≺ W by
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2.1. It is easily seen that Z ⊆ Y ′ ∩W which yields Z = Y ′ ∩W . Equality Y3 = Y ′ +W can
be shown by similar argument.

(ii) is a dual case to (i).

(iii) Assume that Z1 = Z2 = Z. Then Y = [W,Y3]k by (i). Let U1 ∈ X1 \ X ′. By 2.1 we have
H = U1 ∩ Y ′ ≺ U1 since Y ′ ≺ Y1, U1 ⊆ Y1 and U1 * Y ′. Take U3 = H + W and note that
H ≺ U3 again by 2.1, as Z ≺ W , Z ⊆ H and W * H by (i). Hence U1, U3 are collinear.
Evidently, U3 ∈ Y = Y \X ′. Suppose that U3 is not unique. Then W ⊆ U1 or U1 ⊆ Y3 by 2.2
and 2.3. In the first case W ⊆ Y ′, in the latter U1 ∈ X3, but both are invalid. For Y1 = Y2

we proceed dually.

(iv) Let U1 ∈ X1 \X ′. By (iii) there is a unique U3 ∈ Y ⊆ X3 collinear with U1, and by 2.11(i)

there is U2 ∈ X2 such that U2 ∈ U1, U3. Suppose that U2 ∈ X ′. Then U1 ∈ U2, U3 ⊆ X3

and hence U1 ∈ X1 ∩ X3 = X ′ which is false. The point U2 is unique, for if not, there
would be another U ′

2 ∈ X2 and U1, U2, U
′
2, U3 would be collinear as U3 is unique. In that case

U1 ∈ U2, U ′
2 ⊆ X2 which is false.

If U1 ∈ X ′, and U2 6= U1, then U3 ∈ U1, U2 ⊆ X2 which is impossible as Y ∩ X2 = ∅.
Now, we shall find the formula for U2 when Z1 = Z2 = Z. First note that U1 ≺ U1 +W

by 2.1 as Z ≺ W by (i), Z ⊆ U1 and W * U1. Indeed, if W ⊆ U1, then W ⊆ Y ′ and
contradiction with (i) arises. Since Y2 ≺ Y ′′, U1 + W ⊆ Y ′′ and U1 + W * Y2 we have
U2 := (U1 + W ) ∩ Y2 ≺ U1 + W . Hence U1, U2 are collinear and U2 ∈ X2. Note that

U1, U2 = p(U1∩Y2, U1 +W ). Therefore, U1, U2∩Y = [(U1 ∩ Y2) +W, (U1 +W ) ∩ Y3]k by (i).

It is easily seen that (U1 ∩ Y2) + W ⊆ (U1 + W ) ∩ Y3. Moreover, dim
(
(U1 + W ) ∩ Y3

)
= k

similarly as above for U2. Finally, the line U1, U2 crosses Y and we are through. For Y1 = Y2

we proceed analogously.

Under assumptions of 4.2 we can define a generalized central projection >
|
↓
◦
X1
Y
X2

: X1 −→ X2 by

condition

>|
↓
◦
X1
Y
X2

(U1) = U2 iff U1, U2, U3 are collinear for some U3 ∈ Y . (5)

Lemma 4.2 actually says that for all X1,X2 that determine a proper pencil there is a gen-
eralized central projection of X1 onto X2. If G consists of lines then Y is a single point

Y = {C}, and >
|
↓
◦
X1
Y
X2

= >
|
↓
◦
X1
C
X2

is an ordinary central projection of the line X1 onto X2 with the

center C. Let us define generally that >
|
↓
◦
X1
C
X2

:= >
|
↓
◦
X1
{C}
X2

, whenever it is a function. One can see, if
>
|
↓
◦
X1
C
X2

is defined, then C adheres Xi for i = 1, 2. Note that if X is a strong subspace of Pk(V ),

Y1 is of codimension 1 in X and Y2 is complementary to Y1 in X , then Y2 is a point. In
particular, if a pencil G is projective with Z ′ = Z ′′ = Z, then X ′ = [Z, Y ′]k and Y = {C}
complementary to X ′ satisfies C * Y ′. Under these circumstances the claim of 4.2 remains

valid for Y = [C, Y3]k, and >
|
↓
◦
X1
Y
X2

= >
|
↓
◦
X1
C
X2

is a plain projection. Recall that in view of [13] the

formula 4.2(iv), which defines the projection, remains valid as well. Dually for Y ′ = Y ′′.
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Lemma 4.3. Let X = [Z, Y ]k be a non-trivial segment subspace and C be a point not in X
such that C |B X . Then there is a maximal strong subspace containing both C and X , and
either

(i) X is a star and Z = C ∩ Y , or

(ii) X is a top and Y = Z + C.

Proof. Immediately by 2.2 X is strong. In view of 2.3 either X is a star and Z ⊆ C ∩Y ( C,
or X is a top and C ( C + Z ⊆ Y .

As an immediate consequence of 4.3 we obtain

Proposition 4.4. Let Xi be segment subspaces and f = >
|
↓
◦
X1
C
X2

be a central projection. Then

X1, X2 and C lie in a strong subspace Π of Pk(V ) and f is an ordinary central projection in
the projective space Π.

Proposition 4.5. For every generalized central projection h = >
|
↓
◦
X1
Y
X2

, if Z1 = Z2 and m = k+1,

or Y1 = Y2 and m = k − 1, then there are shifts f, g such that h = fg and f, g have their
ranges and domains in Pk(V ) or Pm(V ).

Proof. Consider the case where Z1 = Z2 and m = k + 1. In view of 4.2(iv) we take g =

|↓
X1

[Z1+W,Y1+W ]k
and f = |↓

[Z1+W,Y1+W ]k

X2

. If Y1 = Y2 and m = k − 1 we take g = |↓
X1

[Z1∩W,Y1∩W ]k

and g = |↓
[Z1∩W,Y1∩W ]k

X2

.

For a wafer G, according to 2.9(i), one can define a slide ζX1
X2

= >
|
↓
◦
X1

X2
: X1 −→ X2, where

X1,X2 ∈ G are distinct segments, by

>|
↓
◦X1

X2
(U1) = U2 iff U1, U2 are collinear. (6)

It is seen that for all X1,X2 that determine a wafer there is a slide of X1 onto X2. As long
as central projections confirm projective nature of spaces of pencils, slides indicate features
of ruled quadrics. In the context of classical projective geometry slides are referred to as
net projections (cf. [3, Ch. 10]). Further, we use the short term projection for slides, central
projections and generalized central projections, that is those projections which act within
Pk(V ).

Proposition 4.6. For every slide h = ζX1
X2

, and m = k ± 1 there are shifts f, g such that
h = fg and f, g have their ranges and domains in Pk(V ) or Pm(V ).

Proof. In view of 2.9(i), h(U1) = (U1 + Z2) ∩ Y2 = (U1 ∩ Y2) + Z2 by modularity, for all
U1 ∈ X1. Clearly, U1 +Z2 = U1 +Z ′′ and U1 ∩ Y2 = U1 ∩ Y ′. Therefore, if m = k+ 1 we take

g = |↓
X1

[Z′′,Y ′′]k+1

and f = |↓
[Z′′,Y ′′]k+1

X2

. If m = k− 1, then g = |↓
X1

[Z′,Y ′]k−1

and f = |↓
[Z′,Y ′]k−1

X2

.
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Combining 4.5, 4.6, and 3.2 we find that a projection of X1 onto X2 is a collineation between
corresponding subspaces of our space of pencils.

For any segment X = [Z, Y ]k with Z 6= Θ or Y 6= V we can find a proper pencil G such that
X ∈ G. To find a wafer we need Z 6= Θ and Y 6= V . These conditions are equivalent to
existence of a (generalized) central projection or a slide h, respectively, with dm(h) = X or
rg(h) = X . Note also that Z 6= Θ means idx(X) 6= k, and Y 6= V for finite-dimensional V
means that coidx(X ) 6= dimV − k.

Proposition 4.7. Let Xi be segments such that Zi 6= Θ and Yi 6= V , i = 1, 2. If (i): h = >
|
↓
◦
X1
C
X2

is a central projection, or (ii): h = >
|
↓
◦
X1
Y
X2

is a generalized central projection, then there are

slides f, g such that h = gf .

Proof. Since central projections are valid for proper pencils only, there are two cases to
examine.

(1) Set Z1 = Z2 = Z ′ = Z ′′ =: Z, then Z 6= Θ. We shall construct a segment X0 which forms
wafers with X1,X2. So, consider Y0 such that Z * Y0 ≺ Y ′′.

In case (i) C ∈ [Z, Y ′′]k and we take Z0 := C ∩ Y0. Since C ⊆ Y ′′ and C * Y0 we find
that Z0 ≺ C by 2.1. Due to 4.4 which says that Z ≺ C we have Z + Z0 = C. Note that
Z0 * Y1, Y2 since otherwise, if Z0 ⊆ Yi, then C ⊆ Yi and thus C ∈ Xi, which is false as C is
the center of projection between X1,X2. We set Y = {C}.

In case (ii) Y = [W,Y3]k such that Y3 ∈ Y1, Y2, Z ≺ W and Y ′ ∩W = Z by 4.2(i). We
take Z0 := W ∩Y0. As W ⊆ Y ′′ and W * Y0 we have Z0 ≺ W by 2.1. Note that Z0 * Y1, Y2.
Indeed, if Z0 ⊆ Yi, where i is 1 or 2, then Z0 ⊆ Y ′ as Z0 ⊆ Y3. Moreover, Z0 ⊆ Y ′ ∩W = Z,
thus Z0 = Z, and the contradiction arises since Z * Y0.

Eventually, we take X0 = [Z0, Y0]k. It is seen that X0,Xi are of type (W3), hence X0, Xi

determine a wafer. Therefore, one can take slides f := ζX1
X0

, g := ζX0
X2

. For every Ui ∈ Xi,

such that U2 = h(U1) the line U1, U2 = p(H,B) contains some U3 ∈ Y , so C ⊆ B in (i), and
W ⊆ B in (ii). Moreover, Y0 ≺ Y ′′, B ⊆ Y ′′ and B * Y0, therefore B ∩ Y0 ≺ B by 2.1.
Consequently U0 := B ∩ Y0 is a point in X0. It is easily seen that U0, U1, U2 ≺ B, hence U0

is collinear with U1 and U2. Then f(U1) = U0, g(U0) = U2 and finally h = gf .

(2) In case Y1 = Y2 = Y ′ = Y ′′ the proof runs dually.

For convenience we apply the following convention:

Ei = [Ti, Si]k, E ′ = E1 ∩ E2 = [T ′′, S ′]k and E ′′ = 〈E1 ∪ E2〉 = [T ′, S ′′]k.

Lemma 4.8. Let f be a projection of X1 on X2. For a segment E1 ⊆ X1, and E2 = f(E1),

either E1 = E2 or E1, E2 determine a pencil. If E1, E2 is a proper pencil, then X1,X2 is a
proper pencil, and additionally, if idx(E ′) = idx(E ′′), then idx(X ′) = idx(X ′′), if coidx(E ′) =
coidx(E ′′), then coidx(X ′) = coidx(X ′′).

Proof. Let E2 := f(E1). If f is a slide then X1,X2 determine a wafer. Hence, X ′ = ∅ and
for every U1 ∈ E1 there is a unique U2 ∈ E2 such that U1 ∼ U2, and consequently, by 2.13(ii)
E1, E2 determine a wafer.
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The case where f is a generalized central projection >
|
↓
◦
X1
Y
X2

and X1,X2 is a proper pencil

remains. So, assume that Z1 = Z2 = Z. Then by 4.2(iv) T2 = (T1 + W ) ∩ Y2, S2 =
(S1 + W ) ∩ Y2. Observe that T ′ = T1 ∩ T2 = T1 ∩ Y2 4 T1, and similarly S ′ = S1 ∩ S2 =
S1 ∩ Y2 4 S1. This means that either E1 = E2, or E1, E2 span a quasi-pencil. If it is not a
wafer then T1 ⊆ S2 or T2 ⊆ S1 by (W3). But then, in the first case, T1 ⊆ Y2, and hence
T2 = T1 +(W ∩Y2) = T1 +(W ∩Y3∩Y2) = T1 +Z = T1 by 4.2(i) as Y ′∩W = Z. Analogously

in the second case with respect to >
|
↓
◦
X2
Y
X1

we get T1 = T2. The proof for Y1 = Y2 runs dually,

hence, E1, E2 is a pencil.

Actually, we have shown that if E1, E2 is a proper pencil, then X1,X2 is a proper pencil.
Moreover, for Z1 = Z2 we have shown that T1 = T2, and dually for Y1 = Y2 we have S1 = S2.
This suffices for the remaining justification.

Proposition 4.9. If f is a projection of X1 on X2, and E1 is a segment such that E1 ⊆ X1,
then f

∣∣E1 is a projection.

Proof. Let E2 := f(E1). If f is a slide, then E1, E2 determine a wafer, and hence, f
∣∣E1 is a

slide. If f = >
|
↓
◦
X1
Y
X2

is a generalized central projection, by 4.8 we have two cases. First assume

that E1, E2 determine a wafer. Then for U1 ∈ E1 we have f(U1) = ζE1
E2

(U1) by 2.9(i). Therefore,

f
∣∣E1 is a slide.

Now, assume that E1, E2 determine a proper pencil such that T1 = T2 = T . We shall find Y ′

such that f
∣∣E1 = >

|
↓
◦
E1
Y′
E2

. First, note that Z1 = Z2 = Z by 4.8. Since Y ′ ≺ Y1 and S1 ⊆ Y1,

we have S1 + Y ′ = Y1, for if not we would have S1 ⊆ Y ′ which yields E1 ⊆ X ′ and thus
E1 = E2 by 4.2(iv). Let E3 := [T, S ′ + W ]k. Observe that S ′ 4 S ′ + W by 2.1 as Z ≺ W
by 4.2(i) and Z ⊆ S ′. Moreover W * S ′ since otherwise W ⊆ Y ′ which contradicts 4.2(i).
Hence S ′ ≺ S ′ + W . Note also that S ′′ = S1 + ((S1 + W ) ∩ Y2) by 4.2(iv), and further
S ′′ = (S1 + Y2) ∩ (S1 +W ) = (S1 + Y ′ + Y2) ∩ (S1 +W ) = Y ′′ ∩ (S1 +W ) = S1 +W . Hence

S ′ +W ⊆ S ′′. Consequently E3 ∈ E1, E2. Similarly, as for S ′ above, we can show for T that
T ≺ T +W . It is easily seen that E ′ = [T, S ′]k and Y ′ := [T +W,S ′+W ]k are complementary

of codimension 1 in E3. Therefore, h := >
|
↓
◦
E1
Y′
E2

is a generalized central projection. Immediate

consequence of formulas for f and h given by 4.2(iv) we have f
∣∣E1 = h. In case S1 = S2 we

proceed dually.

5. Projectivities

Let Ω(k) be the set of all meaningful compositions of slides, central projections and general-
ized central projections in Pk(V ). Elements of Ω(k) are called projectivities. Let Ω(k,m) be
the class of all compositions f1 ◦ · · · ◦ fn, every fi being a shift projection and dm(fi), rg(fi)
being subspaces of Pk(V ) and Pm(V ). In Ω(k) we distinguish the subclass Ωc(k) given by
central projections and generalized central projections. Clearly, Ω(k) is a category with seg-
ment subspaces of Pk(V ) as objects, and Ω(k,m) is a category with segments of Pk(V ) and
Pm(V ) as objects.

In order to have a projectivity between two arbitrary segment subspaces X1,X2 in a
space of pencils we have to guarantee that Z1, Z2 can be connected with a polygonal path
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(a sequence of subspaces of V , in which neighbour elements are adjacent), as well as Y1, Y2.
There is no problem with Z1, Z2, but we have to assume in this section additionally that
either

dimY1, dimY2 <∞ (i.e. coidxXi <∞) or codimY1, codimY2 <∞. (7)

If f is a projection, then dm(f), rg(f) are similar i.e. pdim rg(f) = pdim dm(f). Accordingly,
to any geometrical dimension δ, we associate the full subcategory Ω(k; δ) of Ω(k), obtained
by restricting the class of objects to segments X such that pdimX = δ and (7) holds.
Analogously we define Ω(k,m; δ)1.

In this terminology the class of projectivities defined in [14] is the category Ωc(k; (1, 1))
as lines has pencil dimension (1,1).

Lemma 5.1. Let h ∈ Ω(k, l; δ) such that dm(h), rg(h) are segments in Pk(V ). If m < l < k
or k < l < m, and Ω(k,m; δ) 6= ∅, then h ∈ Ω(k,m; δ).

Proof. Assume that k < l < m. By definition, h = gnfn · · · g1f1 for some J-projections fi and

M-projections gi. Since dm(h) and rg(f1) are similar, there is a J-projection t = |↓
rg f1

[Z,Y ]m
by

3.5, such that tf1 = |↓
dm h

[Z,Y ]m
and g1t

−1 = |↓
[Z,Y ]m

rg h
. It is easily seen that, g1f1 = (g1t

−1)(tf1) ∈
Ω(k,m). We can repeat this reasoning for i = 2, . . . , n, thus we get our claim. In case
m < l < k we proceed analogously.

Proposition 5.2. If h ∈ Ω(k; δ), m 6= k and Ω(k,m; δ) 6= ∅, then h ∈ Ω(k,m; δ).

Proof. If h is a slide, then by 4.6 h ∈ Ω(k, k−1; δ)∩Ω(k, k+1; δ), and by 5.1 we are through.
If h is a generalized central projection, then depending on pdim dm(h) we apply either, 4.5
together with 5.1, or 4.7 and the above property of slides.

Proposition 5.3. For h ∈ Ω(k,m) there is a linear bijection ϕ such that ϕ̃k = h.

Proof. Immediate by 3.6 as h can be decomposed into J- and M-projections.

In view of the above and 3.6(i) the following conclusion arises:

Corollary 5.4. Every projection is a linear collineation.

Lemma 5.5. If Xa,Xb are distinct, similar segments in Pk(V ), there are segments X0, . . . ,

Xr such that X0 = Xa, Xr = Xb and Xi−1,Xi is a proper pencil, i = 1, . . . , r.

Proof. Let Xa = [Za, Ya]k, Xb = [Zb, Yb]k. First consider the case where Ya = Yb = Y . Then,
by connectedness of appropriate space of pencils there are Z0, . . . , Zr such that Z0 = Za,
Zr = Zb and Zi−1, Zi are adjacent for i = 1, . . . , r. The sequence Xi = [Zi, Y ]k, where
i = 0, . . . , r, satisfies our claim.

For distinct Ya, Yb, take Y0, . . . , Ys such that Y0 = Ya, Ys = Yb and Yi−1, Yi are adjacent for
i = 1, . . . , s. Then take Z0 := Za, Zi ∈ Subdim Z0(Yi−1 ∩ Yi), for i = 1, . . . , s and Zs+1 := Zb.
Observe that for every pair [Zi, Yi]k, [Zi+1, Yi]k, i = 0, . . . , s we can proceed as in the first
considered case, hence the required sequence Xi now, is formed by concatenation.

1Note that given δ = (n1, n2) the maximal m such that Pm(V ) contains a subspace X with pdimX = δ
is dim V − n2 and the minimal is n1.
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Lemma 5.6. For similar segments X1,X2 in Pk(V ) there is ξ ∈ Ωc(k) such that dm(ξ) = X1

and rg(ξ) = X2.

Proof. Straightforward by 5.5 as for every two neighbour segments, in the sequence joining
X1,X2, there is a central or generalized central projection.

Proposition 5.7. Let X be a segment in Pk(V ). If ϕ is a linear bijection such that ϕ̃k: X −→
X , then ϕ̃k ∈ Ωc(k).

Proof. Let us extend the map ϕ : Y/Z −→ Y/Z to the map ψ : V/Z −→ V/Z so that it is
a linear bijection. The map ψ restricted to any subspace of V/Z can be decomposed into
projections in the projective space P1(V/Z). So we have projections ξ1, . . . , ξr in P1(V/Z)

such that (ϕ)∗1 = (ψ
∣∣Y/Z)∗1 = ξr ◦ · · · ◦ ξ1. Every projection ξi = >

|
↓
◦
[Θ,Y1]1
Ci
[Θ,Y2]1

induces a central

projection >
|
↓
◦
[Θ,Y1]m
Ci
[Θ,Y2]m

, or a generalized central projection >
|
↓
◦
[Θ,Y1]m
Y
[Θ,Y2]m

, where Y = [Ci, Ci + Y ′]m, in

Pm(V/Z), m = k − dimZ.

Corollary 5.8. Let X1, X2 be segments in Pk(V ). If ϕ is a linear bijection such that
ϕ̃k : X1 −→ X2, then ϕ̃k ∈ Ωc(k).

Proof. By 5.6 there is a ξ ∈ Ωc(k) such that ξ : X2 −→ X1, which by 5.3 is a linear bijection

ψ such that ψ̃k = ξ. Hence we have a linear bijection ϕψ such that h = (ϕ̃ψ)k : X1 −→ X1.
But h ∈ Ωc(k) by 5.7. Hence ϕ̃k = ξ−1h.

Corollary 5.9. Let h be a map such that dm(h), rg(h) are subset of points of Pk(V ). The
following conditions are equivalent:

(1) h ∈ Ωc(k),

(2) h ∈ Ω(k),

(3) h ∈ Ω(k,m), provided that Ω(k,m; pdim(dm(h))) 6= ∅,
(4) h = ϕ̃k, where ϕ is a linear bijection.

Proof. (1) implies (2) trivially.

(2) implies (3) by 5.2.

(3) implies (4) by 5.3, and finally

(4) implies (1) by 5.8.

The equivalence (1) ≡ (4) is a direct analogue of the known characterization of projectivities
in projective geometry. Note, as a tricky observation:

Corollary 5.10. Let h be as in 5.9 and δ = pdim(dm(h)). If Ω(k; δ) contains at least one
slide, then h ∈ Ω(k) iff h is a composition of slides.

Proposition 5.11. Let Xi be segments in Pki
(V ), i = 1, 2. If ξ : X1 −→ X2, then ξ = ϕ̃k1

for some linear bijection ϕ iff ξ ∈ Ω(k1, k2).
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Proof. ⇒ : By 3.5 there is f ∈ Ω(k1, k2) such that dm(f) = X2 and rg(f) =: X ′
1 is a segment in

Pk1(V ). By 5.3 f = ψ̃k2 for some linear bijection ψ. Hence we obtain h = fϕ̃ = ψ̃ϕ : X1 −→
X ′

1, by 5.8 h ∈ Ωc(k), and by 5.9 we are through.

⇐ : Follows from 5.3.

Proposition 5.12. If f is a collineation of Pk(V ) which preserves stars and tops, then the
following are equivalent:

(1) f
∣∣X ∈ Ω(k) for some segment X ,

(2) f
∣∣X ∈ Ω(k) for all segments X .

Proof. (1) implies (2): f is given by a bijective semi-linear map ϕ on V , i.e. f = ϕ∗
k (cf. [1,

Ch. II.10]). By (1) and 5.9 ϕ∗
k

∣∣X is proportional to a linear map, and ϕ is proportional to a
linear bijection which suffices to state (2).

(2) implies (1) trivially.

6. Projections onto pencils of segments

The principle intention of this section is to give basic, but general, description of projections
onto pencils of segment subspaces.

Let G be a pencil of segment subspaces in Pk(V ) determined by X1,X2. In view of
2.10(iii) whenever a line p intersects two members of G, and does not intersect X ′, then for
every point U on p there is X ∈ G through U . The X is unique since otherwise U need to
lie on X ′. Conversely, for every such X the point U on p is unique, for if not, we would have
p ⊆ X . Eventually, there is a one-to-one correspondence h = ξG

p between members of G and
points on p given with the following condition:

h(X ) ∈ X ∩ p, for X ∈ G. (8)

Compositions of maps of the above form can be used to characterize wafers of lines (Propo-
sition 6.5), and to distinguish perspectivities and characterize projectivities in terms of them
(Corollary 6.8). Evidently ξp

G = (ξG
p )−1 = h−1, and U ∈ h−1(U) ∈ G for U ∈ p.

Proposition 6.1. Let G be a proper pencil of segments and p a line such that ξp
G is a rea-

sonable projection.

(i) If Z ′ = Z ′′ = Z, then ξp
G(U) = [Z, f(U)]k for U ∈ p, where f = |↓

p

p(Y ′,Y ′′)
.

(ii) If Y ′ = Y ′′ = Y , then ξp
G(U) = [g(U), Y ]k for U ∈ p, where g = |↓

p

p(Z′,Z′′)
.

Proof. (i) Let U ∈ p and p = p(H,B). Clearly H ≺ U , by 2.8 H ⊆ Y ′, and U * Y ′

since otherwise U ∈ X ′. Hence Y ′ ≺ U + Y ′ by 2.1. Therefore U ∈ [Z,U + Y ′]k ∈ G, and
ξp
G(U) = [Z, f(U)]k, where f = U 7 U + Y ′.

(ii) is dual to (i).

Proposition 6.2. Let G be a wafer and p a line crossing two members of G. Then ξp
G(U) =

[g(U), f(U)]k for U ∈ p, where f = |↓
p

p(Y ′,Y ′′)
, g = |↓

p

p(Z′,Z′′)
.
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Proof. Let U ∈ p. By 2.9(ii) we find that U ∈ [U ∩ Z ′′, U + Y ′]k ∈ G, and hence ξp
G(U) =

[g(U), f(U)]k, where f = U 7 U + Y ′ and g = U 7 U ∩ Z ′′ are required maps.

This is 2.9(ii) expressed in terms of projections. In view of 3.6 a projection ξp
G in 6.1 induces

a linear map. Note that in 6.2 for a wafer G we have the shift h = |↓
p(Z′,Z′′)

p(Y ′,Y ′′)
given, therefore

f = hg and in consequence f, g are mutually definable. It justifies to state that projection
ξp
G induces a linear map in that case too.

We say that a pencil G′ extends G if for every X ∈ G there is a unique Y ∈ G′ with
X ⊆ Y , and for every Y ∈ G′ there is a unique X ∈ G with X ⊆ Y .

Lemma 6.3. If G is a pencil of segments of dimension δ, and there exists a pencil of segments
of dimension δ′, with δ ≤ δ′, then there is a pencil G′ of the same type as G such that G′

extends G.

Proof. Let δ = (k − k1, k2 − k) and δ′ = (k − m1,m2 − k). Then m1 ≤ k1 and k2 ≤ m2.
Consider Q,R such that Z ′ + Q = Z ′′ + Q, Y ′ ∩ R = Y ′′ ∩ R and dimZ ∩ Q = m1 for
Z ∈ [Z ′, Z ′′]k1 , and dimY + R = m2 for Y ∈ [Y ′, Y ′′]k2 . By 3.1 maps f = Z 7 Z ∩ Q
with dm(f) = [Z ′, Z ′′]k1 , and g = Y 7 Y + R with dm(g) = [Y ′, Y ′′]k2 form a bijection
h : G −→ G′ such that h([Z, Y ]k) = [f(Z), g(Y )]k. The pencil G′ has the same type as G since
dm(f), rg(f), and dm(g), rg(g) are similar.

Lemma 6.4. Let p1, p2 be adjacent lines such that G = p1, p2 is a wafer. If q1, q2 are lines
such that qi crosses pj for i, j = 1, 2, then q1, q2 determine a wafer.

Proof. By 2.10(iii) and 2.8 we find that q1 C|B q2, then by 2.6 q1, q2 are adjacent since if
they lie on a strong subspace, lines p1, p2 would also lie on a strong subspace.

Now, suppose that W1 ∈ q1, W2, U2 ∈ q2, W2 6= U2 and W1 ∼ W2, U2. We can assume that

p′1 := W1,W2 ∈ G. Through U2 there goes a line p′2 ∈ G by 2.10(iii). Note that G = p′1, p
′
2.

Since U2 ∼ W1,W2 the contradiction arises with 2.9(i).

In projective geometry Steiner’s construction of a quadric is well known. The same idea we
can utilize to construct wafers.

Proposition 6.5. Let p1, p2 be adjacent lines such that G = p1, p2 is a wafer. Then stars
Si = S(pi) as well as tops Ti = T (pi) determine proper pencils S, T respectively, and

p1, p2 = {S ∩ f(S) : S ∈ S},

where f = ξq
T ◦ ξS

q for some line q that crosses S and T.

Proof. Stars S1, S2 are adjacent and tops T1, T2 are adjacent since lines p1, p2 are adjacent.
This suffices to have proper pencils S,T respectively.

Let U1 ∈ p1. By 2.9(i) there is a unique U2 ∈ p2 collinear with U1. Set q = U1, U2.
Consider a line q′ through U ′

1 ∈ p1, U
′
1 6= U1, taken analogously as q. Note that q, as well

as q′, crosses S and T properly, hence by 6.1 there are suitable projections ξq
T, ξS

q . Their



K. Prażmowski, M. Żynel: General Projections in Spaces of Pencils 607

composition f = ξq
T ◦ ξS

q is meaningful and pi = Si ∩ f(Si). Moreover, since G is a wafer and
q crosses G there is a projection ξG

q by 6.2.
Let p ∈ G. Consider U = ξG

q (p) and take S = ξq
S(U), T = ξq

T(U). By 2.8 q′ crosses S in
U ′. Then U ∼ U ′ and by 6.4 q, q′ determine a wafer, hence U ′ ∈ p. In consequence p ⊆ S.
Similarly p ⊆ T , hence S ∩ T = p. Clearly T = f(S).

Following another idea of projective geometry we introduce a concept of perspectivity to be a
map ξG

q ◦ξ
p
G, where p, q are lines and G a pencil of segment subspaces in Pk(V ). Compositions

of such perspectivities are already known projectivities.

Lemma 6.6. If G is a pencil of segments and p, q are lines such that ξG
q , ξp

G are reasonable
projections, then ξG

q ◦ ξ
p
G ∈ Ω(k).

Proof. Let U ∈ p and X = [Z, Y ]k ∈ G. Assume that G is a proper pencil with Z ′ = Z ′′ = Z.
Then ξp

G(U) = [Z,U + Y ′]k and ξG
q (X ) = Y ∩ B, where q = p(H,B), by 6.1(i). Hence

ξG
q ◦ ξ

p
G(U) = (U + Y ′) ∩B.

Now, assume that G is a wafer. By 6.2 we have ξp
G(U) = [U ∩ Z ′′, U + Y ′]k and ξG

q (X ) =
Z +H = Y ∩B. Hence, ξG

q ◦ ξ
p
G(U) = (U ∩ Z ′′) +H = (U + Y ′) ∩B.

In both cases ξG
q ◦ ξ

p
G is a composition of shift projections.

Lemma 6.7. For every slide f = >
|
↓
◦

p1

p2
or a central projection f = >

|
↓
◦

p1
C
p2
, and arbitrary δ

such that Pk(V ) contains segments of dimension δ, there is a pencil G of segments X with
pdimX = δ such that f = ξG

p2
◦ ξp1

G .

Proof. Let U1, U2 be distinct points on p1, and W1,W2 points on p2 such that Ui ∼ Wi. We

consider lines qi = Ui,Wi.
In case where f is a slide, p1, p2 determine a wafer and by 6.4 lines qi determine a wafer,

which can be extended to a wafer G of segments of dimension δ by 6.3.
If f is a central projection, then p1, p2 determine a proper pencil and lines q1, q2 can be

extended to some proper pencil of segments of dimension δ by 6.3.
It is seen that ξG

p2
, ξp1

G are well defined in both cases and f = ξG
p2
◦ ξp1

G .

Proposition 6.8. h ∈ Ω(k; (1, 1)) iff h is a composition of perspectivities.

Proof. ⇒ : by 6.7 and 5.9 as ξ is a composition of slides and central projections.

⇐ : by 6.6.

Proposition 6.9. Let p1, p2 be lines of Pk(V ) and h : p1 −→ p2 such that h = gf for some
shifts f, g. Then h is a perspectivity.

Proof. Let us drop the trivial case where f = g = id. Then either, f is a J-projection and
g is an M-projection, or conversely, as k < m or m < k. Both cases are mutually dual so,

we investigate the first one. Let pi = p(Hi, Bi) and f = |↓
t

p2

, g = |↓
p1

t
for some line t of

Pm(V ). Assume that f = U 7 U +Q and g = U 7 U ∩ R. Then H2 = (H1 +Q) ∩ R and
B2 = (B1 + Q) ∩ R. Consider a pencil G of segments [Θ, Y ]k where Y ∈ t. Observe that
Y = U + Q for some U ∈ p1. It is seen that lines pi cross all elements of G. Hence we have
projections ξG

p2
, ξp1

G such that ξpi

G (Ui) = [Θ, U1 +Q]k, for Ui ∈ pi, which proves our claim.
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[17] Żynel, M.: Subspaces and embeddings of spaces of pencils. Submitted to Rend. Sem.
Mat. Messina.

Received December 21, 2001, revised version May 14, 2005

http://www.emis.de/MATH-item?0077.02101
http://www.emis.de/MATH-item?0506.51019
http://www.emis.de/MATH-item?0332.50010
http://www.emis.de/MATH-item?0336.50002
http://www.emis.de/MATH-item?0519.51003
http://www.emis.de/MATH-item?0098.34001
http://www.emis.de/MATH-item?0095.34502
http://www.emis.de/MATH-item?0772.51001
http://www.emis.de/MATH-item?0385.06015
http://www.emis.de/MATH-item?0152.38702
http://www.emis.de/MATH-item?0538.51022
http://www.emis.de/MATH-item?0453.51003
http://www.emis.de/MATH-item?0030.26804
http://www.emis.de/MATH-item?0916.51004
http://www.emis.de/MATH-item?0930.51003
http://www.emis.de/MATH-item?0496.51002
http://www.emis.de/MATH-item?0616.51019

