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Abstract. In this paper we consider single elements in rings and near-
rings. If R is a (near)ring, x ∈ R is called single if axb = 0 ⇒ ax = 0
or xb = 0. In seeking rings in which each element is single, we are led
to consider 0-simple rings, a class which lies between division rings and
simple rings.
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Introduction

If R is a (not necessarily unital) ring, an element s is called single if whenever
asb = 0 then as = 0 or sb = 0. The definition was first given by J. Erdos [2] who
used it to obtain results in the representation theory of normed algebras. More
recently the idea has been applied by Longstaff and Panaia to certain matrix
algebras (see [9] and its bibliography) and they suggest it might be worthy of
further study in other contexts. In seeking rings in which every element is single
we are led to consider 0-simple rings, a class which lies between division rings and
simple rings. In the final section we examine the situation in nearrings and obtain
information about minimal N -subgroups of some centralizer nearrings.

1. Single elements in rings

We begin with a slightly more general definition. If I is a one-sided ideal in a ring
R an element x ∈ R will be called I-single if axb ∈ I ⇒ ax ∈ I or xb ∈ I. We
abbreviate “0-single” to just “single”1.

1Of course one must be careful to distinguish between statements such as “R has a single
idempotent” and “R has an idempotent which is single”.
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The proof of the following lemma is elementary

Lemma 1. Let I be a left (resp. right) ideal and let x be I-single. Then

(i) rx (resp. xr) is I-single for all r ∈ R;

(ii) x is (I : J)-single for all right ideals J (resp. (J : I)-single for all left ideals
J);

(iii) if xn ∈ I, n ≥ 3, x2 ∈ I;

(iv) if x is a unit, I is completely prime.

Moreover if I is two-sided, then
(v) x is I-single iff x = x + I is single in R = R/I.

(vi) If I is completely prime, every element of R is I-single.

(vii) If R is commutative or anti-commutative, x is I-single iff (I : x) is a prime
ideal of R.

In view of (v) of Lemma 1, we will restrict our attention to 0-single elements in
the rest of the paper. Also “single element” shall always mean “non-zero single
element”.

Example 1. In Z/mZ, k is single iff
m

gcd(m, k)
is prime. The same is true for

any Euclidean domain.

Example 2. (See [2]) In a C∗-algebra A, an element x is single iff the image of x
under some faithful representation of A is an operator of rank 1 (hence the name).

Example 3. (See [9]) In the ring of upper triangular n× n matrices over a field
K with at least 3 elements, x is single iff x has rank 1. On the other hand, there
are single elements of rank > 1 in other matrix rings. For example

x =


0 0 1 1
0 0 1 a
0 0 0 0
0 0 0 0

 , a 6= 0, 1

is single in the ring of matrices over K of the form
∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 ∗

 .

Example 4. There are rings in which every element is single. (See Section 2.)
Trivially in a domain D every element is single, i.e., the non-zero single elements
are precisely the non-zero-divisors. In contrast the single elements of D ×D are
precisely the zero-divisors. More generally if {Ri} is a family of rings with zero
right and left annihilator then r = (ri) ∈ R = ΠRi is single iff ∃j such that ri = 0
for all i 6= j and rj is single in Rj.
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Example 5. There are rings with no single elements. Take, for instance, the
algebra C0(X) of all functions vanishing at infinity on a locally compact Hausdorff
space with no isolated points ([2]). See also Corollary 1 and Examples 7, 8 and 9
below.

Example 6. The inner automorphisms of the dihedral group D4 of order 8
additively generate a commutative ring of order 16 ([8]). The single elements are
precisely the seven zero-divisors since as seen from the multiplication table in [8]
each zero-divisor z has the property that xz = 0 or z for all x. Thus if xzy = 0
and xz 6= 0, then zy = 0.

Let S be the set of single elements of R. Suppose S 6= 0 and define the middle
annihilator of S by m(S) = {x|sxs = 0 for all s ∈ S}. Let Prad R denote the
prime radical, and N the set of nilpotent elements.

Proposition 1. m(S) is an ideal containing Prad R. If N is an ideal then
m(S) ⊇ N .

Proof. Clearly m(S) is a subgroup of R. Since S is closed under left and right R-
multiplication, r ∈ m(S), s ∈ S and x ∈ R ⇒ sxrsx = 0 and since s ∈ S sxrs =
0 or sx = 0; but the latter also implies sxrs = 0 so xr ∈ m(S).

If 0 6= x ∈ Prad R then xs ∈ S ∩ Prad R for all s ∈ S so xs is (strongly)
nilpotent and single. Therefore (xs)2 = 0 by Lemma 1 (iii). It follows that sxs = 0
since s ∈ S.

If N is an ideal and x ∈ N then xs ∈ S ∩ N and we proceed as above. This
completes the proof.

One large class of rings in which N is an ideal is the class of 2-primal rings defined
by the property N = Prad R. Equivalently (see eg. [7(a), p. 195]) every minimal
prime ideal is completely prime. This class includes rings with the “insertion of
factors property” (or I.F.P) by which is meant ab = 0 ⇒ arb = 0 for all r ∈ R (see
eg. [17, Lemma 1.2 and Theorem 1.5]). In turn, the class of I.F.P. rings contains
all completely reflexive rings, defined as those in which ab = 0 ⇒ ba = 0 (see
[10]). Commutative rings and reduced rings are completely reflexive.

Proposition 2.
(a) If R is completely reflexive, Prad R = N ⊆ m(S) = m1(S) = {y ∈ R|sys1 =

0 for all s, s1 ∈ S}.
(b) If R is completely reflexive, x is single iff Ann x is completely prime.

(c) If R is reduced and 0 6= A = Ann P for a prime ideal P then P is a minimal
prime ideal and P = Ann x for all x ∈ A. Hence every element of A is
single.

Proof.
(a) m1(S) is an ideal in any ring and m1(S) ⊆ m(S). We show equality holds

if R is completely reflexive. If x ∈ m(S) then ss1xss1 = 0 for all s, s1 ∈ S.
Since s1 is single, either ss1 = 0 or s1xss1 = 0 and since s is single s1xs = 0
or ss1 = 0. But ss1 = 0 ⇒ s1s = 0 ⇒ s1xs = 0 by I.F.P.
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(b) If Ann x is completely prime and axb = 0 then xba = 0, i.e., ba ∈ Ann x
so b ∈ Ann x or a ∈ Ann x. Therefore bx = 0 or ax = 0 and x is single.
Conversely if x is single and ab ∈ Ann x then xab = 0 so bxa = 0 whence
bx = 0 or xa = 0, i.e., b ∈ Ann x or a ∈ Ann x.

(c) Suppose 0 6= x ∈ A = Ann P . If P is not minimal, P ⊃ Q where Q is
a minimal prime ideal. If p ∈ P\Q xp = 0 so because Q is completely
prime x ∈ Q ⊂ P . But then x2 = 0, a contradiction. Hence P is minimal
and P ⊆ Ann x. But also x ∈ A = Ann P ⇒ x 6∈ P (or else x2 = 0) so
Ann x ⊂ P . Therefore Ann x = P is a minimal prime ideal and the result
follows from part (a).

We recall that in a semiprime ring R minimal left ideals have the form Re, e2 = e
and Re is minimal iff eR is a minimal right ideal iff eRe is a division ring (see
eg. [7(a)]). Also an idempotent e is primitive if whenever ef = fe = f = f 2 6= 0,
then e = f . Equivalently e is primitive iff e is not the sum of two orthogonal
idempotents iff eRe has no non-trivial idempotents. Clearly if Re is a minimal
left ideal, e is primitive.

Theorem 1.
(a) If e is idempotent and single then eRe is a domain so e is primitive.

(b) If M is a minimal left ideal of R such that ∀s 6= 0 in M ∃r ∈ R with rs 6= 0
then M = Rs and s is single.

(c) If Ann`R = 0, s is single and Rs ⊇ Re where e2 = e 6= 0 then Rs = Re.

(d) If R is regular and s is single then Rs is a minimal left ideal and conversely
every minimal left ideal has the form Rs, s single.

Proof.
(a) If ereese = erese = 0, then since e is single, ere = 0 or ese = 0.

(b) Let 0 6= s ∈ M . Then rs 6= 0 for some r so 0 6= Rs ⊆ M and M minimal
⇒ Rs = M . Suppose asb = 0 with as 6= 0. Again Ras = M so Mb =
Rasb = 0. Hence sb = 0.

(c) If Rs ⊇ Re then e = rs and for all x ∈ R we have e(x − ex) = 0, i.e.,
rs(x − ex) = 0. Since s is single and rs(= e) 6= 0 we have s(x − ex) = 0,
i.e., s− se ∈ Ann`x. Since Ann`R = 0, s = se and so Rs = Re.

(d) We use the fact that in a regular ring, e is a primitive idempotent ⇒ Re is
a minimal left ideal ([7(a), Ex. 21.8]). Now if s is single, since R is regular,
Rs = Re for e2 = e and e = rs is single. Therefore e is primitive and so
Rs = Re is a minimal left ideal.

Note that if R is semiprime or if 1 ∈ R then the hypothesis of (b) is true for
all minimal left ideals M , and the condition Ann`R = 0 of (c) also holds. More
generally, the hypothesis of (b) holds if R is right D-regular (x ∈ xR for all x)
and that of (c) holds if R is left D-regular.

Example 3. (continued) The ring of 4 × 4 matrices described in Example 3
is not semiprime. The nilpotent element x generates a non-minimal nilpotent
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right (or left) ideal consisting of single elements. For if x =

(
0 A
0 0

)
where

A =

(
1 1
1 a

)
, a 6= 0, 1 and r =

(
D1 B
0 D2

)
where D1 and D2 are 2× 2 diag-

onal matrices and B is an arbitrary 2× 2 matrix over K then xr =

(
0 AD2

0 0

)
.

Hence (xr)2 = 0, and if D2 =

(
1 0
0 0

)
then xrR $ xR or else x = xrs ⇒ A =

AD2D4 for some diagonal matrix D4. Thus D2D4 = I which is impossible.

Corollary 1. Let R be a von Neumann regular ring. If R has no minimal left
ideals, R has no single elements. If R has minimal left ideals, then the socle of R
is the set of finite sums of single elements. In that case the primitive idempotents
are precisely the single ones.

Example 7(a). Consider the semiprime ring R = C(X) of continuous real-
valued functions on a completely regular topological space X. As usual let Z(f) =
{x|f(x) = 0}. Then ([6]) I is a minimal ideal iff ∃y such that ∀ 0 6= f ∈ I, Z(f) =
X −{y}. It follows that R has minimal ideals iff X has isolated points. Moreover
R is regular iff X is a P -space [4, Ex. 4J]. If X is discrete, C(X) is a regular
ring with minimal ideals, i.e., with single elements. On the other hand, there is a
P -space without isolated points [4, Ex. 13P ] giving a regular ring C(X) with no
single elements.

Example 7(b). Let R = P(S) be the Boolean ring of subsets of a set S. Then
R is regular and the single elements are precisely the singleton subsets (!). If S is
infinite then F = {T ⊆ S|T is finite} is an ideal and R = R/F is regular (Boolean)
with no primitive idempotents ([7b, Ex. 21.12]), hence no single elements.

Example 8. On the other hand there are rings which have no idempotent el-
ements and no single elements. Let K be a field and consider the Zassenhaus
Algebra A which is the K-algebra with basis {ua|a ∈ R, 0 < a < 1} and multipli-

cation given by uaub =

{
ua+b if a + b < 1

0 if a + b ≥ 1
. This is an idempotent nil ring. If

0 6= x ∈ A, let x =
n∑

i=1

riuai
where ri ∈ K and ai < aj for i < j. Let b =

1− a1

2
.

Then ubxub = 0 but ubx 6= 0 6= xub since a1 + b = a1 +
1− a1

2
< 1.

Corollary 2. If R is completely reducible, every single element s can be written
s = se where e is an idempotent which is also single, and R is additively generated
by its single elements.

We note that other rings can be generated by their single elements. For example as
noted above in the ring of upper triangular n×n matrices (which is not semiprime)
the single elements are precisely the elements of rank 1 so the standard basis
provides a generating set of single elements.
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Example 9. Let R be a left primitive ring with a faithful simple left module V .
Then K = End(RV ) is a division ring and R is isomorphic to a dense subring of
E = End(VK). From [7(a), Ex. 11.17] s has rank 1 iff Rs is a minimal left ideal.
Since R is semiprime, Rs = Re where e2 = e is single by Theorem 1 (b). Hence s
is single.

Let R be a biregular ring. That is, for every x in R there is a central idempotent
e, such that (x) = eR. In such a ring the structure space M(R) of maximal (=
prime) ideals is locally compact and totally disconnected.

Proposition 3. If s is a single element in a biregular ring there is a unique
maximal ideal M for which s 6∈ M .

Proof. Let s = er where e2 = e so es = s = se. Suppose ∃P1 6= P2 ∈M such that
s 6∈ Pi. Since M(R) is totally disconnected there exist closed sets C1 ∩ C2 = ∅
with C1 ∪ C2 = M, Pi ∈ Ci. Hence by [3, Cor. 1.7] ∃ci such that c1 ∈ ∩{Q|Q ∈
C1}, c1 − e ∈ P2, c2 ∈ ∩{Q|Q ∈ C2}, c2 − e ∈ P1. Then c1sc2 = 0 since
c1sc2 ∈ ∩{M |M ∈ M}. However if c1s = 0 then (c1 − e)s = c1s− es = −s 6∈ P2

but c1 − e ∈ P2 so we contradict the hypothesis that s is single.

Viewing s ∈ R in terms of its sheaf representation ŝ : M → ∪R/P , we see that
the term “single” is apt because ŝ has a single non-zero image.

Proposition 4. Let φ : R → S be a ring homomorphism.
(a) If φ is a monomorphism and s is single in R then φ(s) is single in φ(R).

(b) If R is semiprime and Re is a minimal left ideal of R then φ(e) is single in
φ(R). If, in addition, R is regular, then if s is single φ(s) is single in φ(R).

Proof.
(a) If φ(s) = 0 it is trivially single. If φ(x)φ(s)φ(y) = 0 then xsy ∈ ker φ = 0 so

xs = o or sy = 0 whence φ(x)φ(s) = 0 or φ(s)φ(y) = 0.

(b) If φ(e) 6= 0 and φ(x)φ(e)φ(y) = 0 then xey ∈ K = ker φ. If xey = 0, proceed
as in part (a). Otherwise, since Rey is a minimal left ideal and 0 6= xey ∈
K ∩ Rey, we must have Rey ⊆ K. Then ey = eey ∈ K so φ(ey) = 0, i.e.,
φ(e) φ(y) = 0 as claimed. If further R is regular and s is single in R, then
Rs = Re, e2 = e and φ(e) is single. Since s = se, φ(s) = φ(s) φ(e) is also
single.

2. Generalized domains and 0-simple rings

Definition. R will be called a generalized domain if every element of R is single.
Clearly a domain is a generalized domain and if 1 ∈ R the converse is true.
Let G denote the class of generalized domains. A ring with trivial multiplication
(R2 = 0) is in G.

Proposition 5. If R is a generalized domain, then either Ann`R 6= 0 or AnnrR 6=
0 or R is prime.
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Proof. Suppose Ann`R = 0 = AnnrR. If xRy = 0 then for all r ∈ R either

xr = 0 or ry = 0. Thus R = Annrx
⋃

Ann`y. However a group cannot be the

union of two proper subgroups so either Annrx = R or Ann`y = R, i.e., either
x ∈ Ann`R = 0 or y ∈ AnnrR = 0.

Theorem 2.
(a) G is closed under subrings.

(b) G is closed under ultraproducts.

(c) G is not closed under factor rings nor under formation of prime factor rings.

Proof.
(a) is trivial.

(b) Let {Ai|i ∈ I} ⊆ G and let U be an ultrafilter on I. Consider R = ΠAi/U .
If (ai)(si)(bi) ≡ 0 mod U then J = {i ∈ I|aisibi = 0} ∈ U . Now J = {i ∈
I|aisi = 0} ∪ {i ∈ I|aisi 6= 0 and skbi = 0} = L1 ∪̇ L2 say. Since U is an
ultrafilter L1 ∈ U or L2 ∈ U . But L2 ⊆ L3 = {i ∈ I|sibi = 0} and U is a
filter so if L2 ∈ U then L3 ∈ U . Thus (ai)(si) ≡ 0 mod U or (si)(bi) ≡ 0
mod U as claimed.

(c) For the first part simply consider Z/mZ where m is not prime (Example 1).
Secondly let A = A1(k) be the Weyl algebra over a field k of characteristic
0. Then A is a domain so A ∈ G. A can be represented as a dense ring
of linear transformations of an infinite dimensional vector space V over k.
Then for all n, A contains a subring B whose homomorphic image is the full
n × n matrix ring over k. Then B ∈ G by part (a) but its image is in G iff
n = 1.

Theorem 3.
(a) A nil ring R is in G if and only if R2 = 0.

(b) A semi-prime ring R is in G iff it has no zero-divisors.

(c) If R ∈ G then Ann`R ⊆ AnnrR or AnnrR ⊆ Ann`R.

(d) If R ∈ G then R/Ann`R and R/AnnrR ∈ G.

(e) Let R be in G, AnnrR ⊆ Ann`R 6= R. Then R/Ann`R is (in G and) prime.

(f) If AnnrR ⊆ Ann`R and R/AnnrR has no zero-divisors then R ∈ G. Hence
if AnnrR = Ann`R the converse to part (e) is true.

Proof.
(a) Let R be a nil ring in G. By Lemma 1 (iii) x2 = 0 for all x ∈ R. Thus

R is anticommutative. By Lemma 1 (vii), (0 : x) is a prime ideal or R for
each x. But R is a prime radical ring (e.g. because it is a nil PI ring) so
(0 : x) = R for every x. Thus R2 = 0. The converse is clear.

(b) If R is semi-prime and R ∈ G, then by Proposition 5 R is prime. Suppose
there exist elements a and b with ab 6= 0. Since R is prime, there exist f
and g so that afa 6= 0, bgb 6= 0. Then a(fa + bg)b = afab + abgb = 0 but
a(fa + bg) = afa 6= 0 and (fa + bg)b = bgb 6= 0 so fa + bg is not a single
element.
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(c) Suppose the two annihilators of R are incomparable. Then there exist a, b ∈
R with aR = 0, Rb = 0 but ra, bs 6= 0 for some r, s ∈ R. Then r(a + b)s =
(ra + rb)s = ras = 0, while r(a + b) = ra 6= 0 and (a + b)s = bs 6= 0, so
a + b is not single. Thus R 6∈ G.

(d) (for R/Ann`R). Let x = x + Ann`R for all x ∈ R. If abc = 0, i.e., abc ∈
Ann`R, then abcd = 0 for all d ∈ R. As b is single, either ab = 0 or bcd = 0
for all d, i.e., ab = 0 or bc ∈ Ann`R, i.e., ab = 0 or bc = 0. Hence every b is
single, so R/Ann`R ∈ G.

(e) Let B/Ann`R = Ann`(R/Ann`R). Then B � R, (B/Ann`R)2 = 0 and
(Ann`R)2 = 0 so B is nilpotent and in G (Theorem 2). By (a) B2 = 0. But
then BRB = (BR)B ⊆ B2 = 0. If a ∈ R and Ba 6= 0, let ba 6= 0, b ∈ B.
Then baB ⊆ BRB = 0 so (as a is single) aB = 0. Thus R = {a : Ba =
0} ∪ {a : aB = 0}. But then R = {a : Ba = 0} or R = {a : aB = 0}
(as R can’t be a union of two proper additive subgroups). This means that
BR = 0 or RB = 0, so that B ⊆ Ann`R ⊆ B or B ⊆ Ann`R ⊆ Ann`R ⊆ B.
In any case, B = Ann`R, so R/Ann`R has zero left annihilator.
Let C/AnnrR = Annr(R/Ann`R). Then as with B we have C � R, C ∈ G
and C is nilpotent, so C2 = 0 and CRC = 0. Hence CR = 0 or RC = 0,
so C ⊆ Ann`R ⊆ C or C ⊆ AnnrR ⊆ Ann`R ⊆ C. In any case, C =
Ann`R so R/Ann`R has zero right annihilator. By (d) R/Ann`R ∈ G so by
Proposition 5, R/Ann`R is prime.

(f) Suppose axb = 0. Then since AnnrR is a completely prime ideal one of
a, x, b is in AnnrR ⊆ Ann`R. Hence ax = 0 or xb = 0.

Definition. A non-zero element y ∈ R will be called a strong generator of R if
for all x ∈ R there exist a, b ∈ R such that x = ayb. R will be called 0-simple if
every non-zero element is a strong generator.

The second definition and terminology coincide with that used in semigroups [5].

Thus a strong generator y is a generator in the usual sense that the ideal generated
by y is all of R. Clearly any left or right unit in a ring with identity is a strong
generator. If 1 ∈ R and R is Dedekind finite (uv = 1 ⇒ vu = 1) then the
only strong generators are the units. However, if R is not Dedekind finite and
uv = 1, vu 6= 1 then u, v and vu are all strong generators and vu is neither a left
nor a right unit.

Clearly a division ring is 0-simple and a 0-simple ring is simple. C∗-algebras
which are 0-simple are precisely those which are purely infinite [15]. A 0-simple
ring is a λ-ring in the sense of [1], i.e., ∀x 6= 0, x ∈ RxR. If 1 ∈ R,R is 0-simple
iff for all y 6= 0 ∃a, b with 1 = ayb.

Example 10. Let V be a vector space over a division ring K. If V has finite
dimension, E = End V is simple but not 0-simple since E is Dedekind finite. On
the other hand if V has countably infinite dimension, let I be the ideal of elements
of finite rank. I is the unique proper non-trivial ideal of E so R = E/I is simple.
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In fact R is 0-simple. Suppose R =
∞⊕
1

eiK and g ∈ E\I. Then V = ker(g)⊕ U

where U has a basis {u1, u2, . . .}. Since {g(ui)} is a linearly independent set we
can define f ∈ E\I by f(g(ui)) = ei ∀i and h ∈ E\I by h(ei) = ui. It follows
that fgh = 1.

Finally suppose V has dimension α, an infinite cardinal. Then ([7(a), Ex. 3.16])
the ideals of E = End V are 0, E, and Eβ = {T ∈ E|rank T < β} for all infinite
cardinals β ≤ α, and moreover [7(b), Ex. 3.16] if rank S ≤ rank T ∃ P, Q ∈ E
with S = PTQ. Therefore if β < γ are consecutive infinite cardinals Eγ/Eβ is a
0-simple ring without identity.

Lemma 2. If R is 0-simple and e2 = e, then eRe is 0-simple.

Proof. Since e is the identity of eRe it suffices to show that for all ere 6= 0 there
exist ese, ete with e = eseereete = eserete. Since ere is a strong generator of R
there exist s, t with e = seret and the result follows.

A unital 0-simple ring R which is not a division ring is rich in idempotents. In the
first place R is not Dedekind finite so ∃u, v with uv = 1 and e = vu 6= 1. Then
for all i and j, eij = vi(1 − e)uj is an idempotent. Moreover for any non-unit x
there exist a, b with 1 = axb so f = xba and g = bax are idempotents at least
one of which is different from 1.

Theorem 4. If R is 0-simple and has a primitive idempotent, it is regular and a
generalized domain. If R is unital, it is a division ring.

Proof. The regularity is a consequence of the semigroup structure of R alone
[5, Lemma 3.2.7]. Let e be the primitive idempotent. For all b ∈ R there exist
x, y with b = xey. Since R is regular, Re is a minimal left ideal and e is single.
Therefore b is single. If 1 ∈ R since eRe is a division ring and ∃a, b ∈ R with
1 = aeb we have e = ae be and ebe has an inverse ece in eRe. Therefore ece =
aebece = ae and 1 = aeb = eceb so e = eceb = 1. Thus 1 is a primitive idempotent,
i.e., R is a division ring.

3. Single elements in nearrings

Recall (see e.g. [14]) that a (right) nearring is a triple (N, +, ·) where (N, +) is a
(possibly non-abelian) group, (N, ·) is a semi-group and (a + b)c = ac + bc for all
a, b, c ∈ N . Many of the results of Section 1 will hold in nearrings with suitable
modifications such as the replacement of “left ideal” by “N -subgroup” and with
attention paid to the presence or absence of zero-symmetry. It is not obvious that
all of these appear in the literature, but whenever the proof is a straight-forward
adaptation of the ring theoretic proof, it will be omitted. Nearrings provide a
natural setting for single elements in that there are large and important classes
of nearrings which are functions (on groups) and, as we have seen, the original
impetus for single elements came from rings of functions.
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Let N be a right nearring with constant subnearring Nc = {n ∈ N |n0 = n} =
{n ∈ N |nn′ = n for all n′ ∈ N}. Clearly every constant element is single. The
converse may or may not hold:

Example 11. Let N be the nearring on Z2×Z2×Z2 whose multiplication table
is given by (see [11, Example 2.6]):

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0
2 0 0 2 2 0 0 2 2
3 0 1 2 3 0 0 2 2
4 4 4 4 4 4 4 4 4
5 4 5 4 5 4 4 4 4
6 4 4 6 6 4 4 6 6
7 4 5 6 7 4 4 6 6

Direct calculation shows that 1, 2, 4 and 5 are all single elements but only 4 is a
constant. For example if s = 5 then since 5b = 4 or 5 for all b, a5b = 0 ⇒ a4 =
0 or a5 = 0. But, in fact, a4 = 0 ⇔ a5 = 0 and s is single.

Example 12. In M(G) = {f : G → G} where G is a group, every “single”
element is constant. For suppose f ∈ M(G) where f is single and f(g1) = h1 6=
h2 = f(g2) for some gi ∈ G. We can assume h2 6= 0. Define α, β ∈ M(G) so
that α(h1) 6= 0, α(x) = 0 ∀x 6= h1 and β(x) = g2 ∀x. Then αfβ(x) = αf(g2) =
α(h2) = 0 but αf(g1) = α(h1) 6= 0 and fβ(x) = f(g2) = h2 6= 0.

Example 13. Let N be a subnearring of M0(G). Then any function f ∈ N which
has only one non-trivial element in its range is single. For suppose ∅ 6= X ⊂ G
and f(x) ≡ fg,X(x) = g ∀x ∈ X and f(y) = 0 ∀y 6∈ X. Then if αfβ = 0 for
some α, β ∈ N there are two cases. If β(g) ⊆ G\X, fβ = 0. On the other hand
if ∃t ∈ G such that β(t) ∈ X, αfβ(t) = 0 ⇒ α(g) = 0 ⇒ αf(x) = 0 ∀x ∈ X so
αf = 0.

Example 13(a). If N = M0(G) the converse to Example 13 holds, that is a single
element must have only one non-trivial element in its range. The proof given for
Example 12 goes through. Moreover the single elements which are idempotent
are those fg,X for which g ∈ X.

Example 13(b). Endomorphism nearrings can have single elements of the type
described in Example 13. For instance (see [12]), E(D4) can be additively gen-
erated by 5 such idempotent single elements and I(D4) has seven such elements
(eg. 2id is one).

Example 13(c). If V is a faithful N -group where N is zero-symmetric, Scott
[16] has defined a pre-image of V as a triple (n, v, S) where n ∈ N, v ∈ V ∗, ∅ 6=
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S ⊆ V ∗ and ns = v ∀s ∈ S, ns′ = 0 otherwise. In this case n is a single element
by Example 13.

Example 14. If N = M◦
A(G) is a centralizer nearring where A 6= {id} is a

group of automorphisms of G then N has single elements with more than one
non-trivial element in their range. In particular ∀g ∈ G define eg(x) = x ∀x ∈ Ag
and eg(y) = 0 otherwise. Then eg is single and idempotent. For suppose f, h ∈ N
and fegh(y) = 0 ∀y ∈ G. If h(y) 6∈ Ag for all y then egh(y) = 0. On the
other hand if h(y) ∈ Ag for some y then h(y) = α(g) for some α ∈ A and
fegh(y) = 0 ⇒ fh(y) = 0. We claim that feg(x) = 0 for all x. Certainly
feg(x) = 0 if x 6∈ Ag. If x ∈ Ag, x = β(g) for some β ∈ A so x = βα−1h(y).
Then feg(x) = fβα−1h(y) = βα−1fh(y) = 0 as claimed.

Lemma 3. If s is single so is xs for all x ∈ N ; if N is zero-symmetric sx is also
single for all x ∈ N .

To extend Theorem 1 to nearrings we need the following definitions:

(1) N is called 3-semiprime if xNx = 0 ⇒ x = 0;

(2) N is 2-semiprime if it has no non-zero nilpotent N -subgroups;

(3) N is 1-semiprime if it has no non-zero nilpotent left ideals;

(4) N is said to have “DCCN” if it has the descending chain condition on N -
subgroups;

(5) an idempotent e is primitive if for all idempotents f 6= 0, ef = fe = f ⇒
e = f .

Note that in nearrings this neither implies nor is implied by the statement “e is
not the sum of two orthogonal idempotents”. As in rings, an idempotent which
is single is primitive.

Lemma 4. e is primitive iff the semigroup eNe has no non-zero idempotent
elements except e.

Proof. If f = ene satisfies f 2 = f , then fe = ef = f so f = e. Conversely if
ef = fe = f then ef is an idempotent since efef = eff = ef and moreover
ef = efe ∈ eNe so f = e.

Proposition 6. Consider the following conditions on e2 = e.
(a) Ne is a minimal N-subgroup of N .

(b) (eNe− {0}, ·) is a group.

(c) e is primitive.

Then (a) ⇒ (b) ⇒ (c). Also (b) ⇒ (a) if N is zero-symmetric and 3-semiprime,
and (c) ⇒ (a) if N is regular or if N is zero-symmetric and 2-semiprime with
DCCN.

Proof. (a) ⇒ (b): If ene 6= 0, then 0 6= ene = e(ene) ∈ Nene ⊆ Ne so by the
minimality of Ne, Nene = Ne. Therefore there is an x ∈ N such that e = xene
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so e = exene = (exe)(ene). Thus eNe−{0} is a semigroup with identity in which
each element has a left inverse. Hence it is a group.

(b) ⇒ (c) is trivial since a group does not have idempotent elements other than
the identity.

(b) ⇒ (a) if N is zero-symmetric and 3-semiprime: Suppose 0 6= I ⊆ Ne, I an
N -subgroup. Let 0 6= x = ne ∈ I. Since N is 3-semiprime, neNne 6= 0 so ∃x such
that nexne 6= 0. Since N is zero-symmetric exne 6= 0, so by hypothesis ∃t such
that eteexne = e. Thus e ∈ Nne so Ne ⊆ Nne ⊆ I so I = Ne as claimed.

(c) ⇒ (a): If N is regular and 0 6= a ∈ I ⊆ Ne where I is an N -subgroup of N
then Na = Nf for some idempotent f so Nf ⊆ Ne. Hence f = ne so fe = f
and ef is an idempotent in eNe. Since e is primitive ef = e so e ∈ Nf and
Ne = Nf = Na as claimed.

With the alternate hypothesis given, if Ne is not minimal then Ne contains some
minimal N -subgroup which by [14, Theorem 3.51(a)] has the form Nf, f 2 = f .
The proof then proceeds as above.

Remark. The result just quoted ([14, Theorem 3.51(a)]) has DCCN as a hypoth-
esis. However, more generally, we have by a standard proof:

Proposition 7. If N is zero-symmetric and L is a minimal N-subgroup of N
with L2 6= 0 then L = Ne for some idempotent e.

Theorem 5. (a) If L is a minimal N-subgroup of N such that ∀0 6= x ∈ L ∃n ∈ N
with nx 6= 0 then L = Nx and x is single.

(b) If N is regular and e2 = e is single, then Ne is a minimal N-subgroup of N .

Proof. (a) The proof given in Theorem 1(b) goes through.

(b) If e is single, eNe has no zero-divisors. As in the proof of Theorem 1(d), this
implies eNe has no idempotents other than e. Hence by the previous result Ne
is a minimal N -subgroup.

Corollary 3. If N is regular, s is single iff Ns is a minimal N-subgroup.

Example 15. The zero-symmetry is necessary for Proposition 5 (c) ⇒ (a).
Example 11 above is non-zero symmetric and 1 is a primitive idempotent. N
is 3-semiprime and so is 2-semiprime, and being finite it has DCCN. However
N1 = {0, 1, 4, 5} % N4 = {0, 4}.

Theorem 6. Let N = M◦
A(G).

(a) Every minimal left ideal (if any exist) consists of single elements,
Moreover if N is regular then

(b) minimal N-subgroups exist and consist of single elements

(c) every N-subgroup contains a minimal N-subgroup.

Proof.
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(a) Let eg be the idempotent defined in Example 13. By [13, Theorem 2.1] if L
is a minimal left ideal, L ⊆ Neg for some g. Since eg is single, so is every
element of L.

(b) By Theorem 5, Neg is a minimal N -subgroup. Furthermore if L is any
minimal N -subgroup L2 6= 0 since N is regular so by Proposition 7, L = Ne
and e is single by the corollary.

(c) If L is any N -subgroup and 0 6= f ∈ L then f(x) 6= 0 for some x ∈ G. Let
e ≡ ef(x). Since ef(x) = f(x), ef is a non-zero single element in L. Thus L
contains the N -subgroup Nef which is minimal by the corollary.

Remark. Theorem 6 applies in particular to the regular nearring M0(G) and,
despite the fact that much has been known for some time about the structure of
M0(G) (see e.g. [14, Ch. 7]) Theorem 6(c) appears to be new. This also provides
a good example of how nearrings can differ markedly from rings. By [7(a), 3.10]
a simple ring with a minimal left ideal is left artinian. In contrast, M0(G) is a
simple nearring in which every N -subgroup contains a minimal N -subgroup but
if G is infinite it does not have the descending chain condition on N -subgroups
[14, 7.19].
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