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Abstract. We study the effect of a quadratic transformation on the
degree function of a 0-dimensional ideal with only one Rees valuation
in a 2-dimensional regular local ring with algebraically closed residue
field.
A number of important results of Zariski and Lipman about complete
ideals in a 2-dimensional regular local ring follow as quick corollaries.
Necessary and sufficient conditions for the regularity of a 2-dimensional
normal local domain are proved.
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1. Introduction

The main objective of this paper is to study the effect of a quadratic transforma-
tion on the degree function of a 0-dimensional ideal with only one Rees valuation
in a 2-dimensional regular local ring.

We begin by introducing the relevant definitions and giving some background.
By a local ring we will always mean a commutative Noetherian ring with a

unique maximal ideal. We will also assume throughout that the residue field is
infinite.
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Let (R,M) be a local domain with quotient field K. With an M-primary
ideal I of R, Rees [5] associated an integer-valued function dI on M \ {0} as
follows:

dI(x) = e
(I + xR

xR

)
where e( I+xR

xR
) denotes the multiplicity of I+xR

xR
. The function dI is called the

degree function defined by I.
With every prime divisor v of R, there is associated a non-negative integer

d(I, v), with d(I, v) = 0 for all except finitely many v, such that

dI(x) =
∑

v

d(I, v)v(x) ∀0 6= x ∈M

where the sum is over all prime divisors v of R ([5], Theorem 3.2). By a prime
divisor v of R we mean a discrete valuation v of K which is non-negative on R
and has center M on R and whose residual transcendence degree is dimR − 1.
The set of all prime divisors of R will be denoted by P (R). In case (R,M) is
analytically unramified, d(I, v) 6= 0 for all v ∈ P (R) that are Rees valuations of I
as defined by Rees in [5], whereas d(I, v′) = 0 for all other prime divisors v′ of R.

More background information on degree functions will be given in Section 2.
Now we turn to the other term in our title, quadratic transformations.
Let (R,M) be a noetherian local domain with field of fractions K. We denote

by B`MR the scheme Proj(⊕n≥0Mn) obtained by blowing up M. For any x ∈
M \M2 and any maximal ideal N in R[M

x
] containing MR[M

x
], the ring

S := R[
M
x

]N

is called a first (or an immediate) quadratic transform of R.
From now till the end of the introduction we shall assume that the local

ring (R,M) is regular. Then the ring S is a 2-dimensional regular local ring
birationally dominating R.

Let I be an M-primary ideal in R. The ideal

IS := IS · (IS)−1

is called the transform of I in S.
There are only finitely many immediate quadratic transforms S of R for which

ordS(IS) 6= 0, where ordS is the order valuation associated with the maximal ideal
of S; these are called the immediate base points of I. By the local factorization
theorem of Zariski-Abhyankar, we know that any 2-dimensional regular local ring
S birationally dominating R can be reached by a finite number of quadratic trans-
formations:

R = R0 < R1 < R2 < · · · < Rn = S.

This sequence is unique and is called the quadratic sequence from R to S. Let
IRi denote the transform of IRi−1 in Ri for 1 ≤ i ≤ n. Then IRn is called the
transform of I in S, denoted by IS.
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By a base point S of I we mean a 2-dimensional regular local ring S bira-
tionally dominating R such that IS 6= S.

A 2-dimensional regular local ring S birationally dominating R is a base point
of I if and only if S is dominated by a Rees valuation ring of I (see [4], p. 295).
Hence a given M-primary ideal I in R has only finitely many base points.

We recall that the Rees valuation rings of an M-primary ideal I of R are
defined as follows. Let R[It, t−1] be the integral closure of R[It, t−1] in the quo-
tient field K(t), and let {P1, . . . , Pn} be the minimal primes of (t−1)R[It, t−1].
Then R[It, t−1] is a Krull domain and each Pi is a height one prime and hence
(R[It, t−1])Pi

is a discrete valuation ring of K(t) for i = 1, . . . , n.
The Rees valuation rings of I are

Vi := (R[It, t−1])Pi
∩K i = 1, . . . , n.

The corresponding discrete valuations v1, . . . , vn are called the Rees valuations of
I and the set of these Rees valuations is denoted by T (I), i.e.

T (I) = {v1, . . . , vn}.

The main purpose of this paper is to study, in case of a 2-dimensional regular local
ring with algebraically closed residue field, the effect of a quadratic transformation
on the numbers d(I, v) in case I is a one-fibered M-primary ideal (i.e. I has only
one Rees valuation v and hence T (I) = {v}).

The key result is the following: the transform IS of I in every base point S of
I satisfies the property that T (IS) = {v} and d(IS, v) = d(I, v). A proof of the
result (and of a number of related results) will be given in Section 3.

Besides Göhner’s work ([3], Section 2) on normal complete models over R in
K, we will use the so-called Length Formula of Hoskin-Deligne.

A short and elementary proof of this formula is presented in [2]. As a con-
sequence of this elementary proof a remarkable short proof of Zariski’s Product
Theorem (ZPT), i.e. the product of complete ideals is again complete, can be
given in a way which is logically independent of the material in this paper.

See e.g. J. K. Verma’s manuscript “Zariski-Lipman Theory of complete ideals
in 2-dimensional regular local rings” of July 5, 2003.

In what follows the above mentioned property ZPT of a 2-dimensional regular
local ring will be used in an essential way.

Further in Section 3 we will show that the following well-known results of a
2-dimensional regular local ring with algebraically closed residue field, follow from
our key result:

- Every simple complete M-primary ideal of R has exactly one Rees valuation,
- Zariski’s one to one correspondence,
- Zariski’s unique factorization theorem,
- Lipman’s reciprocity and multiplicity formula.

From the results of Section 3 it follows a.o. that in a 2-dimensional regular local
ring with algebraically closed residue field the following holds: for every prime
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divisor v of R there exists a completeM-primary ideal I in R such that T (I) = {v}
and d(I, v) = 1.

In Section 4 we will give examples of 2-dimensional normal local domains
(R,M) showing that this property does no longer hold if R is not regular.

So one can ask to what extent this property is characteristic for the regularity
of a 2-dimensional normal local domain. It is proved that the above mentioned
property, completed with some natural conditions on the unique maximal ideal
M of R does imply the regularity of R.

2. Background on degree functions

As we have seen in the introduction, the degree function dI of an M-primary ideal
I in a noetherian local domain (R,M) can be written as follows:

dI(x) =
∑

v∈P (R)

d(I, v) · v(x) ∀0 6= x ∈M.

In [6] Rees and Sharp prove that the integers d(I, v) are uniquely determined by
the previous condition, i.e. suppose that∑

v∈P (R)

d(I, v)v(x) =
∑

v∈P (R)

d′(I, v)v(x) ∀0 6= x ∈M

then d(I, v) = d′(I, v) for every prime divisor v of R. From this uniqueness it
follows that for M-primary ideals I and J in a 2-dimensional noetherian local
domain (R,M), one has that

d(IJ, v) = d(I, v) + d(J, v)

for every prime divisor v of R ([6], Lemma 5.1, p. 459). If we make the additional
assumption that R is analytically unramified and normal, then this implies that

T (IJ) = T (I) ∪ T (J).

In [6] Theorem 4.3, p. 457, Rees and Sharp show that for an M-primary ideal I
in a 2-dimensional local domain (R,M), the multiplicity e(I) of I is given by

e(I) =
∑

v∈P (R)

d(I, v)v(I).

For I and J M-primary ideals in a 2-dimensional Cohen-Macaulay local domain
(R,M), Rees and Sharp define

dI(J) = min{dI(x)|0 6= x ∈ J}

and they prove ([6], Theorem 5.2, p. 460) that

dI(J) =
∑

v∈P (R)

d(I, v) · v(J)
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and
dI(J) = dJ(I) = e1(I|J)

where e1(I|J) denotes the mixed multiplicity of I and J and is defined by e(IJ) =
e(I) + 2e1(I|J) + e(J) (see a.o. [7], p. 1037).

We end this section with the following result of Rees and Sharp ([6], Corollary
5.3, p. 461).

Let I and J be M-primary ideals in the 2-dimensional M-primary ideals
in the 2-dimensional Cohen-Macaulay local domain (R,M). Then the following
three statements are equivalent:

(1) Ī = J̄ where “¯” denotes the integral closure.

(2) dI(x) = dJ(x) ∀x ∈M \ {0}
(3) d(I, v) = d(J, v) ∀v ∈ P (R)

3. Main result

In this section, (R,M) will denote a 2-dimensional regular local ring with alge-
braically closed residue field and fraction field K. Following Göhner [3, Section 2]
we shall regard B`MR as a model over R.

The assumption that the residue field is algebraically closed is not strictly nec-
essary, but the restriction is made for the purpose of simplifying the presentation.

Now we prove the main result of this section.

Proposition 3.1. Let I be a complete M-primary ideal of R with T (I) = {v}
and v 6= ordR. Then I has exactly one immediate base point R1 and if I1 is the
transform of I in R1, then T (I1) = {v} and d(I1, v) = d(I, v).

Proof. Let (R1,M1) be the unique local ring of the complete normal model B`MR
dominated by the valuation ring (V,MV ) of v. Since (V,MV ) is the unique Rees
valuation ring of I, it follows that (R1,M1) is the unique immediate base point
of I.

According to Göhner ([3], Proposition 2.9, p. 414) there is an integer e > 0
such that the transform of Ie in R1 has v as its unique Rees valuation. Since R1

is regular and hence a UFD, we can take e = 1 and so T (I1) = {v}.
To finish the proof it remains to show that d(I1, v) = d(I, v). We commence

by noting that the unique immediate base point R1 of I is a local ring of the form

R1 = R[
M
x

]N

with N a height 2-prime ideal of R[M
x

] lying over M and x ∈M \M2.
Denote r := ordR(I), then IR1 = xr ·I1. Since T (I) = {v}, we have according

to Section 2 that e(I) = d(I, v)v(I). Hence d(I, v) = e(I)
v(I)

. Similarly T (I1) = {v}
implies d(I1, v) = e(I1)

v(I1)
. From the Length formula of Hoskin-Deligne it follows

e(I) =
∑

s

ords(I
s)2



126 R. Debremaeker et al.: The Effect of Quadratic Transformations . . .

where the sum is over all the base points s of I. Thus

e(I) = r2 + e(I1).

Since IR1 = xr · I1 we have

v(I) = r · v(M) + v(I1)

and hence

d(I, v) =
e(I1) + r2

v(I1) + r · v(M)
=

d(I1, v) + r2

v(I1)

1 + r · v(M)
v(I1)

.

It follows that

d(I, v)
(
1 + r · v(M)

v(I1)

)
= d(I1, v) +

r2

v(I1)
.

Since dI(M) = dM(I) and e(M) = 1, it follows that

d(I, v) · v(M) = r

and this together with the previous relation yields d(I, v) = d(I1, v). �

Conversely, let us start with a complete M1-primary ideal I1 in an immediate
quadratic transform (R1,M1) of (R,M). Then R1 is of the form R1 = R[M

x
]N ,

with x ∈M \M2 and N a maximal ideal in R[M
x

] lying over M.
We now recall the definition of the inverse transform of I1 in R.
Let a be the smallest positive integer so that xaI1 is extended from R, i.e. there

exists an ideal J of R such that xaI1 = JR1. Then I := xaI1 ∩ R is called the
inverse transform of I1 in R. It is clear that

xaI1 = IR1

and
IR1 ∩R = I

in other words, I is contracted from R1. Note also that

a = ordR(I).

Since I1 is NR[M
x

]N -primary, there is exactly one N -primary ideal in R[M
x

], say
I ′, such that

I1 = I ′N .

Lemma 3.2. I ′ is the transform of I in R[M
x

] i.e. IR[M
x

] = xa · I ′.

Proof. Let b be the smallest positive integer such that xbI ′ is extended from R i.e.
xbI ′ = (xbI ′ ∩R)R[M

x
].

This implies that xbI1 is extended from R and hence b ≥ a.
Since I = xaI ′ ∩R, it is sufficient to prove that b = a. Suppose b > a, then

(xbI ′ ∩R)R[Mx]N = Mb−a · IR[
M
x

]N
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and contraction to R implies

xbI ′ ∩R = Mb−aI

because xbI ′ ∩R as well as Mb−aI is contracted from R[M
x

]N . Extension to R[M
x

]
yields

xbI ′ = xb−aIR[
M
x

]

and this implies

xaI ′ = IR[
M
x

].

Thus xaI ′ is extended from R, so by the choice of b one has a ≥ b, a contradiction
with b > a. �

Corollary 3.3. The inverse transform I of I1 has R1 as its unique immediate
base point.

Proof. As the residue field of R is infinite, we may suppose without loss of gen-
erality that the element x ∈ M \M2 is chosen in such a way that all immediate
base points of I are localizations of R[M

x
]. This together with Lemma 3.2 proves

the assertion. �

So far I1 was a complete M1-primary ideal of R1. Now we assume additionally
that I1 has only one Rees valuation v, i.e. T (I1) = {v}. Then we can prove the
following converse of Proposition 3.1.

Proposition 3.4. The inverse transform I of I1 in R is a complete M-primary
ideal such that T (I) = {v} and d(I, v) = d(I1, v).

Proof. Since I = xaI1 ∩R, it is clear that I is a complete M-primary ideal in R.
Next we prove that T (I) = {v}. Because of Corollary 3.3, we know that I

has exactly one base point among all the immediate quadratic transforms of R,
namely R1. This implies that the blow-up B`IMR of R at IM is obtained from
B`MR by blowing up R1 at I1 while leaving unaltered all the other local rings of
B`MR.

It follows that

T (IM) = T (I) ∪ T (M) = {ordR, v}

where ordR denotes the M-adic order valuation of R. So it remains to prove that
ordR cannot be a Rees valuation of I.

To this end note that M does not divide I, thus s(I) = ordR(I) where s(I)
denotes the degree of the gcd of the elements of I+Ma+1

Ma+1 ([8], Proposition 3, p. 368).
From this it follows that I has an ideal basis (x0, x1, . . . , xn) such that ordR( xi

x0
) > 0

for i = 1, . . . , n.
Consequently R[ I

x0
] is contained in the valuation ring W of ordR and the

elements x1

x0
, . . . , xn

x0
belong to its unique maximal ideal MW . This implies that
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the unique local ring of B`IR dominated by W is 2-dimensional. So W does not
belong to B`IR, which means that ordR is not a Rees valuation of I.

Finally, since T (I) = {v} and I1 is the transform of I in R1, Proposition 3.1
implies d(I, v) = d(I1, v). �

In the next proposition we will prove among other things that a 2-dimensional
regular local ring (with algebraically closed residue field) satisfies condition (N),
i.e. for every prime divisor v of R, there exists an M-primary ideal I of R with
v as its unique Rees valuation.

Proposition 3.5. Let v be a prime divisor of R. Then:

(1) There exists a complete M-primary ideal I of R such that T (I) = {v} and
d(I, v) = 1 (consequently I is simple i.e., not factorable into a product of
proper ideals).

(2) This ideal I is the only simple complete M-primary ideal of R with v as its
unique Rees valuation.

(3) The set of all complete M-primary ideals of R with v as unique Rees valu-
ation consists of all powers of I.

Proof. Let (V,MV ) be the valuation ring of v. It is readily seen that (1) holds
if v = ordR. So let us assume that v 6= ordR. Let (V,MV ) denote the valuation
ring of v.

Since v is a prime divisor of R, Abhyankar ([1], p. 336, Proposition 3) has
proved that there exists a unique finite quadratic sequence starting from R and
dominated by the valuation ring V of v:

(R,M) = (R0,M0) < (R1,M1) < · · · < (Rn,Mn) < (V,MV )

i.e. (Ri,Mi) is an immediate quadratic transform of (Ri−1,Mi−1) for i = 1, . . . , n
and V is the Mn-adic order valuation ring of Rn.

Now Mn is a complete Mn-primary ideal in the 2-dimensional regular local
ring Rn with T (Mn) = {v} and d(Mn, v) = 1. So if In−1 denotes the inverse
transform of Mn in Rn−1, then Proposition 3.4 implies that

T (In−1) = {v} and d(In−1, v) = 1.

Descending step by step along the quadratic sequence, we finally obtain a complete
M-primary ideal I of R with T (I) = {v} and d(I, v) = 1. Since d(I, v) = 1, I
must be simple and this proves (1). It remains to prove (2) and (3).

Suppose J is a complete M-primary ideal of R such that T (J) = {v}. Denote
n := d(J, v). Then d(J, v) = d(In, v) and d(J, v′) = d(In, v′) = 0 for every prime
divisor v′ of R distinct from v. Hence, it follows from Section 2 that J̄ = Īn, thus
J = In because both ideals are complete.

In case J is simple, this implies J = I. �

By means of the preceding proposition, we can prove a.o. the well-known result
that a simple complete M-primary ideal of the 2-dimensional regular local ring
R has only one Rees valuation.
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Corollary 3.6. If I is a simple complete M-primary ideal of a 2-dimensional
regular local ring (R,M) with algebraically closed residue field, then I has just
one Rees valuation, say v, and d(Is, v) = 1 for each base point S of I.

Proof. Suppose that T (I) = {v1, . . . , vn} and let for each i, Ii denote the unique
simple complete M-primary ideal which corresponds, according to Proposition
3.5, to vi. Next, consider the ideal I

d(I,v1)
1 · · · I

d(I,vn)
n . Then

d(I, v) = d(
n∏

i=1

I
d(I,vi)
i , v)

for each prime divisor v of R, and it follows from Section 2 that

Ī =
n∏

i=1

I
d(I,vi)
i

and hence

I =
n∏

i=1

I
d(I,vi)
i .

Since I is simple, we must have n = 1 and d(I, v1) = 1.
Now, the base points of I are the local rings in the unique quadratic sequence

starting from R and dominated by the valuating ring (V1,Mv1) of v1:

(R,M) = (R0,M0) < (R1,M1) < · · · < (Rn,Mn) < (V1,Mv1).

Therefore it follows from Proposition 3.1 that

d(Is, v1) = 1

for every base point S of I. �

We close this section by showing that in case of a 2-dimensional regular local ring
R with algebraically closed residue field, a number of well-known results of Zariski
and Lipman follow as quick corollaries from the preceding material of this section.

Corollary 3.7. (Zariski’s one-to-one correspondence) The mapping that asso-
ciates to each simple complete M-primary ideal of R its unique Rees valuation v,
is a one-to-one correspondence between the set of the simple complete M-primary
ideals of R and the set of prime divisors of R.

Proof. This follows immediately from Proposition3.5(1) and (2) and Corollary
3.6. �

Corollary 3.8. (Zariski’s unique factorization theorem) Every complete M-
primary ideal of R can be uniquely factored into a product of simple complete
ideals (up to order).



130 R. Debremaeker et al.: The Effect of Quadratic Transformations . . .

Proof.
• Existence of the factorization. Let T (I) = {v1, . . . , vn}. Because of Propo-

sition 3.5 we can consider for each vi a simple complete M-primary ideal Ii

of R so that T (Ii) = {vi} and d(Ii, vi) = 1, while d(Ii, v
′) = 0 for all other

prime divisors v′ of R. If we put ei := d(I, vi) for i = 1, . . . , n, then we have

d(Ie1
1 · · · Ien

n , v) = d(I, v)

for every prime divisor v of R. Applying Section 2, it follows that

Ī = Ie1
1 · · · Ien

n .

The product of complete ideals being complete in a 2-dimensional regular
local ring, this implies

I = Ie1
1 · · · Ien

n .

• Uniqueness of the factorization. Suppose that

I = Ie1
1 · · · Ien

n = Jf1

1 · · · Jfm
m

are two factorizations of I in simple complete M-primary ideals with I1, . . . ,
In (resp. J1, . . . , Jm) distinct simple ideals.

Let v1, . . . , vn (resp. w1, . . . , wm) be the corresponding Rees valuations, i.e. T (Ii)=
{vi} for i = 1, . . . , n and T (Jj) = {wj} for j = 1, . . . ,m. Then T (I) = {v1, . . . ,
vn} = {w1, . . . , wm}. It follows that n = m and, after renumbering if necessary,
one has v1 = w1, . . . , vn = wn. Because of Proposition 3.5(2), T (Ii) = T (Ji) = {vi}
implies that Ii = Ji for i = 1, . . . , n and thus

I = Ie1
1 · · · · · Ien

n = If2

1 · · · · · Ifn
n .

It follows that
d(I, vi) = ei = fi

for i = 1, . . . , n and this finishes the proof. �

Corollary 3.9. (Lipman’s reciprocity and multiplicity formula)
(1) If I and J are simple complete M-primary ideals in R with T (I) = {v} and

T (J) = {w}, then
v(J) = w(I).

(2) Let I = Ik1
1 · · · · · Ikn

n the unique factorization of the complete M-primary
ideal I into a product of simple complete M-primary ideals (with I1, . . . , In

distinct ideals). Suppose that T (Ii) = {vi} for i = 1, . . . , n. Then

e(I) =
n∑

i=1

kivi(I).
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Proof. In Section 3 we have seen that

d(I, v) · v(J) = d(J, w) · w(I)

and using Corollary 3.6 the assertion (1) follows. As for the second statement,
from Section 2 we have

e(I) =
∑

v∈P (R)

d(Ik1
1 , . . . , Ikn

n , v) · v(I)

=
∑

v∈P (R)

(
n∑

i=1

kid(Ii, v)) · v(I)

=
n∑

i=1

kid(Ii, vi)vi(I).

Since d(Ii, vi) = 1, this implies e(I) =
∑n

i=1 kivi(I). �

4. A characterization of regularity

In Section 3 we have seen that in a 2-dimensional regular local ring (R,M) with
algebraically closed residue field the following property (∗) holds:

For every prime divisor v of R, there exists a complete M-primary ideal I of
R such that

T (I) = {v} and d(I, v) = 1

and d(I, v′) = 0 for all the other prime divisors v′ of R.
If the 2-dimensional local ring (R,M) is not regular then this property (∗)

does not necessarily hold as the following example will show.

Example 4.1. Let R = k[X,Y,Z](X,Y,Z)
(XY−Z3)(X,Y,Z)

with k an algebraically closed field X, Y, Z
indeterminates over k and let K be the quotient field of R. Then

R = k[x, y, z](x,y,z), xy = z3

with x, y, z the images of X, Y, Z in k[X,Y,Z](X,Y,Z)
(XY−Z3)(X,Y,Z)

. It is readily seen that

grMR =
k[X, Y, Z]

(XY )
.

So putting S = R[Mt, t−1], one sees that t−1S has two minimal primes

P1 = (xt, t−1)S and P2 = (yt, t−1)S.

Since P1SP1 = (t−1)SP1 (resp. P2SP2 = (t−1SP2), it follows that SP1 (resp. SP2) is
a DVR and hence V1 := SP1 ∩K and V2 := SP2 ∩K are the Rees valuation rings
of M.
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Let v1, v2 be the corresponding valuations. One can check that v1(x) =
2, v1(y) = v1(z) = 1 and v2(y) = 2, v2(x) = v2(z) = 1.

As R is a 2-dimensional rational singularity, according to Göhner ([3], Corol-
lary 3.11, p. 422) there exist unique complete M-primary ideals Av1 resp. Av2 in
R with T (Av1) = {v1} resp. T (Av2) = {v2} and such that every other complete
M-primary ideal with unique Rees valuation v1 resp. v2, is a power of Av1 resp.
Av2 . We claim that

Av1 = (x, y2) and Av2 = (y, x2).

To prove this claim, we first remark that

M3 = (x, (y, z)2) · (y, (x, z)2)

and thus
M3 = (x, y2) · (y, x2).

Putting I = (x, y2) and J = (y, x2), one has

T (M3) = {v1, v2} = T (I) ∪ T (J)

and this implies T (I) = {v1} and T (J) = {v2}. By Göhner [3] it certainly holds
that I = Ae

v1
for some positive integer e, consequently

d(I, v1) = e · d(Av1 , v1)

which together with M3 = I · J implies that e is a divisor of 3. On the other
hand, d(I, v1) = e · d(Av1 , v1) in combination with dI(Av1) = dAv1

(I) implies that
e is also a divisor of 2. Thus e = 1, and hence I = Av1 . Similarly one proves
J = Av2 , implying that M3 = Av1 · Av2 and d(Av1 , v1) = d(Av2 , v2) = 3. �

Although a 2-dimensional rational singularity (R,M) essentially of finite type over
an algebraically closed field k, is an analytically normal local ring which satisfies
a.o. ZPT and condition (N), the previous example shows that nevertheless the
property (∗) does not necessarily hold in such a local ring R. Since property (∗)
does not hold even in the “simplest” sort of 2-dimensional singularity, it is natural
to ask whether property (∗) is characteristic for the regularity of a 2-dimensional
normal local ring.

In the following proposition we will show that property (*) completed with a
natural condition on the maximal ideal M of R does imply the regularity of R.
More precisely we have the following result.

Proposition 4.2. Let (R,M) be a 2-dimensional Cohen-Macaulay local domain
with algebraically closed residue field. Then R is regular if and only if

(i) For every prime divisor v of R, there exists a complete M-primary ideal I
of R such that d(I, v) = 1 and d(I, v′) = 0 for all the other prime divisors
v′ of R. (i.e. property (∗) holds).
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(ii) There is exactly one prime divisor v of R satisfying d(M, v) 6= 0 and there
exists a prime divisor w of R satisfying w(M) = 1.

Proof. One implication is immediate because of Proposition 3.5. For the converse,
suppose v is the unique prime divisor of R satisfying d(M, v) 6= 0. Since e(m) =
d(m, v) · v(M), it is sufficient to show that d(M, v) = 1 and v(M) = 1 in order
to conclude that R is regular. We first show that d(M, v) = 1. From (i), it
follows that there exists a complete M-primary ideal I of R satisfying d(I, v) = 1
and d(I, v′) = 0 for every other prime divisor v′ of R. Let d(M, v) = e. Then
d(M, v) = d(Ie, v) and d(M, v′) = d(Ie, v′) = 0 for all prime divisors v′ 6= v of R.
This implies thatM = Ie and henceM = I. Consequently d(M, v) = d(I, v) = 1.
It remains to prove that v(M) = 1. To this end consider a prime divisor w of R
satisfying w(M) = 1 (see condition (ii)). According to (i), there exists a complete
M-primary ideal J of R such that d(J, w) = 1 and d(J, w′) = 0 for every other
prime divisor w′ of R. Using the relation dJ(M) = dM(J), one has

1 = d(J, w) · w(M) = d(M, v) · v(J) = v(J) ≥ v(M).

It follows that v(M) = 1 and this completes the proof. �

We close this section by giving some examples of non-regular 2-dimensional ana-
lytically normal local domains satisfying condition (ii) of the previous proposition.
This shows that a.o. that condition (ii) alone is not sufficient to ensure that R is
regular.

Example 4.3. Let R =
k[X,Y,Z](X,Y,Z)

(X2−ZY 2−Z3)(X,Y,Z)
with k an algebraically closed field

X, Y, Z indeterminates over k and K the quotient field of R. Then

R = k[x, y, z](x,y,z), x2 = zy2 + z3

with x, y, z the images of X, Y, Z in
k[X,Y,Z](X,Y,Z)

(X2−ZY 2−Z3)(X,Y,Z)
. First, we look for the Rees

valuation of the unique maximal ideal M of R. It is clear that

grMR =
k[X, Y, Z]

(X2)
.

If S denotes the ring R[Mt, t−1], it follows that (t−1)S has only one minimal prime
ideal

P = (xt, t−1)S

and PSP = (xt)SP . Hence SP is a DVR and

V := Sp ∩K

is the unique Rees valuation ring of M. Let v be the corresponding valuation. We
have v(x) = 3, v(y) = 2, v(z) = 2, hence v(M) = 2. This implies that d(M, v) = 1
(i.e. v is the unique prime divisor of R such that d(M, v) 6= 0).
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Next we show that there exists a prime divisor w of R satisfying w(M) = 1.
Consider the ideal (z, y2)R. This is an M-primary ideal whose integral closure I
is given by

I = (x, y2, z)R.

Then one can check that (z)R[ I
z
] has only one minimal prime which determines the

unique Rees valuation w of I and w(y) = 1, w(x) = w(z) = 2. Hence w(M) = 1.
This shows that R satisfies condition (ii) of Proposition 4.2 and since R is not
regular, Proposition 4.2 implies that condition (i) is not satisfied in R.

The local ring (R,M) of the previous example has quite a number of properties
in common with a regular 2-dimensional local ring. However, there is an important
exception: its associated graded ring grMR is not a domain (equivalently ordR is
not a valuation). Therefore in the next example we consider a 2-dimensional local
ring (R,M) whose associated graded ring is a domain.

Example 4.4. Let R = k[X,Y,Z](X,Y,Z)
(XY−Z2)(X,Y,Z)

with k an algebraically closed field and
X, Y, Z indeterminates over k. Then

R = k[x, y, z](x,y,z), z
2 = xy

with x, y, z the images of X, Y, Z in k[X,Y,Z](X,Y,Z)
(xy−z2)(X,Y,Z)

. One has

grMR =
k[X, Y, Z]

(XY − Z2)

and thus grMR is a domain.
Consequently, ordR is a valuation and it is the only Rees valuation of M. It

is clear that ordR(M) = 1 and e(M) = d(M, ordR) implies that d(M, ordR) = 2.

References

[1] Abhyankar, S. S.: On the valuations centered in a local domain. Am. J. Math.
78(1) (1956), 321–348. Zbl 0074.26301−−−−−−−−−−−−

[2] Debremaeker, R.; Van Lierde, V.: A short proof of the length formula of
Hoskin and Deligne. Arch. Math. 78 (2002), 369–371. Zbl 0997.13007−−−−−−−−−−−−
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